用户名: 密码: 验证码:
卵泡刺激素受体靶向的卵巢癌纳米化疗给药系统的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卵巢癌是女性生殖系统最常见的恶性肿瘤之一,其死亡率居妇科恶性肿瘤之首位。虽然近年来在手术及药物治疗方面取得很大进展,但5年生存率一直徘徊在25%-30%。其原因之一在于卵巢癌起病隐匿,缺乏有效的早期诊断措施,当临床确诊时70%以上的患者已处于晚期阶段。此时手术难以清除所有病灶,放疗效果有限,所以在治疗过程中化疗占据了重要地位。但是传统化疗又有很大的缺憾,即药物分布缺乏选择性,很大一部分集中在非病灶区,导致“真正”的有效剂量大大降低,而且带来严重的剂量限制性毒副作用。这就使得传统化疗受到很大限制,以致疾病进展或复发,生存率徘徊不前。因此,积极开发精确的科学的个体化靶向治疗策略,在提高药物疗效的同时降低毒副作用,已成为肿瘤研究的重要任务。
     靶向治疗具有很强的目的性,能够特异性的针对肿瘤某些特定分子,在提高药物对肿瘤细胞杀伤力的同时,可以显著减少药物对其它无关组织的毒副作用,所以在肿瘤的生物治疗中具有相当的优势。按照靶向源动力可将靶向给药系统分为被动靶向和主动靶向两类。其中,被动靶向药物,如普通纳米粒和脂质体药物进入体内首先被单核巨噬系统摄取,随着载体的逐步降解,药物缓慢释放。药物多集中到肝、脾等器官,很难到达其它靶部位。与此相比,主动靶向制剂用修饰过的药物载体作为“导弹”,将药物特异性输送到靶细胞,可使药物在靶区浓集。然而采用酯化或化学修饰方法构建的系统对药物理化性质要求较高,很可能影响化疗药物的活性。应用较多的单抗介导的靶向治疗,多由肿瘤相关抗原或细胞因子制备。由于靶抗原在动物体内是肿瘤特异性的,而在人体内仅具有肿瘤相关性,使得实际应用中特异性较差,而且单抗具有较强的免疫原性和种属选择性,而人源化抗体的制备又较为复杂。目前受体介导的靶向治疗研究所选择的目标受体多在性腺以外的正常组织也有分布,就卵巢癌而言,仍缺乏足够的选择性。理想的抗肿瘤靶向给药系统应该是仅作用于拟定的肿瘤细胞靶点,而不作用于正常细胞的相同靶点。
     为了克服上述缺陷,本课题基于卵巢癌病因学和生化特征,结合受体靶向治疗和纳米粒载体各自的优势,构建了一种新型的卵泡刺激素受体(Folliclestimulating hormone receptor,FSHR)介导的卵巢癌主动靶向治疗系统—卵泡刺激素多肽修饰的纳米粒给药系统(Follicle stimulating hormone peptide modifiednanoparticulate system,FSHP-NP),以克服目前治疗所遇障碍。该新型治疗系统将经聚乙二醇(Polyethylene glycol,PEG)表面修饰的纳米粒作为药物载体,可显著提高载药量和药物运送能力,并增加药物稳定性,减少单核巨噬系统的吞噬。卵巢是促性腺激素的靶器官,FSHR多局限性分布于生殖系统,且在卵巢表面生发上皮(Ovarian surface epithelium,OSE)、卵巢癌细胞系及组织都有表达。因此将卵泡刺激素结合片段作为靶向头基,可通过FSHR特异性介导的内吞方式,选择性的递送更多药物进入靶细胞,提高“真正”有效剂量,降低毒副反应。该新型给药系统在国内外均未见报道,具有较高的创新性。
     为了评价将FSHR作为卵巢癌治疗靶点的可行性,本文第一部分采用免疫细胞化学、免疫组织化学以及Western blot方法对如下细胞系和组织中FSHR和促黄体激素受体(Luteinizing hormone receptor,LHR)的表达情况进行了检测:几种常见人卵巢癌细胞系、中国仓鼠卵巢细胞、人肝癌细胞系;人卵巢癌组织;人卵巢癌裸鼠模型的瘤体及重要器官组织。结果证实人卵巢癌细胞系Caov-3和OVCAR-3,56.67%和30.00%的人卵巢癌组织,以及裸鼠Caov-3皮下移植瘤都表达有FSHR和LHR。除了子宫卵巢以外,FSHR和LHR在裸鼠心、肝、脾、肺和肾组织中均未见表达,人肝癌细胞系BEL-7402和人卵巢癌细胞系SKOV-3也呈阴性表达。这些结果以及既往文献报道都提示促性腺激素受体的局限性分布,提示将其用作卵巢癌治疗靶点是可行的。
     本文第二部分旨在找寻能够与卵巢癌细胞特异性结合且对细胞无促增殖作用的FSH结合片段,用作给药系统的靶向头基。首先合成并用生物素和异硫氰酸荧光素(Fluorescein isothiocyanate,FITC)标记FSHβ链第1-15、33-53、51-65、81-95氨基酸片段,然后采用非竞争酶联免疫吸附实验(Enzyme-linkedimmunosorbnent assay,ELISA)对这些多肽与FSHR的亲和力进行了检测,并用荧光显微镜和流式细胞术对其特异性加以验证,最后通过MTT实验检测了其对人卵巢癌细胞生长的影响。结果表明这4条多肽均能够识别并结合FSHR,其中,FSHβ33-53和FSHβ81-95的结合能力相对较强,能够特异性识别FSHR阳性的Caov-3细胞,且对人卵巢癌细胞系Caov-3的生长也没有显著影响。因此,本课题将选择FSHβ33-53和FSHβ81-95作为靶向头基进行初步研究。
     本文第三部分为FSHP-NP的构建和表征。将马来酰亚胺聚乙二醇-聚乳酸(Maleimide-PEG-PLA)和甲氧基聚乙二醇-聚乳酸(Methoxyl PEG-polylactic acid,MPEG-PLA)以1:9的比例,采用复乳/溶媒蒸发法制备得到纳米粒(Nanoparticle,NP)。通过NP表面的马来酰亚胺基分别与FSHβ33-53和FSHβ81-95的巯基进行共价连接,得到FSHP33-NP和FSHP81-NP。所制备的NP平均数粒径在100nm以下,Zeta电位为-25 mV左右。NP表面经多肽修饰后粒径并没有显著增加。X射线光电子能谱分析表明纳米粒表面的N元素主要来自于表面所修饰的多肽,证实纳米粒表面成功连接了靶向头基FSHβ33-53和FSHβ81-95。
     为了评价FSHP-NP的递药特性,第四部分制备了载6-香豆素和载紫杉醇(Paclitaxel,PTX)的NP以及FSHP-NP,并建立了相应的高效液相色谱(Highperformance liquid chromatography,HPLC)分析方法。采用6-香豆素作为荧光探针,通过荧光显微镜和流式细胞术观察并测定载6-香豆素的FSHP33-NP和FSHP81-NP对FSHR表达阴性和阳性的卵巢癌细胞的靶向作用。同时采用HPLC测定了Caov-3细胞对载PTX的FSHP33-NP和FSHP81-NP的摄取能力。细胞摄取实验结果表明,FSHR表达阳性的Caov-3细胞对FSHP33-NP和FSHP81-NP的摄取显著高于FSHR表达阴性的SKOV-3细胞;Caov-3细胞对FSHP33-NP和FSHP81-NP的摄取显著高于未修饰FSHP的普通NP。而且摄取呈现时间、浓度和温度依赖性。三种纳米粒的靶向效率依次为:FSHP33-NP>FSHP81-NP>NP。
     为了实现对卵巢癌的靶向治疗,第五部分以PTX为模型药物,制备了包载PTX的FSH多肽修饰的纳米粒,并对其进行了体内外的疗效学考察。首先采用MTT方法检测了其对人卵巢癌细胞的抑制作用;其次建立人卵巢癌裸鼠皮下移植瘤模型,分为生理盐水、市售PTX、NP-PTX、FSHP33-NP-PTX和FSHP81-NP-PTX五组,考察了其抑瘤效果,及对肿瘤细胞周期的影响。体外检测结果表明四组药物对Caov-3细胞的抑制效应依次为:FSHP33-NP-PTX>FSHP81-NP-PTX>NP-PTX>PTX。FSH多肽修饰后纳米粒的IC50比普通纳米粒低2倍左右,比游离PTX低10倍左右。当累计给予30 mg/kg体重的PTX时,靶向治疗组裸鼠瘤体的细胞周期明显受到阻滞,体积抑瘤率和重量抑瘤率均为69%左右,分别是普通纳米粒和市售PTX的2倍和3.5倍左右。上述结果表明本部分构建的PTX靶向制剂无论在体内外都具有较强的抗肿瘤作用,提示这种主动靶向给药系统能够提高相同剂量化疗药物的抑瘤效果。
     综上所述,本课题构建的这种新型的FSHP-NP药物递送系统,能够通过FSHR介导的特异性内吞,选择性的递送更多药物进入卵巢癌细胞,实现高效低毒的目的。本课题为改善卵巢癌治疗现状奠定了坚实的实验基础。
Ovarian cancer is one of the most common gynecologic malignancies and is the leading cause of death from gynecologic malignancies.In recent years,great development has taken place in the way of operation and medication.However,the 5 year survival rate always fluctuates at the level of 25%-30%.One of the reasons lies in that it is hard to be diagnosed at an early time,which is partly due to a shortage of the effective and in-time diagnosing measures.The majority of ovarian cancer patients are diagnosed at an advanced stage,at which time cytoreductive surgery combination chemotherapy is the routine therapeutic approach.However,neither cytoreductive surgery nor radiation treatment is effective to control this vicious disease thoroughly. Therefore,chemotherapy is to take an important role in the course of treatment. Nevertheless,there exist some inevitable limitations to the measure of systemic chemotherapy。That is,the distribution of chemotherapeutic drugs has no selectivity and specificity,that is to say,majority of chemotherapeutic drugs locate at the non-focal sites,which lowers the real dose of chemotherapeutic drugs and besides results in serious dose limiting side effects.Based on these limitations that listed above, the disease can not be effectively prevented and survival rate can not be greatly improved.In that case,the problem of how to improve the efficacy of medication on one part and lower side effect,i.e.,to explore targeted therapy with precise selectivity has become one of the most important subject in the field of cancer research.
     Targeted therapy has a high degree of selectivity,which is competent in recognition and binding with the specific molecule of tumor focus.Not only can it improve the killing effect of drugs on tumor cells but also the side effect of drugs to other unrelated organs can be greatly lowered.Therefore,targeted therapy is superior to other kind of tumor biological treatment.By targeted power,target-oriented drug delivery system can be categorized into two kinds,active and passive targeting preparations.By comparing the two kinds,passive targeting preparation is hard to achieve at the targeted foci.For instance,nanoparticles and liposomes are firstly endocytosed by macrophage-monocyte system and with the degradation of carriers and the release of drugs,the majority of drugs are concentrated to the organs as liver and spleen. However,by using the cartier with surface modification,active targeting preparations are capable to deliver drugs to targeting cells so as to concentrate drugs to the targeting area.While there still a problem needs solving,that is the lipidization or chemical delivery system has a high requirement to the physico chemical characteristics of drugs. At present,monoclonal antibody-oriented delivery system is commonly used,which is prepared by tumor associated antigen or cytokine.Due to the fact that the antigen is tumor-specific in laboratory animals and tumor-associated in human body,the specificity in clinical practice is low.What is more,the preparation of humanized fusion antibody is quite complicated.In the recent research of receptor mediated targeting treatment,most receptors chosen express in some normal tissues other than gonad.So for ovarian cancer,its selectivity is still not high enough.The ideal antitumor target-oriented drug delivery system should only aim at those tumor cells of interested,rather than those normal cells with the same targeting sites.
     To solve the problems listed above,our project constructed a novel target-oriented drug delivery system for ovarian cancer based on the etiology and biochemical characteristics of ovarian cancer.That was follicle stimulating hormone peptide modified nanoparticulate system(FSHP-NP),which was mediated by follicle stimulating hormone receptor(FSHR).The aim of our project was to overcome the limitations of current treatment of ovarian cancer.This novel therapeutic system used nanoparticles modified with polyethylene glycol(PEG) as drug carrier.In this way endocytosis of macrophage-monocyte system could be decreased.And the drug delivery capacity was enhanced.In addition,physico chemical characteristics of drugs were overshaded instead of nanoparticle properties.Ovary is the target organ of gonadotropin,whose receptor,FSHR,usually localized in the reproductive system.But it is reported that ovarian surface epithelium(OSE),most ovarian cancer cell lines and tissues express FSHR mRNA and protein.In this case,we selected follicle stimulating hormone peptide(FSHP) as targeting head,which could deliver more drugs to the interested sites with a high selectivity so as to enhance efficacy and minimize side effect.This process was implemented by FSHR mediated specific endocytosis.
     In order to evaluate the feasibility of using FSHR as the target of ovarian cancer therapy,the first part of this paper detected the expression of FSHR and luteinizing hormone receptor(LHR) by immunocytochemistry,immunohistochemistry and Western blot in several human ovarian cancer cell lines,Chinese hamster ovary cells, human hepatic cancer cell line,human ovarian cancer tissues,human ovarian cancer xenografts and main organs of nude mice.The results showed that FSHR and LHR positively expressed in human ovarian cancer cell lines Caov-3 and OVCAR-3,human ovarian cancer tissues(FSHR is 56.67%;LHR is 30.00%),and Caov-3 xenografts of nude mice.Except uterus and ovary,the expression of FSHR and LHR were negative in heart,liver,spleen,lung and kidney of nude mice.Besides,human hepatic cancer cell line BEL-7402 and human ovarian cancer cell line SKOV-3 were negative,either. Both our results and previous literatures have indicated that the distribution of gonadotropin receptor was relative specific in body and thus demonstrated it was feasible to use it as the therapeutic target of ovarian cancer treatment.
     The aim of the second part was find out the very FSH binding fragment that can recognized FSHR with great specificity in ovarian cancer cells and have no stimulating effect on cellular growth.We firstly prepared FSH 13 1-15,33-53,51-65 and 81-95 amino acid fragments and labeled with biotin or fluorescein isothiocyanate(FITC). And then the affinity between FSHP and FSHR was analyzed using enzyme-linked immunosorbnent assay(ELISA),fluorescence microscopy and flow cytometry.Finally, their influence on ovarian cancer cells growth was detected by MTT assay.The results showed that the four polypeptide fragments all recognized and bound with FSHR in Caov-3 cells,of which FSHβ33-53 and FSHβ81-95 fragments had the ability to specifically recognize Caov-3 cells with a higher affinity.What is more,the four polypeptide fragments had no significant influence on the growth of human ovarian cancer cell line Caov-3.Based on the above,FSHβ33-53 and FSHβ81-95 was chosen as the targeting head in our research.
     In the third part,FSHP-modified nanoparticles were prepared by incorporating maleimide into one end of PEG-PLA copolymer and using its thiol group binding reactivity to conjugate with FSHβ33-53 and FSHβ81-95.The mean size of the well-prepared nanoparticles was below 100 rim,and its zeta potential was about -25 mV.Even after the surface modification with FSHP,the size didn't increase significantly,either.X-ray photoelectron spectroscopy showed that N element of the surface of NP mainly came from those peptides modified,which demonstrated that FSHβ33-53 and FSHβ81-95 were covalently coupled to the surface of nanoparticles.
     In order to evaluate the capacity of FSHP-NP for drug delivery into ovarian cancer cells,in the fourth part,a lipophilic fluorescent probe with high sensitivity,6-coumarin, and the chemotherapeutic drug,paclitaxel(PTX) were incorporated into nanoparticles. The concentrations of 6-coumarin and PTX in FSHR positive Caov-3 cells and FSHR negative SKOV-3 cells were determined by fluorescence microscopy,flow cytometry, and high performance liquid chromatography(HPLC).The results showed that,by comparing with SKOV-3 cells,Caov-3 cells had a higher uptake for FSHP33-NP and FSHP81-NP,and the uptake amount of both FSHP33-NP and FSHP81-NP was significantly higher than NP with no FSHE Besides,the uptake of FSHP33-NP and FSHP81-NP was the time-,concentration- and temperature-dependent.The drug-targeting efficiency of the nanoparticles was ranked as the followings: FS HP33-NP>FSHP81 -NP>NP.
     In the fifth part,the chemotherapeutic drug,PTX,was incorporated into FSHP-NP and its preliminary evaluation was performed in vitro and in vivo.The inhibitory effects of PTX loaded FSHP-NP on human ovarian cancer cells were determined by MTT assay.To analyze antitumor effect in vivo,nude mice models of human ovarian cancer were established and randomly divided into five groups administrated with physiological saline,commercial PTX,NP-PTX,FSHP33-NP-PTX and FSHP81-NP-PTX,respectively.The inhibitory effects of the four groups on Caov-3 cells ranked as the following:FSHP33-NP-PTX>FSHP81-NP-PTX>NP-PTX>PTX. The IC50 of FSHP-NP-PTX was two times lower than NP-PTX,and ten times lower than free PTX.When the accumulated amount of PTX was 30 mg per kg body weight, cell cycles of tumor xenografts were significantly arrested.And the inhibition rates of tumor volume and weight were both about 69%in FSHP-NP-PTX group,about 2 times higher than NP-PTX and 3.5 times higher than commercial PTX.The results showed that PTX loaded FSHP-NP had an enhanced anti-tumor effect both in vitro and in vivo,and the efficacy of chemotherapeutic drugs in the same dose could be improved with the help of FSHP-NP drug delivery system.
     In conclusion,the novel FSHP-NP drug delivery system,constructed in this project, was capable of delivering more drugs into FSHR positive cells with a high selectivity through specific endocytosis mediated by FSHR.It facilitated the concentration of drugs to foci so as to enhance antitumor efficacy of chemotherapeutic drugs and minimize side effect in unrelated normal organs.Thus,our research established a strong experimental foundation for the treatment against ovarian cancer.
引文
[1]张惜阴.临床妇科肿瘤学[M].上海:复旦大学出版社,2002:203.
    [2]Schally AV,Nagy A.Chemotherapy targeted to cancers through tumoral hormone receptors[J].Trends Endocrinol Metab,2004,15(7):300-310.
    [3]张志荣.靶向治疗分子基础与靶向药物设计[M].北京:科学出版社,2005:1-43.388-404.
    [4]Walther TC,Brickner JH,Aguilar PS,et al.Eisosomes mark static sites of endocytosis[J].Nature,2006,439(7079):998-1003.
    [5]杨恬,左伋.细胞生物学[M].北京:人民卫生出版社,2005:103-107.
    [6]张积仁,胡逸民.中国肿瘤靶向治疗技术进展[M].香港:Pioneer Bioscience Publishing Co,2003:255.
    [7]Nakano R,Kitayama S,Yamoto M,et al.Localization of gonadotropin binding sites in human ovarian neoplasms[J].Am J Obstet Gynecol,1989,161(4):905-910.
    [8]Parrott JA,Doraiswamy V,Kim G,et al.Expression and actions of both the follicle stimulating hormone receptor and the luteinizing hormone receptor in normal ovarian surface epithelium and ovarian cancer[J].Mol Cell Endocrinol,2001,172(1-2):213-222.
    [9]Syed V,Ulinski G,Mok SC,et al.Expression of gonadotropin receptor and growth responses to key reproductive hormones in normal and malignant human ovarian surface epithelial cells[J].Cancer Res,2001,61(18):6768-6776.
    [10]Al-Timimi A,Buckley CH,Fox H.An immunohistochemical study of the incidence and significance of human gonadotrophin and prolactin binding sites in normal and neoplastic human ovarian tissue[J].Br J Cancer,1986,53(3):321-329.
    [11]Zheng W,Lu JJ,Luo F,et al.Ovarian epithelial tumor growth promotion by follicle-stimulating hormone and inhibition of the effect by luteinizing hormone [J].Gynecol Oncol,2000,76(1):80-88.
    [12]Zheng W,Magid MS,Kramer EE,et al.Follicle-stimulating hormone receptor is expressed in human ovarian surface epithelium and fallopian tube[J].Am J Pathol,1996,148(1):47-53.
    [13]Kim JS,Rieter WJ,Taylor KM,et al.Self-assembled hybrid nanoparticles for cancer-specific multimodal imaging[J].J Am Chem Soc, 2007,129(29):8962-8963.
    [14]Li Y,Ogris M,Wagner E,et al.Nanoparticles bearing polyethyleneglycol-coupled transferrin as gene carriers:preparation and in vitro evaluation[J].Int J Pharm,2003,259(1-2):93-101.
    [15]Maeda H.The enhanced permeability and retention(EPR) effect in tumor vasculatture:the key role of tumor-selective macromolecular drug targeting[J].Adv Enzyme Regul,2001,41(1):189-207.
    [16]Perez C,Sanchez A,Putnam D,et al.Poly(lactic acid)-poly(ethylene glycol)nanoparticles as new carriers for the delivery of plasmid DNA[J].J Control Release,2001,75(1-2):211-224.
    [17]Plard JP,Bazile D.Comparison of the safety profiles of PLA50 and Me.PEG-PLA50 nanoparticles after single dose intravenous administration to rat [J].Colloids Surf B Biointerfaces,1999,16(1-4):173-183.
    [18]Kumar P,Wu H,McBride JL,et al.Transvascular delivery of small interfering RNA to the central nervous system[J].Nature,2007,448(7149):39-43.
    [19]Santa-Coloma TA,Grasso P,Reichert LE Jr.Synthetic human follicle-stimulating hormone-beta-(1-15) peptide-amide binds Ca2+ and possesses sequence similarity to calcium binding sites of calmodulin[J].Endocrinology,1992,130(3):1103-1107.
    [20]Agris PF,Guenther RH,Sierzputowska-Gracz H,et al.Solution structure of a synthetic peptide corresponding to a receptor binding region of FSH(hFSH-beta 33-53)[J].J Protein Chem,1992,11(5):495-507.
    [21]Grasso P,Santa-Coloma TA,Reichert LE Jr.Synthetic peptides corresponding to human follicle-stimulating hormone(hFSH)-beta-(1-15) and hFSH-beta-(51-65)induce uptake of 45Ca++ by liposomes:evidence for calcium-conducting transmembrane channel formation[J].Endocrinology,1991,128(6):2745-2751.
    [22]Santa Coloma TA,Reichert LE Jr.Identification of a follicle-stimulating hormone receptor-binding region in hFSH-beta-(81-95) using synthetic peptides [J].J Biol Chem,1990,265(9):5037-5042.
    [23]Grasso P,Rozhavskaya-Arena M,Reichert LE Jr.Cysteine residues in a synthetic peptide corresponding to human follicle-stimulating hormone beta-subunit receptor-binding domain 81-95[hFSH-beta-(81-95)]modulate the in vivo effects of hFSH-beta-(81-95) on the mouse estrous cycle[J].Regul Pept,1999,81(1-3):67-71.
    [24]Grasso P,Santa-Coloma TA,Boniface J J,et al.A synthetic peptide corresponding to hFSH-beta-(81-95) has thioredoxin-like activity[J].Mol Cell Endocrinol,1991,8(3):163-170.
    [25]Yeung CM,An BS,Cheng CK,et al.Expression and transcriptional regulation of the GnRH receptor gene in human neuronal cells[J].Mol Hum Reprod,2005,11(11):837-842.
    [26]Keller G,Schally AV,Gaiser T,et al.Human malignant melanomas express receptors for luteinizing hormone releasing hormone allowing targeted therapy with cytotoxic luteinizing hormone releasing hormone analogue[J].Cancer Res,2005,65(13):5857-5863.
    [27]Stadlmann S,Gueth U,Wight E,et al.Expression of peroxisome proliferator activated receptor gamma and cyclo-oxygenase 2 in primary and recurrent ovarian carcinoma[J].J Clin Pathol,2007,60(3):307-310.
    [28]Grundker C,Huschmand Nia A,Emons G.Gonadotropin-releasing hormone receptor-targeted gene therapy of gynecologic cancers[J].Mol Cancer Ther,2005,4(2):225-231.
    [29]Landen CN Jr,Birrer M J,Sood AK.Early events in the pathogenesis of epithelial ovarian cancer[J].J Clin Oncol,2008,26(6):995-1005.
    [30]Konishi I.Gonadotropins and ovarian carcinogenesis:a new era of basic research and its clinical implications[J].Int J Gynecol Cancer,2006,16(1):16-22.
    [31]Celik C,Gezginc K,Aktan M,et al.Effects of ovulation induction on ovarian morphology:an animal study[J].Int J Gynecol Cancer,2004,14(4):600-606.
    [32]Rzepka-Gorska I,Chudecka-Glaz A,Kosmowska B.FSH and LH serum/tumor fluid ratios and malignant tumors of the ovary[J].Endocr Relat Cancer,2004,11(2):315-321.
    [33]Edmondson RJ,Monaghan JM,Davies BR.Gonadotropins mediate DNA synthesis and protection from spontaneous cell death in human ovarian surface epithelium[J].Int J Gyneeol Cancer,2006,16(1):171-177.
    [34]Li Y,Ganta S,Cheng C,et al.FSH stimulates ovarian cancer cell growth by action on growth factor variant receptor[J].Mol Cell Endocrinol,2007,267(1-2):26-37.
    [35]Choi JH,Choi KC,Auersperg N,et al.Gonadotropins upregulate the epidermal growth factor receptor through activation of mitogen-activated protein kinases and phosphatidyl-inositol-3-kinase in human ovarian surface epithelial cells [J]. Endocr Relat Cancer, 2005,12(2):407-421.
    [36] Choi JH, Choi KC, Auersperg N, et al. Overexpression of follicle-stimulating hormone receptor activates oncogenic pathways in preneoplastic ovarian surface epithelial cells [J]. J Clin Endocrinol Metab, 2004,89(11):5508-5516.
    [37] Ji Q, Liu PI, Chen PK, et al. Follicle stimulating hormone-induced growth promotion and gene expression profiles on ovarian surface epithelial cells [J]. Int J Cancer, 2004,112(5):803-814.
    [38] Choi JH, Choi KC, Auersperg N, et al. Differential regulation of two forms of gonadotropin-releasing hormone messenger ribonucleic acid by gonadotropins in human immortalized ovarian surface epithelium and ovarian cancer cells [J]. Endocr Relat Cancer, 2006,13 (2): 641-651.
    [39] Choi JH, Choi KC, Auersperg N, et al. Gonadotropins activate proteolysis and increase invasion through protein kinase A and phosphatidylinositol 3-kinase pathways in human epithelial ovarian cancer cells [J]. Cancer Res, 2006,66(7):3912-3920.
    [40] Kammerman S, Demopoulos RI, Raphael C, et al. Gonadotropic hormone binding to human ovarian tumors [J]. Hum Pathol, 1981,12(10):886-890.
    [41] Minegishi T, Kameda T, Hirakawa T, et al. Expression of gonadotropin and activin receptor messenger ribonucleic acid in human ovarian epithelial neoplasms [J]. Clin Cancer Res, 2000,6(7):2764-2770.
    [42] Wang J, Lin L, Parkash V, et al. Quantitative analysis of follicle-stimulating hormone receptor in ovarian epithelial tumors: a novel approach to explain the field effect of ovarian cancer development in secondary mullerian systems [J]. Int J Cancer, 2003,103(3):328-334.
    [43] Freimann S, Ben-Ami I, Hirsh L, et al. Drug development for ovarian hyper-stimulation and anti-cancer treatment: blocking of gonadotropin signaling for epiregulin and amphiregulin biosynthesis [J]. Biochem Pharmacol, 2004,68(6):989-996.
    [44] Wadia PR, Mahale SD, Nandedkar TD. Effect of the human follicle-stimulating hormone-binding inhibitor and its N-terminal fragment on follicle-stimulating hormone-induced progesterone secretion by granulosa cells in vitro [J]. J Biosci, 2007,32(6): 1185-1194.
    [45] Bose CK. Follicle stimulating hormone receptor (FSHR) antagonist and epithelial ovarian cancer(EOC)[J].J Exp Ther Oncol,2007,6(3):201-204.
    [46]Lin W,Bernard MP,Cao D,et al.Follitropin receptors contain cryptic ligand binding sites[J].Mol Cell Endocrinol,2007,260-262:83-92.
    [47]Gromoll J,Ried T,Holtgreve-Grez H,et al.Localization of the human FSH receptor to chromosome 2 p21 using a genomic probe comprising exon 10[J].J Mol Endocrinol,1994,12(3):265-271.
    [48]Nechamen CA,Dias JA.Human follicle stimulating hormone receptor trafficking and hormone binding sites in the amino terminus[J].Mol Cell Endocrinol,2000,166(2):101-110.
    [49]Salesse R,Remy J J,Levin JM,et al.Towards understanding the glycoprotein hormone receptors[J].Biochimie,1991,73(1):109-120.
    [50]Ji I,Ji TH.Differential roles of exoloop 1 of the human follicle-stimulating hormone receptor in hormone binding and receptor activation[J].J Biol Chem,1995,270(27):15970-15973.
    [51]Dattatreyamurty B,Reichert LE Jr.A synthetic peptide corresponding to amino acids 9-30 of the extracellular domain of the follitropin(FSH) receptor specifically binds FSH[J].Mol Cell Endocrinol,1992,87(1-3):9-17.
    [52]Dattatreyamurty B,Reichert LE Jr.Functional properties of polyclonal antibodies raised against the N-terminus region(residues 9-30) of the follicle-stimulating hormone(FSH) receptor:significance of this receptor region in FSH recognition and signal transduction[J].Endocrinology,1993,133(4):1593-1601.
    [53]Leng N,Dattatreyamurty B,Reichert LE Jr.Identification of amino acid residues 300-315 of the rat FSH receptor as a hormone binding domain:evidence for its interaction with specific regions of FSH beta-subunit[J].Biochem Biophys Res Commun,1995,210(2):392-399.
    [54]Moyle WR,Lin W,Myers RV,et al.Models of glycoprotein hormone receptor interaction[J].Endocrine,2005,26(3):189-205.
    [55]Ryan RJ,Charlesworth MC,McCormick DJ,et al.The glycoprotein hormones:recent studies of structure-function relationships[J].FASEB J,1988,2(11):2661-2669.
    [56]Yaron Y,Schwartz D,Evans MI,et al.Alternatively spliced mRNA transcripts encoding the extracellular domain of the FSH receptor gene.Expression in the mouse ovary during the ovulatory cycle[J].J Reprod Med,1998,43(5):435-438.
    [57]Bluestein BI,Vaitukaitis JL.The effect of ionic environment in specific FSH binding to plasma membrane receptor[J].Recept Res,1981,2(3):245-266.
    [58]Leng N,Grasso P,Deziel MR,et al.A synthetic peptide corresponding to glycoprotein hormone alpha subunit residues 32-46 inhibits gonadotropin binding to receptor[J].Pept Res,1995,8(5):272-277.
    [59]Cattini-Schultz SV,Stanton PG,Robertson DM,et al.Contribution of specific amino acid residues within the hFSH alpha 26-46 sequence region to FSH receptor-binding activity[J].Pept Res,1995,8(4):214-226.
    [60]Weiner RS,Dias JA,Andersen TT.Epitope mapping of human follicle stimulating hormone-alpha using monoclonal antibody 3A identifies a potential receptor binding sequence[J].Endocrinology,1991,128(3):1485-1495.
    [61]Roth KE,Dias JA.Follitropin conformational stability mediated by loop 2 beta effects follitropin-receptor interaction[J].Biochemistry,1996,35(24):7928-7935.
    [62]Ulloa-Aguirre A,Timossi C.Structure-function relationship of follicle-stimulating hormone and its receptor[J].Hum Reprod Update,1998,4(3):260-283.
    [63]Grasso P,Reichert LE Jr.Evidence that a calmodulin-like calcium-binding domain of the FSH beta-subunit is involved in FSH-induced calcium uptake by Sertoli cells[J].J Mol Endocrinol,1994,13(2):149-155.
    [64]Lai TH,Lin YF,Wu FC,et al.Follicle-stimulating hormone-induced Galphah/phospholipase C-deltal signaling mediating a noncapacitative Ca2+influx through T-type Ca2+ channels in rat sertoli cells[J].Endocrinology,2008,149(3):1031-1037.
    [65]Grasso P,Joseph MP,Reichert LE Jr.A tetrapeptide within a receptor-binding region of human follicle-stimulating hormone beta-subunit,hFSH-beta-(34-37),regulates sodium-calcium exchange in Sertoli cells[J].Mol Cell Endocrinol,1993,96(1-2):19-24.
    [66]Santa Coloma TA,Dattatreyamurty B,Reichert LE Jr.A synthetic peptide corresponding to human FSH beta-subunit 33-53 binds to FSH receptor,stimulates basal estradiol biosynthesis,and is a partial antagonist of FSH[J].Biochemistry,1990,29(5):1194-1200.
    [67]Grasso P,Rozhavskaya M,Reichert LE Jr.A synthetic peptide corresponding to amino acid residues 34 to 37 of human follicle-stimulating hormone beta-subunit accelerates the onset of puberty in male and female mice[J].Endocrinology,1997,138(10):4215-4219.
    [68]Grasso P,Reichert LE Jr.A synthetic peptide corresponding to amino acid residues 90 to 95 of human follicle-stimulating hormone beta-subunit delays the onset of puberty in female Swiss Webster mice[J].Regul Pept,1999,84(1-3):21-28.
    [69]Gref R,Minamitake Y,Peracchia MT,et al.Biodegradable long-circulating polymeric nanospheres[J].Science,1994,263(5153):1600-1603.
    [70]Vila A,Sáinchez A,Tobio M,et al.Design of biodegradable particles for protein delivery[J].J Control Release,2002,78(1-3):15-24.
    [71]Zhang Y,Zhang QZ,Zha LS,et al.Preparation,characterization and application of pyrene-loaded methoxy poly(ethylene glycol)-poly(lactic acid) copolymer nanoparticles[J].Colloid Polymer Sci,2004,282(8):1323-1328.
    [72]Olivier JC,Huertas R,Lee H J,et al.Synthesis of pegylated immunonanoparticles[J].Pharm Res,2002,19(8):1137-1143.
    [73]陆彬.药物新剂型与新技术[M].北京:人民卫生出版社,2005:304-336.
    [74]Quellec P,Gref R,Pert'in L,et al.Protein encapsulation within polyethylene glycol-coated nanospheres.Ⅰ.Physicochemical characterization[J].J Biomed Mater Res,1998,42(1):45-54.
    [75]Quellec P,Gref R,Dellacherie E,et al.Protein encapsulation within poly(ethylene glycol)-coated nanospheres.Ⅱ.Controlled release properties[J].J Biomed Mater Res,1999,47(3):388-395.
    [76]Gref R,Couvreur P,Barratt G,et al.Surface-engineered nanoparticles for multiple ligand coupling[J].Biomaterials,2003,24(24):4529-4537.
    [77]Grasso P,Crabb JW,Reichert LE Jr.An explanation for the disparate effects of synthetic peptides corresponding to human follicle-stimulating hormone beta-subunit receptor binding regions(33-53) and(81-95) and their serine analogs on steroidogenesis in cultured rat Sertoli cells[J].Biochem Biophys Res Commun,1993,190(1):56-62.
    [78]Santa-Coloma TA,Crabb JW,Reichert LE Jr.Serine analogues of hFSH-beta-(33-53) and hFSH-beta-(81-95) inhibit hFSH binding to receptor[J].Biochem Biophys Res Commun,1992,184(3):1273-1279.
    [79]Panyam J,Sahoo SK,Prabha S,et al.Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(D,L-lactide-co-glycolide) nanoparticles[J].Int J Pharm,2003,262(1-2):1-11.
    [80]Davda J,Labhasetwar V.Characterization of nanoparticle uptake by endothelial cells[J].Int J Pharm,2002,233(1-2):51-59.
    [81]Dong Y,Feng SS.Poly(d,l-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs[J].Biomaterials,2005,26(30):6068-6076.
    [82]Xie J,Wang CH.Self-assembled biodegradable nanoparticles developed by direct dialysis for the delivery of paclitaxel[J].Pharm Res,2005,22(12):2079-2090.
    [83]Panyam J,Labhasetwar V.Dynamics of endocytosis and exocytosis of poly(D,L-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells[J].Pharm Res,2003,20(2):212-220.
    [84]Jackson JK,Skinner KC,Burgess L,et al.Paclitaxel-loaded crosslinked hyaluronic acid films for the prevention of postsurgical adhesions[J].Pharm Res,2002,19(4):411-417.
    [85]Cho YW,Lee J,Lee SC,et al.Hydrotropic agents for study of in vitro paclitaxel release from polymeric micelles[J].J Control Release,2004,97(2):249-257.
    [86]Symmans WF,Volm MD,Shapiro RL,et al.Paclitaxel-induced apoptosis and mitotic arrest assessed by serial fine-needle aspiration:implications for early prediction of breast cancer response to neoadjuvant treatment[J].Clin Cancer Res,2000,6(12):4610-4617.
    [87]Liao PC,Lieu CH.Cell cycle specific induction of apoptosis and necrosis by paclitaxel in the leukemic U937 cells[J].Life Sci,2005,76(14):1623-1639.
    [88]Gottesman MM,Fojo T,Bates SE.Multidrug resistance in cancer:role of ATP-dependent transporters[J].Nat Rev Cancer,2002,2(1):48-58.
    [89]Zgurskaya HI,Nikaido H.Multidrug resistance mechanisms:drug effiux across two membranes[J].Mol Microbiol,2000,37(2):219-225.
    [90]Liang Y,Meleady P,Cleary I,et al.Selection with melphalan or paclitaxel (Taxol) yields variants with different patterns of multidrug resistance,integrin expression and in vitro invasiveness[J].Eur J Cancer,2001,37(8):1041-1052.
    [91]Zastre J,Jackson J,Burt H.Evidence for modulation of P-glycoprotein-mediated effiux by methoxypolyethylene glycol-block-Polycaprolactone amphiphilic diblock copolymers[J].Pharm Res,2004,21(8):1489-1497.
    [92]Zastre J,Jackson J,Bajwa M,et al.Enhanced cellular accumulation of a P-glycoprotein substrate,rhodamine-123,by Caco-2 cells using low molecular weight methoxypolyethylene glycol-block-polycaprolactone diblock copolymers [J].Eur J Pharm Biopharm,2002,54(3):299-309.
    [93]Vauthier C,Dubernet C,Fattal E,et al.Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications[J].Adv Drug Deliv Rev,2003,55(4):519-548.
    [94]Cordobes MD,Moretti JL,de Beco V,et al.Uptake of liposome-encapsulated 99Tcm-MIBI by sensitive and multidrug-resistant tumour cell lines[J].Nucl Med Commun,1999,20(5):433-437.
    [95]Ruan G,Feng SS.Preparation and characterization of poly(lactic acid)-poly (ethylene glycol)-poly(lactic acid)(PLA-PEG-PLA) microspheres for controlled release of paclitaxel[J].Biomaterials,2003,24(27):5037-5044.
    [96]Strieth S,Eichhorn ME,Sauer B,et al.Neovascular targeting chemotherapy:encapsulation of paclitaxel in cationic liposomes impairs functional tumor microvasculature[J].Int J Cancer,2004,110(1):117-124.
    [97]Kang BK,Chon SK,Kim SH,et al.Controlled release of paclitaxel from microemulsion containing PLGA and evaluation of anti-tumor activity in vitro and in vivo[J].Int J pharm,2004,286(1-2):147-156.
    [98]Le Garrec D,Gori S,Luo L,et al.Poly(N-vinylpyrrolidone)-block-poly-(D,L-Lactide) as a new polymeric solubilizer for hydrophobic anticancer drugs:in vitro and in vivo evaluation[J].J control release,2004,99(1):83-101.
    [99]Kalli KR,Oberg AL,Keeney GL,et al.Folate receptor alpha as a tumor target in epithelial ovarian cancer[J].Gynecol Oncol,2008,108(3):619-626.
    [100]Thompson S,Dessi J,Self CH.The construction and in vitro testing of photo-activatable cancer targeting folated anti-CD3 conjugates[J].Biochem Biophys Res Commun,2008,366(2):526-531.
    [101]Kong X,Wang X,Xu W,et al.Natriuretic peptide receptor a as a novel anticancer target[J].Cancer Res,2008,68(1):249-256.
    [102]Miyamoto S,Yagi H,Yotsumoto F,et al.New approach to cancer therapy:heparin binding-epidermal growth factor-like growth factor as a novel targeting molecule[J].Anticancer Res,2007,27(6A):3713-3721.
    [103]Murugesan SR,Akiyama M,Einfeld DA,et al.Experimental treatment of ovarian cancers by adenovirus vectors combining receptor targeting and selective expression of tumor necrosis factor [J]. Int J Oncol, 2007,31(4):813-822.
    [104] Dijkgraaf I, Kruijtzer JA, Frielink C, et al. Alpha v beta 3 integrin-targeting of intraperitoneally growing tumors with a radiolabeled RGD peptide [J]. Int J Cancer, 2007,120(3):605-610.
    [105] Posadas EM, Kwitkowski V, Kotz HL, et al. A prospective analysis of imatinib-induced c-KIT modulation in ovarian cancer: a phase II clinical study with proteomic profiling [J]. Cancer, 2007,110(2):309-317.
    [106] Rosano L, Di Castro V, Spinella F, et al. ZD4054, a specific antagonist of the endothelin A receptor, inhibits tumor growth and enhances paclitaxel activity in human ovarian carcinoma in vitro and in vivo [J]. Mol Cancer Ther, 2007,6(7):2003-2011.
    [107] Lu C, Kamat AA, Lin YG, et al. Dual targeting of endothelial cells and pericytes in antivascular therapy for ovarian carcinoma [J]. Clin Cancer Res, 2007,13(14):4209-4217.
    [108] Rosano L, Di Castro V, Spinella F, et al. Combined targeting of endothelin A receptor and epidermal growth factor receptor in ovarian cancer shows enhanced antitumor activity [J]. Cancer Res, 2007,67(13):6351-6359.
    [109] Nagy A, Schally AV, Armatis P, et al. Cytotoxic analogs of luteinizing hormone-releasing hormone containing doxorubicin or 2-pyrrolinodoxorubicin, a derivative 500-1000 times more potent [J]. Proc Natl Acad Sci U S A, 1996,93(14):7269-7273.
    [110] Schally AV, Nagy A. Cancer chemotherapy based on targeting of cytotoxic peptide conjugates to their receptors on tumors [J]. Eur J Endocrinol, 1999,141(1):1-14.
    
    [111] Nagy A, Schally AV. Targeting cytotoxic conjugates of somatostatin, luteinizing hormone-releasing hormone and bombesin to cancers expressing their receptors: a "smarter" chemotherapy [J]. Curr Pharm Des, 2005,11 (9): 1167-1180.
    
    [112] Schally AV, Nagy A. New approaches to treatment of various cancers based on cytotoxic analogs of LHRH, somatostatin and bombesin [J]. Life Sci, 2003,72(21):2305-2320.
    
    [113] Grundker C, Volker P, Griesinger F, et al. Antitumor effects of the cytotoxic luteinizing hormone-releasing hormone analog AN-152 on human endometrial and ovarian cancers xenografted into nude mice [J]. Am J Obstet Gynecol, 2002,187(3):528-537.
    [114] Keller G, Schally AV, Gaiser T, et al. Receptors for luteinizing hormone releasing hormone expressed on human renal cell carcinomas can be used for targeted chemotherapy with cytotoxic luteinizing hormone releasing hormone analogues [J]. Clin Cancer Res, 2005,11(15):5549-5557.
    [115] Nagy A, Schally AV. Targeting of cytotoxic luteinizing hormone-releasing hormone analogs to breast, ovarian, endometrial, and prostate cancers [J]. Biol Reprod, 2005,73(5):851-859.
    [116] Beck EP, Vincenti D, Licht P, et al. In vitro activity of human chorionic gonadotropin (hCG)—doxorubicin conjugates against ovarian cancer cells [J]. Anticancer Res, 2000,20(5A):3001-3006.
    [117] Bodek G, Vierre S, Rivero-Muller A, et al. A novel targeted therapy of Leydig and granulosa cell tumors through the luteinizing hormone receptor using a hecate-chorionic gonadotropin beta conjugate in transgenic mice [J]. Neoplasia, 2005,7(5):497-508.
    [118] Parhar IS, Ogawa S, Sakuma Y. Three GnRH receptor types in laser-captured single cells of the cichlid pituitary display cellular and functional heterogeneity [J]. Proc Natl Acad Sci U S A, 2005,102(6):2204-2209.
    [119] Huang W, Yao B, Sun L, et al. Immunohistochemical and in situ hybridization studies of gonadotropin releasing hormone (GnRH) and its receptor in rat digestive tract [J]. Life Sci, 2001,68(15): 1727-1734.
    [120] Chen HF, Jeung EB, Stephenson M, et al. Human peripheral blood mononuclear cells express gonadotropin-releasing hormone (GnRH), GnRH receptor, and interleukin-2 receptor gamma-chain messenger ribonucleic acids that are regulated by GnRH in vitro [J]. J Clin Endocrinol Metab, 1999,84(2):743-750.
    [121] Chegini N, Rong H, Dou Q, et al. Gonadotropin-releasing hormone (GnRH) and GnRH receptor gene expression in human myometrium and leiomyomata and the direct action of GnRH analogs on myometrial smooth muscle cells and interaction with ovarian steroids in vitro [J]. J Clin Endocrinol Metab, 1996,81(9):3215-3221.
    [1]Schally AV,Nagy A.Chemotherapy targeted to cancers through tumoral hormone receptors[J].Trends Endocrinol Metab,2004,15(7):300-310.
    [2]Oyen W J,Bodei L,Giammarile F,et al.Targeted therapy in nuclear medicine--current status and future prospects[J].Ann Oncol,2007,18(11):1782-1792.
    [3]Schally AV,Arimura A,Kastin AJ,et al.Gonadotropin-releasing hormone:one polypeptide regulates secretion of luteinizing and follicle-stimulating hormones [J].Science,1971,173(4001):1036-1038.
    [4]Parhar IS,Ogawa S,Sakuma Y.Three GnRH receptor types in laser-captured single cells of the cichlid pituitary display cellular and functional heterogeneity [J].Proc Natl Acad Sci U S A,2005,102(6):2204-2209.
    [5]Huang W,Yao B,Sun L,et al.Immunohistochemical and in situ hybridization studies of gonadotropin releasing hormone(GnRH) and its receptor in rat digestive tract[J].Life Sci,2001,68(15):1727-1734.
    [6]Casan EM,Raga F,Bonilla-Musoles F,et al.Human oviductal gonadotropin-releasing hormone:possible implications in fertilization,early embryonic development,and implantation[J].J Clin Endocrinol Metab,2000,85(4):1377-1381.
    [7]Chen HF,Jenng EB,Stephenson M,et al.Human peripheral blood mononuclear cells express gonadotropin-releasing hormone(GnRH),GnRH receptor,and interleukin-2 receptor gamma-chain messenger ribonucleic acids that are regulated by GnRH in vitro[J].J Clin Endocrinol Metab,1999,84(2):743-750.
    [8]Raga F,Casan EM,Kruessel JS,et al.Quantitative gonadotropin-releasing hormone gene expression and immunohistochemical localization in human endometrium throughout the menstrual cycle[J].Biol Reprod,1998,59(3):661-669.
    [9]Chegini N,Rong H,Dou Q,et al.Gonadotropin-releasing hormone(GnRH) and GnRH receptor gene expression in human myometrium and leiomyomata and the direct action of GnRH analogs on myometrial smooth muscle cells and interaction with ovarian steroids in vitro[J].J Clin Endocrinol Metab,1996,81(9):3215-3221.
    [10]Ho JS,Nagle GT,Mathias JR,et al.Presence of gonadotropin-releasing hormone(GnRH) receptor mRNA in rat myenteric plexus cells[J].Comp Biochem Physiol B Biochem Mol Biol,1996,113(4):817-821.
    [11]Grundker C,Gunthert AR,Westphalen S,et al.Biology of the gonadotropin-releasing hormone system in gynecological cancers[J].Eur J Endocrinol,2002,146(1):1-14.
    [12]Yeung CM,An BS,Cheng CK,et al.Expression and transcriptional regulation of the GnRH receptor gene in human neuronal cells[J].Mol Hum Reprod,2005,11(11):837-842.
    [13]Keller G,Schally AV,Gaiser T,et al.Human malignant melanomas express receptors for luteinizing hormone releasing hormone allowing targeted therapy with cytotoxic luteinizing hormone releasing hormone analogue[J].Cancer Res,2005,65(13):5857-5863.
    [14]Lamharzi N,Halmos G,Armatis P,et al.Expression of mRNA for luteinizing hormone-releasing hormone receptors and epidermal growth factor receptors in human cancer cell lines[J].Int J Oncol,1998,12(3):671-675.
    [15]Emons G,Pahwa GS,Brack C,et al.Gonadotropin releasing hormone binding sites in human epithelial ovarian carcinomata[J].Eur J Cancer Clin Oncol,1989,25(2):215-221.
    [16]Srkalovic G,Schally AV,Wittliff JL,et al.Presence and characteristics of receptors for(D-Trp6)luteinizing hormone releasing hormone and epidermal growth factor in human ovarian cancer[J].Int J Oncol,1998,12(3):489-498.
    [17]Volker P,Grundker C,Schmidt O,et al.Expression of receptors for luteinizing hormone-releasing hormone in human ovarian and endometrial cancers:frequency,autoregulation,and correlation with direct antiproliferative activity of luteinizing hormone-releasing hormone analogues[J].Am J Obstet Gynecol,2002,186(2):171-179.
    [18]Sugiyama M,Imai A,Takahashi S,et al.Advanced indications for gonadotropin-releasing hormone(GnRH) analogues in gynecological oncology [J].Int J Oncol,2003,23(2):445-452.
    [19]Grundker C,Emons G.Role of gonadotropin-releasing hormone(GnRH) in ovarian cancer[J].Reprod Biol Endocrinol,2003,1:65.
    [20]Kim KY,Choi KC,Auersperg N,et al.Mechanism of gonadotropin-releasing hormone(GnRH)-Ⅰ and -Ⅱ-induced cell growth inhibition in ovarian cancer cells:role of the GnRH-I receptor and protein kinase C pathway[J].Endocr Relat Cancer,2006,13(1):211-220.
    [21]Nagy A,Schally AV.Targeting of cytotoxic luteinizing hormone-releasing hormone analogs to breast,ovarian,endometrial,and prostate cancers[J].Biol Reprod,2005,73(5):851-859.
    [22]Rahimipour S,Ben-Aroya N,Ziv K,et al.Receptor-mediated targeting of a photosensitizer by its conjugation to gonadotropin-releasing hormone analogues [J].J Med Chem,2003,46(19):3965-3974.
    [23]Yang WH,Wieczorck M,Allen MC,et al.Cytotoxic activity of gonadotropin-releasing hormone(GnRH)-pokeweed antiviral protein conjugates in cell lines expressing GnRH receptors[J].Endocrinology,2003,144(4):1456-1463.
    [24]Gho YS,Chae CB.Luteinizing hormone releasing hormone-RNase A conjugates specifically inhibit the proliferation of LHRH-receptor-positive human prostate and breast tumor cells[J].Mol Cells,1999,9(1):31-36.
    [25]Leuschner C,Enright FM,Gawronska-Kozak B,et al.Human prostate cancer cells and xenografts are targeted and destroyed through luteinizing hormone releasing hormone receptors[J].Prostate,2003,56(4):239-249.
    [26]Minegishi T,Nakamura K,Takakura Y,et al.Cloning and sequencing of human LH/hCG receptor eDNA[J].Biochem Biophys Res Commun,1990,172(3):1049-1054.
    [27]Minegishi T,Nakamura K,Takakura Y,et al.Cloning and sequencing of human FSH receptor eDNA[J].Biochem Biophys Res Commun,1991,175(3):1125-1130.
    [28]Puett D,Li Y,DeMars G,et al.A functional transmembrane complex:the luteinizing hormone receptor with bound ligand and G protein[J].Mol Cell Endocrinol,2007,260-262:126-136.
    [29]Fathalla MF.Incessant ovulation--a factor in ovarian neoplasia[J].Lancet,1971,2(7716):163.
    [30]Stadel BV.Letter:The etiology and prevention of ovarian cancer[J].Am J Obstet Gynecol,1975,123(7):772-774.
    [31]Landen CN Jr,Birrer M J,Sood AK.Early events in the pathogenesis of epithelial ovarian cancer[J].J Clin Oncol,2008,26(6):995-1005.
    [32]Jernstrom H,Borg K,Olsson H.High follicular phase luteinizing hormone levels in young healthy BRCA1 mutation carders:implications for breast and ovarian cancer risk[J].Mol Genet Metab,2005,86(1-2):320-327.
    [33]Konishi I.Gonadotropins and ovarian carcinogenesis:a new era of basic research and its clinical implications[J].Int J Gynecol Cancer,2006,16(1):16-22.
    [34]Celik C,Gezginc K,Aktan M,et al.Effects of ovulation induction on ovarian morphology:an animal study[J].Int J Gynecol Cancer,2004,14(4):600-606.
    [35]Chudecka-Glaz A,Rzepka-Gorska I,Kosmowska B.Gonadotropin(LH,FSH)levels in serum and cyst fluid in epithelial tumors of the ovary[J].Arch Gynecol Obstet,2004,270(3):151-156.
    [36]Rzepka-Gorska I,Chudecka-Glaz A,Kosmowska B.FSH and LH serum/tumor fluid ratios and malignant tumors of the ovary[J].Endocr Relat Cancer,2004,11(2):315-321.
    [37]Edmondson R J,Monaghan JM,Davies BR.Gonadotropins mediate DNA synthesis and protection from spontaneous cell death in human ovarian surface epithelium[J].Int J Gynecol Cancer,2006,16(1):171-177.
    [38]Capen CC.Mechanisms of hormone-mediated carcinogenesis of the ovary[J].Toxicol Pathol,2004,32 Suppl 2:1-5.
    [39]Li Y,Ganta S,Cheng C,et al.FSH stimulates ovarian cancer cell growth by action on growth factor variant receptor[J].Mol Cell Endocrinol,2007,267(1-2):26-37.
    [40]Bose CK.Does hormone replacement therapy prevent epithelial ovarian cancer [J].Reprod Biomed Online,2005,11(1):86-92.
    [41]Kammerman S,Demopoulos RI,Raphael C,et al.Gonadotropic hormone binding to human ovarian tumors[J].Hum Pathol,1981,12(10):886-890.
    [42]Nakano R,Kitayama S,Yamoto M,et al.Localization of gonadotropin binding sites in human ovarian neoplasms[J].Am J Obstet Gynecol,1989,161(4):905-910.
    [43]Al-Timimi A,Buckley CH,Fox H.An immunohistochemical study of the incidence and significance of human gonadotrophin and prolactin binding sites in normal and neoplastic human ovarian tissue[J].Br J Cancer,1986,53(3):321-329.
    [44]Zheng W,Magid MS,Kramer EE,et al.Follicle-stimulating hormone receptor is expressed in human ovarian surface epithelium and fallopian tube[J].Am J Pathol,1996,148(1):47-53.
    [45] Parrott JA, Doraiswamy V, Kim G, et al. Expression and actions of both the follicle stimulating hormone receptor and the luteinizing hormone receptor in normal ovarian surface epithelium and ovarian cancer [J]. Mol Cell Endocrinol, 2001,172(1-2):213-222.
    [46] Syed V, Ulinski G, Mok SC, et al. Expression of gonadotropin receptor and growth responses to key reproductive hormones in normal and malignant human ovarian surface epithelial cells [J]. Cancer Res, 2001,61(18):6768-6776.
    [47] Minegishi T, Kameda T, Hirakawa T, et al. Expression of gonadotropin and activin receptor messenger ribonucleic acid in human ovarian epithelial neoplasms [J]. Clin Cancer Res, 2000,6(7):2764-2770.
    [48] Zheng W, Lu JJ, Luo F, et al. Ovarian epithelial tumor growth promotion by follicle-stimulating hormone and inhibition of the effect by luteinizing hormone [J]. Gynecol Oncol, 2000,76(1 ):80-88.
    [49] Wang J, Lin L, Parkash V, et al. Quantitative analysis of follicle-stimulating hormone receptor in ovarian epithelial tumors: a novel approach to explain the field effect of ovarian cancer development in secondary mullerian systems [J]. Int J Cancer, 2003,103(3):328-334.
    [50] Chen X, Aravindakshan J, Yang Y, et al. Aberrant expression of PDGF ligands and receptors in the tumor prone ovary of follitropin receptor knockout (FORKO) mouse [J]. Carcinogenesis, 2006,27(5):903-915.
    [51] Jun JK, Yoon JS, Ku SY, et al. Follicle-stimulating hormone receptor gene polymorphism and ovarian responses to controlled ovarian hyperstimulation for IVF-ET [J]. J Hum Genet, 2006,51(8):665-670.
    [52] Yang CQ, Chan KY, Ngan HY, et al. Single nucleotide polymorphisms of follicle stimulating hormone receptor are associated with ovarian cancer susceptibility [J]. Carcinogenesis, 2006,27(7): 1502-1506.
    [53] Bose CK. Nerve growth factor, follicle stimulating hormone receptor and epithelial ovarian cancer [J]. Med Hypotheses, 2004,63(5):917-918.
    [54] Bose CK. Role of nerve growth factor and FSH receptor in epithelial ovarian cancer [J]. Reprod Biomed Online, 2005,11(2): 194-197.
    [55] Wang J, Luo F, Lu JJ, et al. VEGF expression and enhanced production by gonadotropins in ovarian epithelial tumors [J]. Int J Cancer, 2002,97(2): 163-167.
    [56] Choi JH, Choi KC, Auersperg N, et al. Gonadotropins upregulate the epidermal growth factor receptor through activation of mitogen-activated protein kinases and phosphatidyl-inositol-3-kinase in human ovarian surface epithelial cells[J].Endocr Relat Cancer,2005,12(2):407-421.
    [57]Choi JH,Choi KC,Auersperg N,et al.Overexpression of follicle-stimulating hormone receptor activates oncogenic pathways in preneoplastic ovarian surface epithelial cells[J].J Clin Endocrinol Metab,2004,89(11):5508-5516.
    [58]Ho SM,Lau KM,Mok SC,et al.Profiling follicle stimulating hormone-induced gene expression changes in normal and malignant human ovarian surface epithelial cells[J].Oncogene,2003,22(27):4243-4256.
    [59]Ji Q,Liu PI,Chen PK,et al.Follicle stimulating hormone-induced growth promotion and gene expression profiles on ovarian surface epithelial cells[J].Int J Cancer,2004,112(5):803-814.
    [60]Choi JH,Choi KC,Auersperg N,et al.Differential regulation of two forms of gonadotropin-releasing hormone messenger ribonucleic acid by gonadotropins in human immortalized ovarian surface epithelium and ovarian cancer cells[J].Endocr Relat Cancer,2006,13(2):641-651.
    [61]Schiffenbauer YS,Meir G,Maoz M,et al.Gonadotropin stimulation of MLS human epithelial ovarian carcinoma cells augments cell adhesion mediated by CD44 and by alpha(v)-integrin[J].Gynecol Oncol,2002,84(2):296-302.
    [62]Choi JH,Choi KC,Auersperg N,et al.Gonadotropins activate proteolysis and increase invasion through protein kinase A and phosphatidylinositol 3-kinase pathways in human epithelial ovarian cancer cells[J].Cancer Res,2006,66(7):3912-3920.
    [63]Freimann S,Ben-Ami I,Hirsh L,et al.Drug development for ovarian hyper-stimulation and anti-cancer treatment:blocking of gonadotropin signaling for epiregulin and amphiregulin biosynthesis[J].Biochem Pharmacol,2004,68(6):989-996.
    [64]Wadia PR,Mahale SD,Nandedkar TD.Effect of the human follicle-stimulating hormone-binding inhibitor and its N-terminal fragment on follicle-stimulating hormone-induced progesterone secretion by granulosa cells in vitro[J].J Biosci,2007,32(6):1185-1194.
    [65]Bose CK.Follicle stimulating hormone receptor(FSHR) antagonist and epithelial ovarian cancer(EOC)[J].J Exp Ther Oncol,2007,6(3):201-204.
    [66]Reubi JC.Peptide receptors as molecular targets for cancer diagnosis and therapy[J].Endoer Rev,2003,24(4):389-427.
    [67]廖子君,南克俊,韩军.现代肿瘤治疗药物学[M].西安:兴界图书出版公司.2002:554-559.
    [68]王喜忠,丁明孝,张传茂.分子细胞生物学(中文版)[M].北京:高等教育出版社,2005:305-322.
    [69]Walther TC,Brickner JH,Aguilar PS,et al.Eisosomes mark static sites of endocytosis[J].Nature,2006,439(7079):998-1003.
    [70]杨恬,左伋.细胞生物学[M].北京:人民卫生出版社,2005:103-107.
    [71]柳湘,田培坤,顾健人.非病毒载体系统在基因治疗中的应用[J].国外医学肿瘤学分册,2001,28(3):189-191.
    [72]Flaherty KT,Brose MS.Her-2 targeted therapy:beyond breast cancer and trastuzumab[J].Curr Oncol Rep,2006,8(2):90-95.
    [73]Knight LA,Di Nicolantonio F,Whitehouse P,et al.The in vitro effect of gefitinib('Iressa') alone and in combination with cytotoxic chemotherapy on human solid tumours[J].BMC Cancer,2004,4:83.
    [74]朱世能,陆世伦.肿瘤基础理论[M].上海:上海医科大学出版社,2000:384-385.
    [75]Grundker C,Huschmand Nia A,Emons G.Gonadotropin-releasing hormone receptor-targeted gene therapy of gynecologic cancers[J].Mol Cancer Ther,2005,4(2):225-231.
    [76]Nagy A,Schally AV,Armatis P,et al.Cytotoxic analogs of luteinizing hormone-releasing hormone containing doxorubicin or 2-pyrrolinodoxorubicin,a derivative 500-1000 times more potent[J].Proc Natl Acad Sci U S A,1996,93(14):7269-7273.
    [77]Schally AV,Nagy A.Cancer chemotherapy based on targeting of cytotoxic peptide conjugates to their receptors on tumors[J].Eur J Endocrinol,1999,141(1):1-14.
    [78]Nagy A,Schally AV.Targeting cytotoxic conjugates of somatostatin,luteinizing hormone-releasing hormone and bombesin to cancers expressing their receptors:a "smarter" chemotherapy[J].Curr Pharm Des,2005,11(9):1167-1180.
    [79]Schally AV,Nagy A.New approaches to treatment of various cancers based on cytotoxic analogs of LHRH,somatostatin and bombesin[J].Life Sci,2003,72(21):2305-2320.
    [80]Grundker C,Volker P,Griesinger F,et al.Antitumor effects of the cytotoxic luteinizing hormone-releasing hormone analog AN-152 on human endometrial and ovarian cancers xenografted into nude mice[J].Am J Obstet Gynecol,2002,187(3):528-537.
    [81]Keller G,Schally AV,Gaiser T,et al.Receptors for luteinizing hormone releasing hormone expressed on human renal cell carcinomas can be used for targeted chemotherapy with cytotoxic luteinizing hormone releasing hormone analogues[J].Clin Cancer Res,2005,11(15):5549-5557.
    [82]Arencibia JM,Schally AV,Krupa M,et al.Targeting of doxorubicin to ES-2human ovarian cancers in nude mice by linking to an analog of luteinizing hormone-releasing hormone improves its effectiveness[J].Int J Oncol,2001,19(3):571-577.
    [83]Arencibia JM,Bajo AM,Schally AV,et al.Effective treatment of experimental ES-2 human ovarian cancers with a cytotoxic analog of luteinizing hormone-releasing hormone AN-207[J].Anticancer Drugs,2002,13(9):949-956.
    [84]Miyazaki M,Schally AV,Nagy A,et al.Targeted cytotoxic analog of luteinizing hormone-releasing hormone AN-207 inhibits growth of OV-1063 human epithelial ovarian cancers in nude mice[J].Am J Obstet Gynecol,1999,180(5):1095-1103.
    [85]Westphalen S,Kotulla G,Kaiser F,et al.Receptor mediated antiproliferative effects of the cytotoxic LHRH agonist AN-152 in human ovarian and endometrial cancer cell lines[J].Int J Oncol,2000,17(5):1063-1069.
    [86]Arencibia JM,Schally AV,Halmos G,et al.In vitro targeting of a cytotoxic analog of luteinizing hormone-releasing hormone AN-207 to ES-2 human ovarian cancer cells as demonstrated by microsatellite analyses[J].Anticancer Drugs,2001,12(1):71-78.
    [87]Krebs L J,Wang X,Pudavar HE,et al.Regulation of targeted chemotherapy with cytotoxic lutenizing hormone-releasing hormone analogue by epidermal growth factor[J].Cancer Res,2000,60(15):4194-4199.
    [88]Dharap SS,Qiu B,Williams GC,et al.Molecular targeting of drug delivery systems to ovarian cancer by BH3 and LHRH peptides[J].J Control Release,2003,91(1-2):61-73.
    [89]Khandare JJ,Chandna P,Wang Y,et al.Novel polymeric prodrug with multivalent components for cancer therapy[J].J Pharmacol Exp Ther,2006,317(3):929-937.
    [90]Beck EP,Vincenti D,Licht P,et al.In vitro activity of human chorionic gonadotropin(hCG)-doxorubicin conjugates against ovarian cancer cells[J].Anticancer Res,2000,20(5A):3001-3006.
    [91]Bodek G;Vierre S,Rivero-Muller A,et al.A novel targeted therapy of Leydig and granulosa cell tumors through the luteinizing hormone receptor using a hecate-chorionic gonadotropin beta conjugate in transgenic mice[J].Neoplasia,2005,7(5):497-508.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700