用户名: 密码: 验证码:
二硫化二砷单药或联合靛玉红诱导弥漫大B细胞淋巴瘤细胞凋亡的机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在发达国家,非霍奇金淋巴瘤(non-Hodgkin lymphoma, NHL)是常见的血液恶性肿瘤之一,约占恶性肿瘤的4%;而弥漫大B细胞淋巴瘤(diffuse large B-cell lymphoma, DLBCL)是其最常见的一种亚型,约占40%。同样,在发展中国家,DLBCL也是最常见的肿瘤之一。DLBCL是一组在细胞遗传学、免疫表型和临床特征方面均存在很大异质性的肿瘤。虽然利妥昔单抗和联合化疗能提高DLBCL患者的疗效,但仍有部分患者耐药或复发。因此,寻求新的治疗方案迫在眉睫。
     中药在我国用于治疗恶性肿瘤历史悠久,并且取得了一定的临床疗效。传统中药砷剂包括二硫化二砷(arsenic disulfide,As2S2)、四硫化四砷(tetra-arsenic tetra-sulfide,As4S4)和三氧化二砷(arsenic trioxide, As2O3)。1996年,上海血液病研究所首次阐明了As203可诱导急性早幼粒细胞白血病(acute promyelocytic leukemia, APL)细胞分化和凋亡,从而引起了国内外学者对砷剂治疗血液恶性肿瘤疾病的关注。
     二硫化二砷是雄黄的主要成分之一,无论是在中医还是在西医的治疗均历史悠久。基础研究证实,雄黄同样可诱导ATRA敏感的细胞株NB4和ATRA耐药的细胞株MR2发生凋亡和分化。进一步研究发现雄黄诱导HL-60、NB4和K562细胞凋亡的机制是通过抑制端粒酶活性;减少BCL-2和PNAS-2的表达;并且与MAPK通路相关连。同时,雄黄诱导HL-60细胞的分化不仅与丝氨酸、苏氨酸蛋白磷酸酶1型和2A型的活性的增强,而且通过线粒体膜电位的增强来实现的。
     而且,砷剂诱导非霍奇金淋巴瘤细胞凋亡机制多样。在人类Burkitt淋巴瘤细胞株Raji和人类T细胞淋巴瘤细胞株Jurkat中的研究中发现,三氧化二砷通过阻滞细胞周期、减少呼吸功能和线粒体膜电位,下调凋亡相关基因MCL-1进而活化caspase-3的途径来抑制增长和诱导凋亡的。进一步研究发现,Jurkat细胞和Raji细胞对砷剂诱导凋亡的敏感性存在差异,因为Jurkat细胞表达高水平的谷胱甘肽S-转移酶P1-1(glutathione S-transferase P1-1, GSTP-1)。同样,人T细胞淋巴瘤细胞株CEM研究中发现,雄黄诱导凋亡的机制是阻滞细胞停滞于G2/M期、下调Bcl-2和增加AP02.7蛋白的表达。最新研究证实三氧化二砷通过减少细胞周期蛋白D1的表达和上调凋亡相关基因的机制来抑制人滤泡淋巴瘤细胞(mantal cell lymphoma, MCL)的生长和诱导其凋亡。
     为了增强治疗效果并减少副作用,常采用联合化疗方案治疗肿瘤。复方黄黛片就是采用雄黄作为君药,而青黛和太子参作为臣药而组成的中药复方制剂,并且也证实其治疗APL效果显著。进一步的研究发现雄黄和青黛的有效活性成分是硫化砷(As2S2或AS4S4)和靛玉红。基础研究证实雄黄对人T细胞淋巴瘤细胞株(CEM-T)和B细胞淋巴瘤细胞株(Raji)有抑制增长和诱导凋亡作用。而且靛玉红对正正常淋巴细胞和恶性淋巴细胞,如T细胞淋巴瘤细胞株(Jurkat, CEM-T)和B细胞淋巴瘤细胞株(IM9, Reh6)均有抑制增长和诱导凋亡作用。
     有关AS2S2和靛玉红单药或联合对DLBCL细胞株的增殖和凋亡的影响未见提及。本研究以人DLBCL细胞株LY1和LY8作为研究对象,研究As2S2和靛玉红单药或联合对DLBCL细胞增殖和凋亡的影响,并初步探讨了其凋亡机制,为临床发掘新的联合治疗方案提供有力的理论支持。
     第一部分二硫化二砷诱导弥漫大B细胞淋巴瘤细胞凋亡及机制探讨
     目的:DLBCL是NHL中最常见的一种亚型,约占40%。DLBCL是一组在细胞遗传学、免疫表型和临床特征方面均存在很大异质性的肿瘤。虽然CD20单克隆抗体利妥昔单抗和联合化疗能提高DLBCL患者的疗效,但仍有部分患者耐药或复发。因此,寻求新的治疗方案成为研究的重点。目前含砷中药的抗肿瘤特点成为研究的热点。本研究选择了人DLBCL细胞株LY1和LY8,与As2S2在体外共培养,进行细胞增殖和凋亡分析,并探讨了其凋亡机制。
     材料和方法:
     1. DLBCL细胞株LY1和LY8与As,2S2共培养
     2.CCK-8测定细胞增殖
     3.流式细胞术测定细胞凋亡
     4.提取RNA,进行实时定量PCR
     5.蛋白提取和蛋白印迹分析
     6.统计学分析
     结果:
     1.CCK-8结果显示:随着As2S2作用时间的延长,DLBCL细胞活性逐渐减弱;同时药物浓度越高,细胞活性越低。其差异均有统计学意义。
     2.流式结果显示:As2S2诱导细胞凋亡效应呈现时间和剂量依赖性,其差异均有统计学意义。
     3.实时荧光定量结果显示:与对照组比较,10μMAs2S2与DLBCL细胞共孵育48h,Caspase-3mRNA的表达上升,Bcl-2mRNA的表达下降,Bax mRNA的表达上升,Bax/Bcl-2的比例升高(P<0.05)。
     4. Western blot结果显示:与对照组比较,10μM As2S2与DLBCL细胞共孵育48h, Procaspase-3蛋白的表达下降,Bcl-2表达下降,Bax表达上升,Bax/Bcl-2的比例升高(P<0.05),并且21-KDa Bax断裂成为18-KDa Bax。
     结论:
     1.As2S2以浓度和时间依赖的方式抑制DLBCL细胞生长和诱导凋亡。
     2.As2S2可能是通过线粒体凋亡途径来诱导DLBCL细胞凋亡,As2S2诱导凋亡过程中伴随着Bax断裂。
     第二部分靛玉红增强二硫化二砷诱导弥漫大B细胞淋巴瘤细胞凋亡作用及机制探讨
     目的:为了增强治疗效果并减少副作用,常采用联合化疗治疗肿瘤。复方黄黛片是采用硫化砷作为君药,靛玉红作为臣药的一种中药复方制剂。靛玉红及其衍生物早期用于治疗慢性粒细胞白血病的疗效得到肯定。随着靛玉红及其衍生物抗肿瘤活性的发掘,近年来,靛玉红也成为了肿瘤研究的热点。本实验研究了靛玉红单药或联合As2S2对DLBCL细胞株LY1和LY8的作用,探讨了靛玉红对AS2S2的增强诱导凋亡的机制,有可能为临床发掘新的联合治疗方案提供有力的理论支持。
     材料和方法:
     1.靛玉红单药或联合AS2S2与DLBCL细胞株LY1和LY8共培养
     2.CCK-8测定细胞增殖
     3.流式细胞术测定细胞凋亡
     4.提取RNA,进行实时定量PCR
     5.蛋白提取和蛋白印迹分析
     6.统计学分析
     结果:
     1.CCK-8结果显示:靛玉红单药与DLBCL细胞共培养,随着作用时间的延长和药物浓度的增加,DLBCL细胞活性无变化。
     2.随着靛玉红浓度的增加,DLBCL细胞与靛玉红共培养48h,细胞凋亡率无变化。
     3.与As2S2组比较,靛玉红联合As2S2组DLBCL细胞活性明显下降;凋亡率明显增高,差异有统计学意义。
     4.实时荧光定量结果显示:与10μMAs2S2组比较,20μM靛玉红联合10μMAs2S2组caspase-3、Bcl-2和Bax的表达在mRNA水平无差异(P>0.05)。
     5. Western blot结果显示:与10μMAs2S2组比较,20u M靛玉红联合10μMAs2S2组procaspase-3的表达下降,Bax/BCL-2的表达升高,凋亡过程中伴随着Bax断裂。
     结论:
     1.靛玉红单药对DLBCL细胞株无抑制增殖和诱导凋亡作用
     2.靛玉红可增强As2S2对DLBCL细胞株的促凋亡作用,因此,As2S2是作为君药而靛玉红作为臣药发挥抗肿瘤活性的。
     3.靛玉红增强As2S2对DLBCL细胞株的促凋亡作用可能是通过线粒体凋亡途径;并伴随着Bax断裂。
NHL is the most common hematological neoplasm in the United States, and accounts for4%of all malignant tumors diagnosed each year. DLBCL is the most prevalent subtype of NHL worldwide and represents up to40%of all NHL cases among adults in the western world, and frequent in developing countries. DLBCL is the heterogeneous disease with variable cytogenetics and immunophenotype, as well as clinical features. Although the initial standard therapy with rituximab in combination with CHOP (R-CHOP) chemotherapy has improved outcomes for patients with DLBCL, there are still some patients who are refractory to initial treatment or relapse after standard therapy. Therefore, the discovery of novel and alternative therapeutic approaches is urgent.
     In ancient China, traditional Chinese medicine (TCM) has been used to treat malignant tumor and has been proven to be effective for a long time. And arsenic included As2S2, As4S4and As2O3. In1996, As2O3was been firstly used to induce APL differentiation and apoptosis by the institutes of Shanghai hematonosis. Consequently, arsenic drugs have become a'hot topic'and have attracted increased attention in regards to malignant hematological neoplasm.
     Realgar has been found to induce both apoptosis and differentiation simultaneously in ATRA-sensitive NB4and ATRA-resistant MR2PML-RARa+APL cell lines. Previous studies demonstrated that realgar induced apoptosis of HL-60, NB4and K562cell lines, which was associated with CD95/CD95L and MAPK pathway, inhibition of telomerase activity and decreased expression of BCL-2and PNAS-2. In addition, realgar induced the differentiation of HL-60cell line via not only the enhancement of the activity of serine/threonine protein phosphatase typel (PP1) and type2A (PP2A) but also oxidative stress and stress-related mitochondrial transmembrane potential (MTP).
     In addition, previous studies have demonstrated that arsenic induced apoptosis among in NHL cells by means of different mechanisms. They revealed that As2O3inhibited proliferation and induced apoptosis in the human Burkitt lymphoma cell line Raji and in the human T lymphoma cell line Jurkat through cell cycle arrest, decrease in respiratory function and MTP, downregulating the expression of MCL-1and subsequently activating caspase-3. However Jurkat cells were less sensitive to As2O3-induced apoptosis than Raji cells, as Jurkat cells express high levels of glutathione S-transferase P1-1(GSTP1-1). At the same time, realgar induced apoptosis of human T lymphocyte leukemia cell line CEM apoptosis through cell cycle arrest in the G2/M phase, a decrease in the expression of Bcl-2and an increase in APO2.7protein expression. A recent study demonstrated that As2O3inhibited the growth of mantle cell lymphoma (MCL) and inducesd apoptosis through a decrease in cyclinD1expression and increase in the expressin of apoptosis-related molecules.
     To enhance therapeutic efficacy and reduce adverse effects, it is common to combine multiple drugs to deal with diseases. Realgar-Indigo naturalis formula (RIF) was been constituted with realgar as a sovereign drug, whereas Indigo naturalis and Salvia miltiorrhiza as minister drugs. And further research demonstrated that the components of RIF were realgar and indigo with arsenic sulfide and indirubin as major ingredients. Realgar was known to be able to induce apoptosis in human T cell lymphoma cell (CEM) and human B cell lymphoma (Raji). Furthermore, indirubin was proven to induce apoptosis in human T cell lymphoma cell (Jurkat, CEM) and human B cell lymphoma (IM9, Reh6).
     But there was no study on whether indirubin and As2S2alone or in combination had effects in DLBCL cells. For the first time, our present manuscript focuses on indirubin and As2S2alone or in combination on the proliferation and apoptosis of DLBCL cell lines and its mechanism in an attempt to seek a more effective combination therapy scheme for DLBCL.
     Part Ⅰ Arsenic Disulfide Induces Apoptosis of Human Diffuse Large B-Cell Lymphoma Cells and The Mechanism
     Objective:DLBCL is the most prevalent subtype of NHL worldwide and represents up to40%of all NHL cases among adults in the western world, and frequent in developing countries. DLBCL is the heterogeneous disease with variable cytogenetics and immunophenotype, as well as clinical features. Although the initial standard therapy with rituximab in combination with CHOP (R-CHOP) chemotherapy has improved outcomes for patients with DLBCL, there are still some patients who are refractory to initial treatment or relapse after standard therapy. Therefore, the discovery of novel and alternative therapeutic approaches is urgent. Currently, arsenic drugs have become a'hot topic'and have attracted increased attention in regards to malignant hematological neoplasm and other solid tumors. To investigate the effect of As2S2on the proliferation and apoptosis of DLBCL cell lines LY1and LY8in an attempt to find potential mechanism.
     Materials and Methods:
     1. Co culture with DLBCL cells and As2S2
     2. CCK-8method to detect cell proliferation
     3. Flow cytometry to evaluate cell apoptosis
     4. RNA extraction and RT-PCR
     5. Protein extraction and western blot analysis
     6. Statistical analysis
     Results:
     1. We found that the DLBCL cells viability significantly decreased by As2S2at24h,48h and72h. Along with increasing As2S2concentration, the DLBCL cells viability was notably reduced compared with the control group, and was statistically significant (P<0.05).
     2. The apoptotic rates of DLBCL cells were significantly increased at24h,48h and72h with increasing As2S2concentration, and were statistically significant (P<0.05).
     3. The quantitative real-time PCR results showed that the expression levels of Bax/Bcl-2ratio and caspase-3mRNA were up-regulated in As2S2-treated DLBCL cells.
     4. Western blot revealed that As2S2could down-regulate the expression of procaspase-3and up-regulate the ratio of Bax/Bcl-2. Our study also showed that21-KDa Bax was proteolytically cleaved into the more apoptotic18-KDa Bax in DLBCL cells exposed to As2S2at a concentration of10μM.
     Conclusions:
     1. As2S2could inhibit proliferation and induce apoptosis of LY1and LY8cells in a concentration-and time-dependent manner.
     2. The effect was partly due to the induction of mitochondria-dependent apoptosis involving Bax cleavage.
     Part Ⅱ Enhancing Effects of Indirubin on Arsenic Disulfide-Induced Apoptosis of Human Diffuse Large B-Cell Lymphoma Cells and The Mechanism
     Objective:To enhance therapeutic efficacy and reduce adverse effects, it is common to combine multiple drugs to deal with diseases. RIF was been constituted with realgar as a sovereign drug, whereas Indigo naturalis as a minister drug. Indirubin and its derivatives have been made great progress on the treatment of chronic myeloid leukemia (CML). Extensive research has been performed to study the mechanism of their anti-tumor activity. To investigate the enhancing effect of indirubin on arsenic disulfide (As2S2) on the proliferation and apoptosis of DLBCL cells LY1and LY8in an attempt to find a better combination therapy scheme.
     Materials and Methods:
     1. DLBCL cells cultured with indirubin and As2S2alone or in combination
     2. CCK-8method to detect cell proliferation
     3. Flow cytometry to evaluate cell apoptosis
     4. RNA extraction and RT-PCR
     5. Protein extraction and western blot analysis
     6. Statistical analysis
     Results:
     1. We found that the DLBCL cells viability had no significant change at24h,48h and72h with increasing indirubin concentration.
     2. Meanwhile the apoptotic rates of DLBCL cells weren't significantly increased at48h with increasing indirubin concentration.
     3. Along with the combination of indirubin and As2S2, the viability and apoptotic rate of DLBCL cells were both notably changed compared with the As2S2-treated group, and was statistically significant (P<0.05).
     4. The quantitative real-time PCR results showed that indirubin had no enhancing effect on the expression levels of Bax/Bcl-2ratio and caspase-3mRNA.
     5. Western blot revealed that indirubin had enhancing effect on the expression levels of Bax/Bcl-2ratio and caspase-3protein. Our study also showed that21-KDa Bax was proteolytically cleaved into the more apoptotic18-KDa Bax in DLBCL cells exposed to the combination of indirubin and As2S2.
     Conclusions:
     1. Indirubin alone couldn't inhibit proliferation and induce apoptosis of LY1and LY8cells.
     2. The combination of indirubin and As2S2yielded enhancing effects. Therefore our data demonstrated that As2S2served as the principal component, whereas indirubin served as the adjuvant ingredient on the anti-tumor activity.
     3. The enhancing effect was partly due to the induction of mitochondria-dependent apoptosis involving Bax cleavage.
引文
1. Cultrera JL, Dalia SM. Diffuse large B-cell lymphoma:current strategies and future directions. Cancer control:journal of the Moffitt Cancer Center.2012; 19(3):204-213.
    2. Nedomova R, Papajik T, Prochazka V, et al. Cytogenetics and molecular cytogenetics in diffuse large B-cell lymphoma (DLBCL). Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia. 2012 Nov 6. doi:10.5507/bp.2012.085. [Epub ahead of print]
    3. Abid MB, Nasim F, Anwar K, et al. Diffuse large B cell lymphoma (DLBCL) in Pakistan:an emerging epidemic? Asian Pacific journal of cancer prevention: APJCP.2005; 6(4):531-534.
    4. Sabattini E, Bacci F, Sagramoso C, et al. WHO classification of tumours of haematopoietic and lymphoid tissues in 2008:an overview. Pathologica.2010; 102(3):83-87.
    5. Tirado CA, Chen W, Garcia R, et al. Genomic profiling using array comparative genomic hybridization define distinct subtypes of diffuse large B-cell lymphoma:a review of the literature. Journal of hematology & oncology. 2012;5:54.
    6. Cang S, Mukhi N, Wang K,et al. Novel CD20 monoclonal antibodies for lymphoma therapy. Journal of hematology & oncology.2012;5:64.
    7. Stefancikova L, Moulis M, Fabian P, et al. Prognostic impact of p53 aberrations for R-CHOP-treated patients with diffuse large B-cell lymphoma. International journal of oncology.2011;39(6):1413-1420.
    8. Jin X, Ding H, Ding N, et al. Homozygous A polymorphism of the complement C1qA276 correlates with prolonged overall survival in patients with diffuse large B cell lymphoma treated with R-CHOP. Journal of hematology & oncology.2012;5:51.
    9. Jing Y, Dai J, Chalmers-Redman RM, et al. Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood.1999; 94(6):2102-2111.
    10. Iriyama N, Yoshino Y, Yuan B, et al. Speciation of arsenic trioxide metabolites in peripheral blood and bone marrow from an acute promyelocytic leukemia patient. Journal of hematology & oncology.2012;5:1
    11. Galimberti S, Guerrini F, Salvi F, et al. Arsenic trioxide and ascorbic acid interfere with the BCL2 family genes in patients with myelodysplastic syndromes:an ex-vivo study. Journal of hematology & oncology.2012;5:53.
    12. Chen G, Wang K, Yang BY, Tang B, Chen JX and Hua ZC:Synergistic antitumor activity of oridonin and arsenic trioxide on hepatocellular carcinoma cells. International journal of oncology.2012;40(1):139-147
    13. Ong PS, Chan SY and Ho PC. Differential augmentative effects of buthionine sulfoximine and ascorbic acid in As2O3-induced ovarian cancer cell death: oxidative stress-independent and -dependent cytotoxic potentiation. International journal of oncology.2011;38(6):1731-1739.
    14. Chen S, Fang Y, Ma L, Liu S and Li X. Realgar-induced apoptosis and differentiation in all-trans retinoic acid (ATRA)-sensitive NB4 and ATRA-resistant MR2 cells. International journal of oncology.2012;40(4): 1089-1096.
    15. Li JE, Sun GL, Wu YL, et al. Preliminary study on the molecular mechanism of K562 cell apoptosis induced by As2S2. Zhonghua zhong liu za zhi.2003; 25(3):220-224.
    16. Wang LW, Shi YL, Wang N, et al. Association of oxidative stress with realgar-induced differentiation in human leukemia HL-60 cells. Chemotherapy. 2009; 55(6):460-467.
    17. Wang N, Wang LW, Gou BD, et al. Realgar-induced differentiation is associated with MAPK pathways in HL-60 cells. Cell biology international.2008; 32(12):1497-1505.
    18. Zhao XA, Liu SX:Effects of realgar on tissue factor expression of NB4 and MR2 cells. Zhongguo Zhong yao za zhi.2003; 28(6):553-556.
    19. Luo LY, Huang J, Gou BD, et al. Induction of human promyelocytic leukemia HL-60 cell differentiation into monocytes by arsenic sulphide:involvement of serine/threonine protein phosphatases. Leukemia research.2006; 30(11):1399-1405.
    20. Li HM, Long Y, Qing C, et al. Arsenic trioxide induces apoptosis of Burkitt lymphoma cell lines through multiple apoptotic pathways and triggers antiangiogenesis. Oncology research.2011; 19(3-4):149-163.
    21. Wang R, Liu C, Xia L, et al. Ethacrynic acid and a derivative enhance apoptosis in arsenic trioxide-treated myeloid leukemia and lymphoma cells:the role of glutathione s-transferase p1-1. Clinical cancer research:an official journal of the American Association for Cancer Research.2012; 18(24):6690-6701.
    22. Zhang Y, Nie L. Studies of apoptosis of malignant lymphoma cells induced by arsenic trioxide. Cell biology international 2001; 25(10):1003-1006.
    23. Zhou L, Jing Y, Styblo M, et al. Glutathione-S-transferase pi inhibits As2O3-induced apoptosis in lymphoma cells:involvement of hydrogen peroxide catabolism. Blood.2005; 105(3):1198-1203.
    24. Zhang C, Huang SL, Xiang Y, et al. Study on Realgar inducing apoptosis in T lymphocytic cell line CEM. Zhong xi yi jie he xue bao.2003; 1(1):42-43.
    25. Jung HJ, Chen Z, McCarty N. Synergistic anticancer effects of arsenic trioxide with bortezomib in mantle cell lymphoma. American journal of hematology. 2012; 87(12):1057-1064.
    26. Spencer SL, Sorger PK. Measuring and modeling apoptosis in single cells. Cell. 2011; 144(6):926-939.
    27. Brunelle JK, Letai A. Control of mitochondrial apoptosis by the Bcl-2 family. Journal of cell science.2009;122(Pt 4):437-441.
    28. Soriano ME, Scorrano L. The interplay between BCL-2 family proteins and mitochondrial morphology in the regulation of apoptosis. Advances in experimental medicine and biology.2010; 687:97-114.
    29. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR. The BCL-2 family reunion. Mol Cell.2010;37(3):299-310..
    30. Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA:a cancer journal for clinicians.2005;55(3):178-194.
    31. Mikhailov V, Mikhailova M, Degenhardt K,et al. Association of Bax and Bak homo-oligomers in mitochondria. Bax requirement for Bak reorganization and cytochrome c release. The Journal of biological chemistry.2003;278(7): 5367-5376.
    32. Ariyama H, Qin B, Baba E, et al. Gefitinib, a selective EGFR tyrosine kinase inhibitor, induces apoptosis through activation of Bax in human gallbladder adenocarcinoma cells. Journal of cellular biochemistry.2006;97(4):724-734.
    33. Bogner C, Schneller F, Hipp S, et al. Cycling B-CLL cells are highly susceptible to inhibition of the proteasome:involvement of p27, early D-type cyclins, Bax, and caspase-dependent and -independent pathways. Experimental hematology.2003;31(3):218-225.
    34. Cao X, Deng X and May WS. Cleavage of Bax to p18 Bax accelerates stress-induced apoptosis, and a cathepsin-like protease may rapidly degrade p18 Bax. Blood.2003;102(7):2605-2614.
    35. Cartron PF, Oliver L, Juin P, et al. The p18 truncated form of Bax behaves like a Bcl-2 homology domain 3-only protein. The Journal of biological chemistry.2004;279(12):11503-11512.
    36. Choi WS, Lee EH, Chung CW, et al. Cleavage of Bax is mediated by caspase-dependent or -independent calpain activation in dopaminergic neuronal cells:protective role of Bcl-2. Journal of neurochemistry.2001;77(6): 1531-1541.
    37. Decker T, Oelsner M, Kreitman RJ, et al. Induction of caspase-dependent programmed cell death in B-cell chronic lymphocytic leukemia by anti-CD22 immunotoxins. Blood.2004;103(7):2718-2726.
    38. Gao G and Dou QP. N-terminal cleavage of bax by calpain generates a potent proapoptotic 18-kDa fragment that promotes bcl-2-independent cytochrome C release and apoptotic cell death. Journal of cellular biochemistry.2000; 80(1): 53-72.
    39. Hubaux R, Vandermeers F, Crisanti MC, et al. Preclinical evidence for a beneficial impact of valproate on the response of small cell lung cancer to first-line chemotherapy. European journal of cancer.2010;46(9):1724-1734.
    40. Itoh M, Chiba H, Noutomi T, et al. Cleavage of Bax-alpha and Bcl-x(L) during carboplatin-mediated apoptosis in squamous cell carcinoma cell line. Oral oncology.2000;36(3):277-285.
    41. Li N, Lin P, Cai C, et al. The amino-terminal peptide of Bax perturbs intracellular Ca2+ homeostasis to enhance apoptosis in prostate cancer cells. American journal of physiology. Cell physiology.2009; 296(2):C267-272.
    42. Sackova V, Kulikova L, Kello M, et al. Enhanced antiproliferative and apoptotic response of HT-29 adenocarcinoma cells to combination of photoactivated hypericin and farnesyltransferase inhibitor manumycin A. International journal of molecular sciences.2011; 12(12):8388-8405.
    43. Tavolari S, Bonafe M, Marini M, et al. Licofelone, a dual COX/5-LOX inhibitor, induces apoptosis in HCA-7 colon cancer cells through the mitochondrial pathway independently from its ability to affect the arachidonic acid cascade. Carcinogenesis.2008;29(2):371-380.
    44. Thomas A, El Rouby S, Reed JC, et al. Drug-induced apoptosis in B-cell chronic lymphocytic leukemia:relationship between p53 gene mutation and bcl-2/bax proteins in drug resistance. Oncogene.1996;12(5):1055-1062.
    45. Toyota H, Yanase N, Yoshimoto T, et al. Calpain-induced Bax-cleavage product is a more potent inducer of apoptotic cell death than wild-type Bax. Cancer letters.2003;189(2):221-230.
    46. Wood DE and Newcomb EW. Caspase-dependent activation of calpain during drug-induced apoptosis. The Journal of biological chemistry.1999;274(12): 8309-8315.
    47. Wood DE and Newcomb EW. Cleavage of Bax enhances its cell death function. Experimental cell research.2000;256(2):375-382.
    48. Wood DE, Thomas A, Devi LA, et al. Bax cleavage is mediated by calpain during drug-induced apoptosis. Oncogene.1998; 17(9):1069-1078.
    49. Yanase N, Ohshima K, Ikegami H, et al. Cytochrome c release, mitochondrial membrane depolarization, caspase-3 activation, and B ax-alpha cleavage during IFN-alpha-induced apoptosis in Daudi B lymphoma cells. Journal of interferon & cytokine research:the official journal of the International Society for Interferon and Cytokine Research.2000; 20(12):1121-1129.
    50. Yeo JK, Cha SD, Cho CH, et al. Se-methylselenocysteine induces apoptosis through caspase activation and Bax cleavage mediated by calpain in SKOV-3 ovarian cancer cells. Cancer letters.2002;182(1):83-92.
    51. Aiyar SE, Park H, Aldo PB, et al. TMS, a chemically modified herbal derivative of resveratrol, induces cell death by targeting Bax. Breast cancer research and treatment.2010;124(1):265-277.
    52. Bellosillo B, Villamor N, Lopez-Guillermo A, et al. Complement-mediated cell death induced by rituximab in B-cell lymphoproliferative disorders is mediated in vitro by a caspase-independent mechanism involving the generation of reactive oxygen species. Blood.2001; 98(9):2771-2777.
    53. Chaudhry MA, Chodosh LA, McKenna WG, et al. Gene expression profile of human cells irradiated in G1 and G2 phases of cell cycle. Cancer letters.2003;195(2):221-233.
    54. Lin PH, Pan Z, Zheng L, et al. Overexpression of Bax sensitizes prostate cancer cells to TGF-beta induced apoptosis. Cell research.2005; 15(3):160-166.
    55. Sanchez-Gomez MV, Alberdi E, Perez-Navarro E, et al. Bax and calpain mediate excitotoxic oligodendrocyte death induced by activation of both AMPA and kainate receptors. The Journal of neuroscience:the official journal of the Society for Neuroscience.2011;31(8):2996-3006.
    56. Karlsson J, Ora I, Porn-Ares I, et al. Arsenic trioxide-induced death of neuroblastoma cells involves activation of Bax and does not require p53. Clinical cancer research:an official journal of the American Association for Cancer Research.2004; 10(9):3179-3188.
    57. Karlsson J, Pietras A, Beckman S, et al. Arsenic trioxide-induced neuroblastoma cell death is accompanied by proteolytic activation of nuclear Bax. Oncogene. 2007;26(42):6150-6159.
    58. Paris C, Bertoglio J, Breard J. Lysosomal and mitochondrial pathways in miltefosine-induced apoptosis in U937 cells. Apoptosis:an international journal on programmed cell death.2007; 12(7):1257-1267.
    1. Cooperative Group of Clinical Therapy of Indirubin. Clinical studies of 314 cases of CML treated with indirubin. Chin.J.Hematol.1980;1:132-135.
    2. Cooperative Group of Clinical Therapy of Meisoindigo. Clinical studies of meisoindigo in the treatment of 134 patients with CML.Chin.J.Hematol.1988;9:135-137.
    3. Cooperative Group of Phase III Clinical Trial on Meisoindigo."Phase III clinical trial on meisoindigo in the treatment of chronic myelogenous leukemia".Chin.J.Hematol.1997; 18:69-72.
    4. Hu XM, Liu F, Ma R. Application and assessment of Chinese arsenic drugs in treating malignant hematopathy in China. Chinese journal of integrative medicine. 2010;16(4):368-377.
    5. Zhen T, Chen SJ. Progress on targeted therapy of acute myeloid leukemia with active components of Chinese herbal medicines. Zhongguo Zhongxiyi jiehe zazhi. 2009;29(1):14-18.
    6. Sun F, Chen NN, Cheng YB. Compound realgar and natural indigo tablets in treatment of acute promyelocytic leukemia:a summary of experience in 204 cases. Zhong xi yi jie he xue bao.2008; 6(6):639-642.
    7. Wang L, Zhou GB, Liu P, et al. Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America.2008; 105(12):4826-4831.
    8. Yoon HE, Kim SA, Choi HS, et al. Inhibition of Plkl and Pinl by 5'-nitro-indirubinoxime suppresses human lung cancer cells. Cancer letters.2012; 316(1):97-104.
    9. Kim SH, Choi SJ, Kim YC, et al. Anti-tumor activity of noble indirubin derivatives in human solid tumor models in vitro. Archives of pharmacal research.2009; 32(6):915-922.
    10.Kunz M, Driller KM, Hein M, et al. Synthesis of thia-analogous indirubin N-Glycosides and their influence on melanoma cell growth and apoptosis. ChemMedChem.2010; 5(4):534-539.
    11.Libnow S, Methling K, Hein M, et al. Synthesis of indirubin-N'-glycosides and their anti-proliferative activity against human cancer cell lines. Bioorganic & medicinal chemistry.2008; 16(10):5570-5583.
    12.Nam S, Buettner R, Turkson J, et al. Indirubin derivatives inhibit Stat3 signaling and induce apoptosis in human cancer cells. Proceedings of the National Academy of Sciences of the United States of America.2005; 102(17):5998-6003.
    13.Perabo FG, Frossler C, Landwehrs G, et al. Indirubin-3'-monoxime. a CDK inhibitor induces growth inhibition and apoptosis-independent up-regulation of survivin in transitional cell cancer. Anticancer research.2006; 26(3A):2129-2135.
    14.Saito H, Tabata K, Hanada S, et al. Synthesis of methoxy- and bromo-substituted indirubins and their activities on apoptosis induction in human neuroblastoma cells. Bioorganic & medicinal chemistry letters.2011; 21(18):5370-5373.
    15.Shi R, Li W, Zhang X, et al. A novel indirubin derivative PHII-7 potentiates adriamycin cytotoxicity via inhibiting P-glycoprotein expression in human breast cancer MCF-7/ADR cells. European journal of pharmacology.2011; 669(1-3):38-44.
    16. Springs AE, Rice CD. The Effects of Indirubin-3'-Monoxime, A Novel AHR Ligand, on Stress and Toxicity-Related Gene/Protein Expression in Human U937 Cells Undergoing Differentiation and Activation. Journal of immunotoxicology. 2006;3(1):1-10.
    17. Suzuki K, Adachi R, Hirayama A, et al. Indirubin, a Chinese anti-leukaemia drug, promotes neutrophilic differentiation of human myelocytic leukaemia HL-60 cells. British journal of haematology.2005; 130(5):681-690.
    18.Lee MY, Liu YW, Chen MH, et al. Indirubin-3'-monoxime promotes autophagic and apoptotic death in JM1 human acute lymphoblastic leukemia cells and K562 human chronic myelogenous leukemia cells. Oncology reports.2013; 29(5):2072-2078.
    19.Kim WS, Lee MJ, Kim DH, et al.5'-OH-5-nitro-Indirubin oxime (AGM130), an Indirubin derivative, induces apoptosis of Imatinib-resistant chronic myeloid leukemia cells. Leukemia research.2013; 37(4):427-433.
    20.Liao XM, Leung KN. Indirubin-3'-oxime induces mitochondrial dysfunction and triggers growth inhibition and cell cycle arrest in human neuroblastoma cells. Oncology reports.2013; 29(1):371-379.
    21. Shi RZ, Hu XL, Peng HW. The cytotoxicity of indirubin derivative PHII-7 against human breast cancer MCF-7 cells and its mechanisms. Zhongguo Zhong xi yi jie he za zhi.2012; 32(11):1521-1525.
    22.Nam S, Wen W, Schroeder A, et al. Dual inhibition of Janus and Src family kinases by novel indirubin derivative blocks constitutively-activated Stat3 signaling associated with apoptosis of human pancreatic cancer cells. Molecular oncology. 2013,7(3):369-378.
    23.Liu L, Kritsanida M, Magiatis P, et al. A novel 7-bromoindirubin with potent anticancer activity suppresses survival of human melanoma cells associated with inhibition of STAT3 and Akt signaling. Cancer biology & therapy.2012; 13(13):1255-1261.
    24.Nicolaou KA, Liapis V, Evdokiou A, et al. Induction of discrete apoptotic pathways by bromo-substituted indirubin derivatives in invasive breast cancer cells. Biochemical and biophysical research communications.2012;425(1):76-82.
    25.Nam S, Scuto A, Yang F, et al. Indirubin derivatives induce apoptosis of chronic myelogenous leukemia cells involving inhibition of Stat5 signaling. Molecular oncology.2012; 6(3):276-283.
    26.Kim SA, Kwon SM, Kim JA, et al.5'-Nitro-indirubinoxime, an indirubin derivative, suppresses metastatic ability of human head and neck cancer cells through the inhibition of Integrin betal/FAK/Akt signaling. Cancer letters.2011; 306(2):197-204.
    27.Berger A, Quast SA, Plotz M, et al. Sensitization of melanoma cells for death ligand-induced apoptosis by an indirubin derivative--Enhancement of both extrinsic and intrinsic apoptosis pathways. Biochemical pharmacology.2011; 81(1):71-81.
    28.Perabo FG, Landwehrs G, Frossler C, et al. Antiproliferative and apoptosis inducing effects of indirubin-3'-monoxime in renal cell cancer cells. Urologic oncology.2011; 29(6):815-820.
    29.Choi SJ, Lee JE, Jeong SY, et al.5.5'-substituted indirubin-3'-oxime derivatives as potent cyclin-dependent kinase inhibitors with anticancer activity. Journal of medicinal chemistry.2010; 53(9):3696-3706.
    30.Cuong NM, Tai BH, Hoan DH, et al. Inhibitory effects of indirubin derivatives on the growth of HL-60 leukemia cells. Natural product communications.2010; 5(1):103-106.
    31.Choi SJ, Moon MJ, Lee SD, et al. Indirubin derivatives as potent FLT3 inhibitors with anti-proliferative activity of acute myeloid leukemic cells. Bioorganic & medicinal chemistry letters.2010; 20(6):2033-2037.
    32.Yoon JH, Kim SA, Kwon SM, et al.5'-Nitro-indirubinoxime induces G1 cell cycle arrest and apoptosis in salivary gland adenocarcinoma cells through the inhibition of Notch-1 signaling. Biochimica et biophysica acta.2010; 1800(3):352-358.
    33.Yoon JH, Kim SA, Kim JI, et al. Inhibition of invasion and migration of salivary gland adenocarcinoma cells by 5'-nitro-indirubinoxime (5'-NIO). Head & neck 2010; 32(5):619-625.
    34.Chebel A, Kagialis-Girard S, Catallo R, et al.Indirubin derivatives inhibit malignant lymphoid cell proliferation. Leukemia & lymphoma.2009; 50(12):2049-2060.
    35.Kim SA, Kim SW, Chang S, et al.5'-nitro-indirubinoxime induces G2/M cell cycle arrest and apoptosis in human KB oral carcinoma cells. Cancer letters.2009; 274(1):72-77.
    36.Kameswaran TR, Ramanibai R. Indirubin-3-monooxime induced cell cycle arrest and apoptosis in Hep-2 human laryngeal carcinoma cells. Biomedicine & pharmacotherapy= Biomedecine & pharmacotherapie.2009; 63(2):146-154.
    37.Moon MJ, Lee SK. Lee JW, et al. Synthesis and structure-activity relationships of novel indirubin derivatives as potent anti-proliferative agents with CDK2 inhibitory activities. Bioorganic & medicinal chemistry.2006; 14(1):237-246.
    38.Lee JW, Moon MJ, Min HY, et al. Induction of apoptosis by a novel indirubin-5-nitro-3'-monoxime, a CDK inhibitor, in human lung cancer cells. Bioorganic & medicinal chemistry letters.2005; 15(17):3948-3952.
    39.Xiao Z, Wang Y, Lu L, et al. Anti-angiogenesis effects of meisoindigo on chronic myelogenous leukemia in vitro. Leukemia research.2006; 30(1):54-59.
    40.刘兵城,肖志坚。甲异靛对Jurkat细胞AKT信号通路的影响及其在细胞凋亡作用的研究。中国血液学杂志2008;21(5):255-259.
    41. Rivest P, Renaud M, Sanderson JT. Proliferative and androgenic effects of indirubin derivatives in LNCaP human prostate cancer cells at sub-apoptotic concentrations. Chemico-biological interactions.2011;189(3):177-185.
    1. Jemal A, Siegel R, Xu J, Ward E:Cancer statistics,2010. CA:a cancer journal for clinicians 2010,60(5):277-300.
    2. Mandanas RA, Leibowitz DS, Gharehbaghi K, Tauchi T, Burgess GS, Miyazawa K, Jayaram HN, Boswell HS:Role of p21 RAS in p210 bcr-abl transformation of murine myeloid cells. Blood 1993,82(6):1838-1847.
    3. Raitano AB, Halpern JR, Hambuch TM, Sawyers CL:The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation. Proceedings of the National Academy of Sciences of the United States of America 1995, 92(25):11746-11750.
    4. Sawyers CL, Callahan W, Witte ON:Dominant negative MYC blocks transformation by ABL oncogenes. Cell 1992,70(6):901-910.
    5. Shuai K, Halpern J, ten Hoeve J, Rao X, Sawyers CL:Constitutive activation of STAT5 by the BCR-ABL oncogene in chronic myelogenous leukemia. Oncogene 1996,13(2):247-254.
    6. Carlesso N, Frank DA, Griffin JD:Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. The Journal of experimental medicine 1996,183(3):811-820.
    7. Ilaria RL, Jr., Van Etten RA:P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. The Journal of biological chemistry 1996,271(49):31704-31710.
    8. Constantinescu SN, Girardot M, Pecquet C:Mining for JAK-STAT mutations in cancer. Trends in biochemical sciences 2008,33(3):122-131.
    9. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, Darnell JE, Jr.:Stat3 as an oncogene. Cell 1999,98(3):295-303.
    10. Nelson EA, Walker SR, Li W, Liu XS, Frank DA:Identification of human STAT5-dependent gene regulatory elements based on interspecies homology. The Journal of biological chemistry 2006,281(36):26216-26224.
    11. Quintas-Cardama A, Kantarjian H, Jones D, Nicaise C, O'Brien S, Giles F, Talpaz M, Cortes J:Dasatinib (BMS-354825) is active in Philadelphia chromosome-positive chronic myelogenous leukemia after imatinib and nilotinib (AMN107) therapy failure. Blood 2007,109(2):497-499.
    12. Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL:Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 2004,305(5682):399-401.
    13. Yu H, Jove R:The STATs of cancer--new molecular targets come of age. Nature reviews Cancer 2004,4(2):97-105.
    14. Klejman A, Schreiner SJ, Nieborowska-Skorska M, Slupianek A, Wilson M, Smithgall TE, Skorski T:The Src family kinase Hck couples BCR/ABL to STAT5 activation in myeloid leukemia cells. The EMBO journal 2002, 21(21):5766-5774.
    15. Wilson MB, Schreiner SJ, Choi HJ, Kamens J, Smithgall TE:Selective pyrrolo-pyrimidine inhibitors reveal a necessary role for Src family kinases in Bcr-Abl signal transduction and oncogenesis. Oncogene 2002, 21(53):8075-8088.
    16. Ji XJ, Zhang FR, Liu Y, Gu QM:[Studies on the antineoplastic action of N-methylisoindigotin]. Yao xue xue bao= Acta pharmaceutica Sinica 1985, 20(4):247-251.
    17. Liu BC, Xiao ZJ:[Effect on bcr-abl signaling pathway and the mechanisms of apoptosis induction by meisoindigo in K562 cells]. Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi 2008,29(12):815-818.
    18. Song L, Qian L:[Apoptosis inducing effect of meisoindigo on K562 cells]. Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi= Chinese journal of integrated traditional and Western medicine/Zhongguo Zhong xi yi jie he xue hui, Zhongguo Zhong yi yan jiu yuan zhu ban 1999,19(6):353-355.
    19. Kim WS, Lee MJ, Kim DH, Lee JE, Kim JI, Kim YC, Song MR, Park SG: 5'-OH-5-nitro-Indirubin oxime (AGM130), an Indirubin derivative, induces apoptosis of Imatinib-resistant chronic myeloid leukemia cells. Leukemia research 2013,37(4):427-433.
    20. Xiao Z, Wang Y, Lu L, Li Z, Peng Z, Han Z, Hao Y:Anti-angiogenesis effects of meisoindigo on chronic myelogenous leukemia in vitro. Leukemia research 2006, 30(1):54-59.
    21. Schwaiberger AV, Heiss EH, Cabaravdic M, Oberan T, Zaujec J, Schachner D, Uhrin P, Atanasov AG, Breuss JM, Binder BR et al:Indirubin-3'-monoxime blocks vascular smooth muscle cell proliferation by inhibition of signal transducer and activator of transcription 3 signaling and reduces neointima formation in vivo. Arterioscler Thromb Vasc Biol 2010,30(12):2475-2481.
    22. Parsons SJ, Parsons JT:Src family kinases, key regulators of signal transduction. Oncogene 2004,23(48):7906-7909.
    23. Yu H, Pardoll D, Jove R:STATs in cancer inflammation and immunity:a leading role for STAT3. Nature reviews Cancer 2009,9(11):798-809.
    24. de Groot RP, Raaijmakers JA, Lammers JW, Jove R, Koenderman L:STAT5 activation by BCR-Abl contributes to transformation of K562 leukemia cells. Blood 1999,94(3):1108-1112.
    25. Gesbert F, Griffin JD:Bcr/Abl activates transcription of the Bcl-X gene through STAT5. Blood 2000,96(6):2269-2276.
    26. Nam S, Scuto A, Yang F, Chen W, Park S, Yoo HS, Konig H, Bhatia R, Cheng X, Merz KH et al:Indirubin derivatives induce apoptosis of chronic myelogenous leukemia cells involving inhibition of Stat5 signaling. Molecular oncology 2012, 6(3):276-283.
    27. Wang YR, Wen SP, Wang FX, Wen L, Yang BY, Yang JC, Zhang XJ, Yang SF: [Apoptosis of the adriamycin-resistant leukemia cell line induced by the recombinant mutant human TNF-related apoptosis-inducing ligand combined with arsenic trioxide]. Zhongguo shi yan xue ye xue za zhi/Zhongguo bing li sheng li xue hui= Journal of experimental hematology/Chinese Association of Pathophysiology 2008,16(5):1055-1059.
    28. Suzuki K, Adachi R, Hirayama A, Watanabe H, Otani S, Watanabe Y, Kasahara T: Indirubin, a Chinese anti-leukaemia drug, promotes neutrophilic differentiation of human myelocytic leukaemia HL-60 cells. Br J Haematol 2005, 130(5):681-690.
    29. Kim SH, Kim SW, Choi SJ, Kim YC, Kim TS:Enhancing effect of indirubin derivatives on 1,25-dihydroxyvitamin D3-and all-trans retinoic acid-induced differentiation of HL-60 leukemia cells. Bioorg Med Chem 2006, 14(19):6752-6758.
    30. Gilliland DG, Griffin JD:The roles of FLT3 in hematopoiesis and leukemia. Blood 2002,100(5):1532-1542.
    31. Levis M, Small D:FLT3:ITDoes matter in leukemia. Leukemia 2003, 17(9):1738-1752.
    32. Sternberg DW, Licht JD:Therapeutic intervention in leukemias that express the activated fins-like tyrosine kinase 3 (FLT3):opportunities and challenges. Current opinion in hematology 2005,12(1):7-13.
    33. Stirewalt DL, Radich JP:The role of FLT3 in haematopoietic malignancies. Nature reviews Cancer 2003,3(9):650-665.
    34. Zhou J, Bi C, Janakakumara JV, Liu SC, Chng WJ, Tay KG, Poon LF, Xie Z, Palaniyandi S, Yu H et al:Enhanced activation of STAT pathways and overexpression of survivin confer resistance to FLT3 inhibitors and could be therapeutic targets in AML. Blood 2009,113(17):4052-4062.
    35. Lee CC, Lin CP, Lee YL, Wang GC, Cheng YC, Liu HE:Meisoindigo is a promising agent with in vitro and in vivo activity against human acute myeloid leukemia. Leukemia & lymphoma 2010,51(5):897-905.
    36. Kim SH, Choi SJ, Kim YC, Kuh HJ:Anti-tumor activity of noble indirubin derivatives in human solid tumor models in vitro. Arch Pharm Res 2009, 32(6):915-922.
    37. Kunz M, Driller KM, Hein M, Libnow S, Hohensee I, Ramer R, Hinz B, Berger A, Eberle J, Langer P:Synthesis of thia-analogous indirubin N-Glycosides and their influence on melanoma cell growth and apoptosis. ChemMedChem 2010, 5(4):534-539.
    38. Lee JW, Moon MJ, Min HY, Chung HJ, Park EJ, Park HJ, Hong JY, Kim YC, Lee SK:Induction of apoptosis by a novel indirubin-5-nitro-3'-monoxime, a CDK inhibitor, in human lung cancer cells. Bioorg Med Chem Lett 2005, 15(17):3948-3952.
    39. Wu Q, Lu YF, Shi JZ, Liang SX, Shi JS, Liu J:Chemical form of metals in traditional medicines underlines potential toxicity in cell cultures. Journal of ethnopharmacology 2011,134(3):839-843.
    40. Nicolaou KA, Liapis V, Evdokiou A, Constantinou C, Magiatis P, Skaltsounis AL, Koumas L, Costeas PA, Constantinou AI:Induction of discrete apoptotic pathways by bromo-substituted indirubin derivatives in invasive breast cancer cells. Biochemical and biophysical research communications 2012, 425(1):76-82.
    41. Perabo FG, Landwehrs G, Frossler C, Schmidt DH, Mueller SC:Antiproliferative and apoptosis inducing effects of indirubin-3'-monoxime in renal cell cancer cells. Urologic oncology 2011,29(6):815-820.
    42. Ravichandran K, Pal A, Ravichandran R:Effect of indirubin-3-monoxime against lung cancer as evaluated by histological and transmission electron microscopic studies. Microsc Res Tech 2010,73(11):1053-1058.
    43. Springs AE, Rice CD:The Effects of Indirubin-3'-Monoxime, A Novel AHR Ligand, on Stress and Toxicity-Related Gene/Protein Expression in Human U937 Cells Undergoing Differentiation and Activation. J Immunotoxicol 2006, 3(1):1-10.
    44. Yoon JH, Kim SA, Kwon SM, Park JH, Park HS, Kim YC, Yoon JH, Ahn SG: 5'-Nitro-indirubinoxime induces G1 cell cycle arrest and apoptosis in salivary gland adenocarcinoma cells through the inhibition of Notch-1 signaling. Biochimica et biophysica acta 2010,1800(3):352-358.
    45. Chebel A, Kagialis-Girard S, Catallo R, Chien WW, Mialou V, Domenech C, Badiou C, Tigaud I, Ffrench M:Indirubin derivatives inhibit malignant lymphoid cell proliferation. Leukemia & lymphoma 2009,50(12):2049-2060.
    46. Kagialis-Girard S, Mialou V, Chebel A, Chien WW, Tigaud I, Mokdad F, Badiou C, Ffrench M:Inhibition of normal lymphocyte proliferation by Indirubin-3'-monoxime:a multifactorial process. Leukemia & lymphoma 2007, 48(3):605-615.
    47. Lee MY, Liu YW, Chen MH, Wu JY, Ho HY, Wang QF, Chuang JJ: Indirubin-3'-monoxime promotes autophagic and apoptotic death in JM1 human acute lymphoblastic leukemia cells and K562 human chronic myelogenous leukemia cells. Oncology reports 2013,29(5):2072-2078.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700