用户名: 密码: 验证码:
过渡金属(铼、钌)配合物光电功能材料与器件
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
许多过渡金属磷光配合物具有出色的光致发光和理论内量子效率可达100%的电致发光性能,随着有机电致发光研究的不断深入,近年来以过渡金属配合物作为发光中心的研究正逐渐成为该领域的重点。其中以铱、铂配合物为基础的高效有机电致发光器件得到了广泛的研究,而对于铼配合物的研究相对较少。铼配合物具有高的室温磷光量子效率、相对较短的激发态寿命和出色的热稳定性,对它们的发光机理及性能的研究可以加深对电致发光的认识和开发新型高效电致发光材料。有机光伏与电致发光之间存在着密切的联系,是完全相反的两个过程。有机紫外光探测器件是有机光电转换器件的应用领域之一,深入研究有机器件的光伏性能对于化学/生物分析、全彩色数字图像信号检测和高能辐射测量等具有重要意义。
     本文以含乙烯基砒啶衍生物的铼金属配合物作为发光中心组装了红色有机电致发光器件,最优化浓度为2 wt.-%。首次发现室温下无法观测到光致发光的材料具有良好的电致发光特性。它改变了人们对开发电致发光材料的传统认识,即电致发光材料的选择必须建立在良好的光致发光的基础上,有助于开发新型OLED材料。
     四氮杂苯并菲衍生物具有出色的载流子传输性能、特别是电子传输性能,本文以化合物DPPz作为配体制备了新型金属铼的配合物。并以此作为发光中心进行了电致磷光器件的组装。相对平衡的载流子注入和主体到客体的高效能量传递提高了电致发光器件的性能。其中Dexter机制起着主导的作用。F?rster能量传递机制和载流子俘获机制相对微弱。器件的最大效率为6.3 cd/A,最大亮度接近1000 cd/m2,相关的机理被讨论。在电致发光研究的基础上我们进一步开展了相应材料的有机光伏器件的研究。利用激基复合物的形成,研究了以m-MTDATA作为电子给体,以Re-DPPz、Tb(acac)3DPPz、Eu(TTA)3DPPz、Eu(DBM)3DPPz作为电子受体所组装的光伏器件的性能。该系列器件的响应范围均位于长波紫外区,是典型的可见盲区的紫外探测器件。研究表明由DPPz所组成的金属配合物不仅具有良好的电致发光性能,而且还可应用于传感。
     合成了两种新型金属钌表面活性剂配合物,它们与水的混合体系展示良好的溶致液晶行为。以该液晶体系作为模板剂成功地制备出相应结构的介孔分子筛,由此证明了理想液晶模板机理。
Recently, there has been growing interesting in employment of transition metal complexes as emitters in organic light-emitting diodes (OLEDs), since many of them have excellent photoluminescence (PL) properties and potential advantages of achieving a maximum internal quantum efficiency of 100%. Highly efficient OLEDs based on the Ir complexes and Pt complexes have been extensively studied. Little attention has been devoted to Re(I) complexes. It is well known that they feature high room-temperature phosphorescence quantum yield, relatively short excited state lifetime, and excellent thermal stability. Study these complexes is important to exploit novel types of EL materials and understand the EL mechanism deeply. On the other hand, as an application of organic photovoltaic devices, organic ultraviolet photodetectors present the advantages of low manufacturing cost, large detection area, and easy hybridization, and promise to integrate together with other electronic or optical components including chemical/biomedical analysis, full color digital image sensing and high energy radiation detection.
     In this work, red organic light-emitting diodes using a rhenium(I) bipyridyl complex, fac-[ClRe(CO)3(trans-4-methyl-4’-(2-4-octadecyloxylphenyl)vinyl)-2,2’- bipyridine] as an emitter were fabricated. The optimized device has a bilayer structure of indium-tin oxide/poly(N-vinylcarbazole): x wt.-% Re-mopvb/2,9-dimethyl-4,7-diphenyl-,10-phen anthroline/LiF/Al. It was found that no photoluminescence from Re-mopvb in room- temperature solution appeared due to photoinduced isomerization, a bright red electrophosphorescence from an intraligand excited state of Re-mopvb was observed at room temperature, indicating promising future of such a class of EL materials. It is helpful to exploit novel types of EL materials. DPPz derivatives have excellent electron-transporting property. Highly efficient orange-yellow organic EL devices based on DPPz have been fabricated. By incorporating Re-DPPz into EL devices with balanced charge injection and efficient host-to-guest energy transfer, the EL performances were significantly improved. For EL device with 7 wt. % Re-DPPz doped emissive layer, maximum efficiency of 6.3 cd/A, and orange-yellow emission with brightness approaching 1000 cd/m2 were achieved. Such improvement is due to efficient Dexter energy transfer between CBP host and Re-DPPz.
     Metal-DPPz complexes and m-MTDATA were used as electron-acceptors and donors, respectively in the PV devices. The performance of ultraviolet-A photodetectors based on PV has been investigated. The forming of exciplexes makes UV detectors better capability. The absorption spectra of the composite films located at long wave UV area, typical visible-blind UV detector. It indicates that DPPz-containing metal complexes not only possess excellent EL performances, but only find applications in sensors.
     New surfactant Ru(II) complexs were synthesized and characterized by elemental analysis,mass spectra and 1H NMR. The complex– water mixture displays lyotropic liquid crystalline behaviour. The mesoporous films obtained still retain the corresponding texture of
引文
[1] A. Bernanose, M. Comte, P. Vouaux. Sur un nouveau mode d’émission lumineuse chez certains composés organiques[J]. J. Chim. Phys.,1953,50:64-68
    [2] M. Pope, H. Kallman, P. Magnante. Electroluminescence in organic crystals[J]. J. Chem. Phys., 1963, 38: 2042-2043
    [3] C. W. Tang, S. A. Vanslyke. Organic electroluminescent diodes[J]. Appl. Phys. Lett. 1987, 51: 913-915
    [4] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, et al. Light-emitting diodes based on conjugated polymers[J]. Nature, 1990, 347: 539-541
    [5] 陳怡甄、葉樹棠、彭鏡縣、黃淑娟、沈永清著,抗靜電/導電性材料最新發展趨勢及商機探討[M]. 中華民國九十四年十一月
    [6] I. M. Chan, W. C. Cheng, F. C. Hong, Asia Display/IDW’01, 2001, p.1483
    [7] S. A. Van Slyke, C. H. Chen, C. W. Tang, Organic electroluminescent devices with improved stability[J]. Appl. Phys. Lett.,1996, 69(15):2160-2162.
    [8] Y. Shirota, Y. Kuwabara, H. lnada, et al. Multilayered organic electroluminescent device using a novel starburst molecule, 4,4’,4”-tris(3-methylphenylphenyl amino)triphenylamine, as a hole transport material[J]. Appl. Phys. Lett.,1996, 65(7):807-809.
    [9] Y. Yang, A. J. Heeger, Polyaniline as a transparent electrode for polymer light-emitting diodes: Lower operating voltage and higher efficiency[J]. Appl. Phys. Lett. , 1996, 64(10):1245-1247.
    [10] Y. Cao, G. Yu, C. Zhang, et al. Polymer light-emitting diodes with polyethylene dioxythiophene-polystyrene sulfonate as the transparent anode[J]. Synth. Met. , 1997, 87:171-174
    [11] Z. B. Deng, X. M. Ding, S. T. Lee, et al. Enhanced brightness and efficiency in organic electroluminescent devices using SiO2 buffer layers[J]. Appl. Phys. Lett. , 1996, 74(15):2227-2229.
    [12] D.B. Romero, M. Schaer, L. Zuppiroli, et al. Effects of doping in polymer light-emitting diodes[J]. Appl. Phys. Lett., 1995, 67(12): 1659-1661.
    [13] F. Huang, A.G. MacDiamid, B.R. Hsieh, An iodine-doped polymer light-emitting diode[J]. Appl. Phys. Lett., 1997, 71(17):2415-2417.
    [14] J. Blochwitz, M. Pfeiffer, T. Fritz, et al. Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material[J]. Appl. Phys. Lett., 1998 73(6):729-731.
    [15] A. Yamamori, C. Adachi, T. Koyama, et al. Doped organic light emitting diodes having a 650-nm-thick hole transport layer[J], Appl. Phys. Lett., 1998, 72(17):2147-2149.
    [16] Y. Sato, T. Ogata, S. Ichinosawa, et al. Proc. SPIE Org. Light Emitting Mater. Dev. III 3797 (1999) 198.
    [17] A. Elschner, F. Bruder, H. W. Heuer, et al. PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes[J]. Synth. Met.,111 (2000) 139-143.
    [18] S.A. VanSlyke, C.W. Tanga, US Patent 5,061,569 (1991).
    [19] R. C. Kwong, M. R. Nugent, L. Michalski et al. High operational stability of electrophosphorescent devices [J]. Appl. Phys. Lett.,2002, 81(1):162-164.
    [20] Y. Li, M. K. Fung, Z. Xie, et al. An efficient pure blue organic light-emitting device with low driving voltages[J]. Adv. Mater., 2002, 14(18):1317-1321.
    [21] L.S. Hung, C.H. Chen, Recent progress of molecular organic electroluminescent material and devices [J]. Mater. Sci. and Eng.,2002, R39:143-222
    [22] Zhang Zhilin, Jiang Xueying, Xu Shaohong, Energy transfer and white emitting organic thin film electroluminescence[J]. Thin Solid Film, 2000, 63:61-63
    [23] M. A. Baldo, S. Lamansky, P. E. Burrows, et al. Very high-efficiency green organic light-emitting devices based on electrophosphorescence[J]. Appl. Phys. Lett., 1999, 75(1):4-6.
    [24] C. W. Tang, S. A. VanSlyke, C. H. Chen, Electroluminescence of doped organic thin films[J]. J. Appl. Phys., 1989, 65(9):3610-3616.
    [25] C.H. Chen, J. Shi, K.P. Klubek, US Patent 5,908,581 (1999).
    [26] K.Yamashita, J. Futenma, T. Mori, et al. Effect of location and width of doping region on efficiency in doped organic light-emitting diodes[J]. Synth. Met.,2000,111:87-90.
    [27] J. L. Fox, C. H. Chen, US Patent 4,736,032 (1988).
    [28] S. A. Van Slyke, C. H. Chen, C. W. Tang, Organic electroluminescent devices with improved stability [J]. Appl. Phys. Lett.,1996, 69(15):2160-2162.
    [29] C. Hosokawa, H. Higashi, H. Nakamura, et al. Highly efficient blue electroluminescence from a distyrylarylene emitting layer with a new dopant[J]. Appl. Phys. Lett., 1995, 67:3853-3855.
    [30] W. R. Dawson, M. W. Windsor, J. Phys. Chem., 1968, 72:3251.
    [31] B. X. Mi, Z. Q. Gao, C. S. Lee, et al. Reduction of molecular aggregation and its application to the highperformance blue perylene-doped organic electroluminescent device [J]. Appl. Phys. Lett., 1999, 75(26):4055-4053.
    [32] J. Kido, H. Hayase, K. Hongawa, et al. Bright red light-emitting organic electroluminescent devices having a europium complex as a meitter [J]. Appl. Phys. Lett., 1994, 65(17):2124-2126.
    [33] Liang C J, Hong Z R, Li W L, et al. Improved performance of electroluminescent devices based on a europium complex [J]. Appl. Phys. Lett., 2000, 76(1):67-69.
    [34] Wenlian Li, Jiaqi Yu, Gang Sun, et al. Organic electroluminescent devices using terbium chelates as the emitting layers [J]. Synth. Met. 1997, 91:263–265
    [35] H. Xin, F. Y. Li, M. Shi, et al. Efficient Electroluminescence from a New Terbium Complex [J]. J. Am. Chem. Soc.,2003; 125(24):7166-7167.
    [36] Ziruo Hong, Wenlian Li, Dongxu Zhao, et al. Spectrally-narrow blue light-emitting organic electroluminescent devices utilizing thulium complexes[J]. Synth. Met., 1999, 104:165–168
    [37] Ziruo Hong, Wen Lian Li, Dongxu Zhao, et al. White light emission from OEL devices based on organic dysprosium-complex [J]. Synth. Met. 2000, 111-112:43–45
    [38] Liang C J, Zhao D, Hong Z R, et al. Exciplex emissions in bilayer and doped thin films containing a non-fluorescense gadolinium complex [J]. Thin Solid Film, 2000, 371:207-210.
    [39] B. Chu, D. Fan, W. L. Li, et al. Organic-film photovoltaic cell with electroluminescence [J]. Appl. Phys. Lett., 2002, 81(1):10-12.
    [40] W.L. Li, Z.Q. Gao, Z.Y. Hong, et al. Blue electrol- uminescent devices made from a naphthyl-substituted benzidine derivative and rare earth metal chelates [J]. Synth. Met., 2000, 111–112:53–56
    [41] C.J. Liang, Z.R. Hong, X.Y. Liu, et al. Organic electroluminescent devices using europium complex as an electron-transport emitting layer [J]. Thin Solid Films, 2000, 359:14-16
    [42] M. A. Baldo, D. F. O'Brien, Y. You, et al. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature, 1998, 395:151-153.
    [43] D. F. O’Brien, M. A. Baldo, M. E. Thompson, et al. Improved energy transfer in electrophosphorescent devices [J]. Appl. Phys. Lett., 2001, 74(3):442-444.
    [44] Chihaya Adachi, Marc A. Baldo, Stephen R. Forrest, et al. High-efficiency red electro- phosphorescence devices [J]. Appl. Phys. Lett., 2001, 78(11):1622-1624.
    [45] M. A. Baldo, S. Lamansky, P. E. Burrows, et al. Very high-efficiency green organic light-emitting devices based on electrophosphorescence [J]. Appl. Phys. Lett., 1999, 75(1):4-6.
    [46] R. J. Holmes, S. R. Forrest, Y. J. Tung, et al. Blue organic electrophosphorescence using exothermic host-guest energy transfer [J]. Appl. Phys. Lett., 2003, 82(15):2422-2424.
    [47] B. W. D’Andrade, M. E. Thompson, S. R. Forrest, Controlling exciton diffusion in multilayer white phosphorescent organic light-emitting devices [J]. Adv. Mater., 2002, 14:147-151.
    [48] C. C. Wu, C. I. Wu, J. C. Sturm, et al. Organic electroluminescent devices with improved stability [J]. Appl. Phys. Lett., 1997, 70: 1348-1340
    [49] R. A. Hatton, S. R. Day, M. A. Chesters, et al. Organic electroluminescent devices: enhanced carrier injection using an organosilane self assembled monolayer (SAM) -derivatized ITO electrode [J]. Thin Solid Films, 2001, 394: 292-297
    [50] S. F. J. Appleyard, S. R. Day, R. D. Pickford, et al. Organic electroluminescent devices: enh nced carrier injection using SAM derivatized ITO electrodes [J]. J. Mater. Chem., 2000, 10: 169-173
    [51] M. G. Mason, L. S. Hung, C. W. Tang, et al. Characterization of treated indium-tin-oxidesurfaces used in electroluminescent devices [J]. J. Appl. Phys., 1999, 86: 1688-1692
    [52] D. J. Million, I. G. Hill, A. Kahn, et al. Surface Oxidation Activates Indium Tin Oxide for Hole Injection [J]. J. Appl. Phys., 2000, 87: 572-576
    [53] B. Choi, H. S. Yoon, H. H Lee, Surface Treatment of Indium Tin Oxide by SF6 Plasma for Organic Light-emiting Diodes [J]. Appl. Phys. Lett., 2000,76: 412-414
    [54] L. S. Hung, US Patent 2001, No. 6208077
    [55] F. Nüesch, L. J. Rothberg, E. W. Forsythe, et al. Appl. A Photoelectron Spectroscopy Study on the Indium Tin Oxide Treatment by Acids and Bases [J]. Appl. Phys. Lett., 1999, 74: 880-882
    [56] Q. T. Le, F. Nuesch, L. J Rothberg, et al. Photoemission Study of Phenyl-Diamine Treated Indium Tin Oxide Interface [J]. Appl. Phys. Lett., 1999, 75: 1357-1359
    [57] C. Ganzorig, K. J. Kwak, K. Yagi, et al. Fine tuning work function of indium tin oxide by surface molecular design: Enhanced hole injection in organic electroluminescent devices [J]. Appl. Phys. Lett., 2001,79: 272-274
    [58] G. Gustafsson , Y. Cao, G. M. Treacy, et al. Flexible light emitting diodes made from soluble conducting polymer [J]. Nature, 1992, 357(3): 477-479
    [59] H. Kim, J. S. Horwitz, W. H. Kim, et al. Anode material based on Zr-doped ZnO thin film for organic light-emitting diodes [J]. Appl. Phys. Lett., 2003, 83(18):3809-3811.
    [60] I. D. Parker and H. H. Kim, Fabrication of polymer light emitting diodes using doped silicon electrode [J]. Appl. Phys. Lett., 1994, 64(14): 1774-1776
    [61] K. Tada, Y. Yokota, K. Kobashi, et al. Characteristics of heterojunction utilizing conducting polymer and diamond film on Si [J]. Jpn. J. Appl. Phys., Part 2, 1997, 36(12B):L1678-1680
    [62] A. Bsiesy, Y. F. Nicolau, A. Ermolieff, et al. Electroluminescent from n-type porous silicon contacted with layer-by-layer deposited polyaniline [J]. Thin Solid Films, 1995, 255:43-48
    [63] M. Stossel, J. Staudigel, F. Steuber, et al. Appl. Phys. A, 1998, 37: L872
    [64] M. Stossel, J. Staudigel, F. Steuber, et al. Electron injection and transport in 8-hydroxyquinoline aluminum [J]. Synth. Met., 2000, 111:19-24
    [65] C. W. Tang, S. A. Vanslyke, Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51: 913-915
    [66] E. L. Haskal, A. Curioni, P. F. Seidler, et al. Lithium-Aluminum Contacts for Organic Light-Emitting Devices[J]. Appl. Phys. Lett., 1997, 71: 1151-1153
    [67] D. Braun, A. J. Heeger, H. Kroemer, Improved efficiency in semiconducting polymer light emitting diodes [J]. J. Electron Mater, 1991, 20(11): 945-948
    [68] D. Braun, A. J. Heeger, Visible light emission from semiconducting polymer diodes [J]. Appl. Phys. Lett., 1991, 58(18): 1982-1984
    [69] Y. Cao, K. T. Park, B. R. Hsieh, X-ray photoemission investigations of the interface formation of Ca and poly(p-phenylene vinylene) [J]. J. Chem. Phys., 1992, 97(9): 6991-6993
    [70] Y. Cao, K. T. Park, B. R. Hsieh, Interface formation of Ca and poly(p-phenylene vinylene) [J]. J. Appl. Phys., 1993, 73(11): 7894-7899
    [71] S. A. Jeglinnski, O. Amir, X. Wei, Symmetric light emitting devices from poly(p-diethynylene phenylene) (p-diethynylene phenylene) derivaties [J]. Appl. Phys. Lett., 1995, 67(26): 3960-3962
    [72] L. S. Hung, C. W. Tang, M. G. Mason, Enhanced electron injection in organic electroluminescent devices using an LiF/Al electrode [J].Appl. Phys. Lett., 1997, 70: 152-154
    [73] G. E. Jabbour, B. Kippelen, N. R. Armstrong, et al. Aluminum based cathode structure for enhancedelectron injection in electroluminescent organic devices [J]. Appl. Phys. Lett., 1998, 73:1855-1857
    [74] J. Kido and Y, Iizumi, Fabrication of highly efficient organic electroluminescent devices [J]. Appl. Phys. Lett., 1998, 73: 2721-2723
    [75] H. Fujikawa, T. Mori, K. Noda, et al. Organic electroluminescent devices using alkaline-earth fluorides as an electron injection layer [J]. J. Luminescence, 2000, 87-89: 1177-1179
    [76] C. H. Lee, Enhanced efficiency and durability of organic electroluminescent devices by inserting a thin insulating layer at the Alq3/cathode interface [J]. Synth. Met., 1997, 91:125-127
    [77] Z. Y. Xie, L. S. Hung and S. T. Lee,High-efficiency red electroluminescence from a narrow recombination zone confined by an organic double heterostructure[J]. Appl. Phys. Lett., 2001, 79(7):1048-1050
    [78] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature, 1998, 395: 151-154
    [79] 李文连著,有机发光材料、器件及其平板显示—一种新型光电子技术[M],科学出版社,2002年
    [80] M. A. Baldo, D. F. O'Brien, M. E. Thompson, S. R. Forrest, Excitonic singlet-triplet ratio in a semicoducting organic thin film[J], Phys. Rev. B,1999, 60: 14422-14428
    [81] 李文连著,有机/无机光电功能材料及其应用[M]. 科学出版社,2005年
    [82] M. A. Baldo, M. E. Thompson, S. R. Forrest, High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer[J], Adv. Mater. 2000, 403: 750-753.
    [83] M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, Y. Taga, Highly efficient phosphorescence from organic light-emitting devices with an exciton-block laye[J]r, Appl. Phys. Lett. 2001, 79: 156-158.
    [84] M. A. Baldo, C. Adachi, S. R. Forrest, Transient analysis of organic electrophosphorescence: Ⅱ. Transient analysis of triplet-triplet annihilation[J], Physical Review B 2000, 62: 10967-10977.
    [85] R. C. Kwong, S. Lamansky, M. E. Thompson, Organic Light-emitting Devices Based on Phosphorescent Hosts and Dyes[J], Adv. Mater. 2000, 12: 1134-1138.
    [86] H. Z. Xie, M. W. Liu, O. Y. Wang, X. H. Zhang, C. S. Lee, L. S. Hung, S. T. Lee, P. F. Teng, H. L. Kwong, H. Zheng, C. M. Che, Reduction of Self-Quenching Effect in Organic Electrophosphorescence Emitting Devices via the Use of Sterically Hindered Spacers in Phosphorescence Molecules[J], Adv. Mater. 2001, 13: 1245-1248.
    [87] Y. Wang, N. Herron, V. V. Grushin, D. LeCloux, V. Petrov, Highly efficient electroluminescent materials based on fluorinated organometallic iridium compounds[J], Appl. Phys. Lett. 2001, 79: 449-451.
    [88] V. Cleave, G. Yahioglu, P. L. Barny, R. H. Friend, N. Tessler, Harvesting Singlet and Triplet Energy in Polymer LEDs[J], Adv. Mater. 1999, 11: 285-288.
    [89] J. Kido, K. Hongawa, K. Okuyama, K. Nagai, Bright blue electroluminescence from poly(N-vinylcarbazole) [J], Appl. Phys. Lett. 1993, 63: 2627-2627.
    [90] Y.-Z. Lee, X. Chen, S.-A. Chen, P.-K. Wei, W.-S. Fann, Soluble Electroluminescent Poly(phenylene vinylene)s with Balanced Electron- and Hole Injections[J], J. Am. Chem. Soc. 2001, 123: 2296-2307.
    [91] X. Chen, J.-L. Liao, Y. Liang, M. O. Ahmed, H.-E. Tseng, S.-A. Chen, High-Efficiency Red-Light Emission from Polyfluorenes Grafted with Cyclometalated Iridium Complexes and Charge Transport Moiety[J], J. Am. Chem. Soc. 2003, 125: 636-637.
    [92] A. V. Dijken, J. J. A. M. Bastiaansen, N. M. M. Kiggen, B. M. W. Langeveld, C. Rothe, A. Monkman, I. Bach, P. Stossel, K. Brunner, Carbazole Compounds as Host Materials for Triplet Emitters in Organic Light-Emitting Diodes: Polymer Hosts for High-Efficiency Light-Emitting Diodes[J], J. Am. Chem. Soc. 2004, 126: 7718-7727.
    [93] K. Brunner, A. V. Dijken, H. Borner, J. J. A. M. Bastiaansen, N. M. M. Kiggen, B. M. W. Langeveld, Carbazole Compounds as Host Materials for Triplet Emitters in Organic Light-Emitting Diodes: Tuning the HOMO Level without Influencing the Triplet Energy in Small Molecules[J], J. Am. Chem. Soc. 2004, 126: 6035-6042.
    [94] M. Suzuki, T. Hatakeyama, S. Tokito, F. Sato, High-efficiency white phosphorescent polymer light-emitting devices[J], IEEE J. Sel. Top. Quantum Electron. 2004, 10: 115-120.
    [95] X. Wang, K. Ogno, K. Tanaka, H. Usui, Novel iridium complex and its copolymer with N-vinyl carbazole for electroluminescent devices[J], IEEE J. Sel. Top. Quantum Electron. 2004, 10: 121-125.
    [96] A. J. Sandee, C. K. Williams, N. R. Evans, J. E. Davies, C. E. Boothby, A. Kohler, R. H. Friend, A. B. Holmes, Solution-Processible Conjugated Electrophosphorescent Polymers[J], J. Am. Chem. Soc. 2004, 126: 7041-7048.
    [97] S. Tokito, M. Suzuki, F. Sato, M. Kamachi, K. Shirane, High-efficiency phosphorescent polymer light-emitting devices[J], Org. Electron. 2003, 4: 105-111.
    [98] S. Tokito, M. Suzuki, F. Sato, Improvement of emission efficiency in polymer light-emitting devices based on phosphorescent polymers[J], Thin Solid Films 2003, 445: 353-357.
    [99] S. Tokito, M. Suzuki, M. Kamachi, K. Shirane, F. Sato, 2002, 11th Inter Workshop on Inorg and org Electroluminescence & 2002 Inter Conf on the Sci and Tech of Emissive Display and Lighting, Sept 23-26, Ghent Balgium (E L 2002) Session 4.
    [100] W. Zhu, Y. Mo, M. Yuan, W. Yang, Y. Cao, Highly efficient electrophosphorescent devices based on conjugated polymers doped with iridium complexes[J], Appl. Phys. Lett. 2002, 80: 2045-2047.
    [101] X. Gong, M. R. Robinson, J. C. Ostrowski, D. Moses, G. C. Bazan, A. J. Heeger, High-efficiency polymer-based electrophosphorescent devices[J], Adv. Mater. 2002, 14: 581-585.
    [102] X. Gong, J. C. Ostrowski, G. C. Bazan, D. Moses, A. J. Heeger, Red electrophosphorescence from polymer doped with iridium complex[J], Appl. Phys. Lett. 2002, 81: 3711-3713.
    [103] F.I. Wu, H.J. Su, C.F. Shu, L. Luo, W.-G. Diau C.H. Cheng, J.P. Duan, G.H. Lee, Tuning the emission and morphology of cyclometalated iridium complexes and their application to organic light-emitting diodes[J], J. Mater. Chem. 2005, 25: 1035-1042.
    [104] S.C. Lo, N. A. H. Male, J. P. J. Markham, S. W. Magennis, P. L. Burn, O. V. Salata, I. D. W. Samuel,Green phosphorescent dendrimer for light-emitting diodes[J], Adv. Mater. 2002, 14: 975-979.
    [105] T. D. Anthopoulos, M. J. Frampton, E. B. Namdas, P. L. Burn, I. D. W. Samuel, Solution-processable red phosphorescent dendrimers for light-emitting device applications[J], Adv. Mater. 2004, 16: 557-560.
    [106] Beer R. H., Jimenez J., Drago R. S. [J]. J. Org. Chem., 1993, 58, 1746.
    [107] Amadelli R., Argazzi R., Bignozzi C. A., Scandola F., [J] J. Am. Chem. Soc., 1990,112, 7099.
    [108] O'Regan B., Grartzel M.[J]. Nature, 1991, 353, 737.
    [109] Larson S. L., Cooley L. F., Elliott C. M., Kelley D. K.[J] J. Am. Chem. Soc., 1992, 114, 9504.
    [110] Bignozzi C. A., Schoonover J. R., Scandola F.[J]. Prog. Inorg. Chem., 1997, 44, 1.
    [111] Sun L., Hammarstrom L., Akermark B., Styring S., [J] Chem. Soc. Rev., 2001, 30, 36.
    [112] Schilt A. A., “Analytical Application of 1,10-phenanthroline and Related compounds”, New York; Pergamon Press, 1969.
    [113] Beer P. D., Chen Z., Goulden A. J. J. [J]. Chem. Commun., 1994, 12, 1269.
    [114] Swiegers G. F., Malefetse T. J.[J]. Chem. Rev., 2000, 100, 3483.
    [115] Tyson D. S., Bignozzi C. A., Castellano F. N.[J]. J. Am. Chem. Soc., 2002, 124, 4562.
    [116] Demas J. N., Degraff B. A.[J]. Coord. Chem. Rev., 2001, 211, 317.
    [117] Sammes P. G., Yahioglu G.[J]. J. Chem. Soc. Rev., 1994, 23, 327.
    [118] Hino J. K., Ciana L. D., Dressick W. J., Sullivan B. P.[J]. Inorg. Chem., 1992, 31, 1072.
    [119] Hasselmann G. M., Meyer G.J.[J]. J. Phys. Chem., 1999, 212, 39.
    [120] Wrighton M., Morse D. L.[J]. J. Am. Chem. Soc., 1974, 96, 998.
    [121] Ranjan S., Lin S. Y., Hwang K. C., Chi Y., Ching W. L., Liu C. S., Tao Y. T., Chien C.H., Peng S. M., Lee G. H.[J]. Inorg. Chem., 2003, 42, 1248.
    [122] Striplin D. R., Crosby G. A.[J]. Coord. Chem. Rev., 2001, 211, 163.
    [123] Lo K. K., Hui W. K., Ng D. C.[J]. J. Am. Chem. Soc., 2002, 124, 9344.
    [124] Sun S. S., Robson E., Dunwoody N., Silva A. S., Brinn I. M., Lees A. J.[J]. Chem. Commun., 2000, 201.
    [125] Thompson D. M., Bengough M., Baird M. C.[J]. Organometallics, 2002, 21, 4762.
    [126] Li Y. Q., Wang Y., Zhang Y., Wu Y., Shen J. C.[J]. Synth. Metals, 1999, 99, 257.
    [127] Li Y. Q., Liu Y., Guo J. H.,Wu F., Tian W. J., Li B. F., Wang Y.[J]. Synth. Metals, 2001,118, 175.
    [128] Wang K. Z., Huang L., Gao L. H., Jin L. P., Huang C. H.[J]. Inorg. Chem., 2002, 41, 3353.
    [129] Yam V. W.-W., Li B., Yang Y., Chun B. W.-K., Wong K. M.-C., Cheung K.-K.[J]. Eur. J. Inorg. Chem., 2003, 22, 4035.
    [130] E. Becquerel, C. R. Acad, Photovoltaic effect [J]. Sci., Paris, 1839, 9: 561
    [131] D. M. Chapin, C. S. Fuller, G. L. Pearson[J]. A new Silicon pn Junction Photocell for Converting Solar Radiation into Electrical Power[J]. J. Appl. Phys., 1954, 51: 676-677
    [132] M. B. Prince, Silicon Solar Energy Converters [J]. J. Appl. Phys., 1955, 26: 534-540
    [133] A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner Photovoltaic technology: The case forthin-film solar cells[J]., Science, 1999, 2 85: 692-698
    [134] B. O’Regan M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J] Nature, 1991, 353: 737-740
    [135] A. Hagfeidt, M. Gratzel, Light-induced redox reactions in nanocrystalline systems [J] Chem. Rev., 1995, 95: 49-68
    [136] M. K. Nazeeruddin, P. Pechy and M. Graetzel, Solar Energy. [J] Efficient panchromaticsensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex [J]. J. Chem. Soc. Chem. Commun., 1997, 1705-1706
    [137] K.Yoshino, K. Tada, A. Fujji, E. M. Conwell, A. A. Zakhidov, Novel photovoltaic devices based on donor-acceptor molecular and conducting polymer systems [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1997, 44: 1315-1324
    [138] M. Volmer[J]. Ann. Phys., 1913, 40: 778
    [139] R. C. Nelson[J]. J. Chem. Phys., 1958, 29: 388
    [140] Kallmann, M. Pope[J]. J. Chem. Phys., 1959, 30: 585
    [141] H. Baba, K. Chltoku[J]. Nature, 1959, 188: 672
    [142] D. Kearns, G. Tollin, M. Calvin[J]. J. Chem. Phys., 1960, 32: 1020
    [143] H. Inokuchi, Y. Maruyama, H. Akamatu, Bul[J]. Chem. Soc. Japan.,1961, 34: 1093
    [144] Y. I. Plotnikov, Z. I. Matalygina[J]. Sov. Phys. Solid State., 1961, 2:2244
    [145] D. L. Morel, K. Ghosh, T. Feng, E. L. Stogryn, P. E. Purwin, R. F. Shaw and C. Fishman, High-efficiency organic solar cells[J] Appl. Phys. Lett., 1978, 32: 495-497
    [146] A. K. Ghosh, T. Feng, [J] Merocynanine organic solar cells[J]. J. Appl. Phys., 1978, 49: 5982-5986
    [147] Z. D. Popovic, R. O. Loutfy, and A. M. Hor, Can[J]. J. Chem., 1985, 63: 134
    [148] C. W. Tang, [J] Two-layer organic photovoltaic cell[J]. Appl. Phys. Lett., 1986, 48: 183-185
    [149] N. Karl, A. Bauer, J. Holzapfel, J. Marktanner, M. Mobus, F. Stolzle, [J] Efficient OrganicPhotovoltaic Cells[J]. Mol. Cryst. Liq. Cryst., 1994, 252: 243-248
    [150] G. Yu, G. Srdanov, H. Wang, Y. Cao, A. J. Heeger, [J] High performance polymer photovoltaic cells and photodetectors[J]. Proceedings of SPIE, 2001, 4108:48
    [151] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, [J] Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene[J]. Science, 1992, 258:1474-1476
    [152] K. Lee, R. A. J. Janssen, N. S. Sariciftci and A. J. Heeger, [J] Direct evidence of photoinduced electron transfer in conducting-polymer-C60 composites by infrared photoexcitation spectroscopy[J]. Phys. Rev. B., 1994, 49: 5781-5784
    [153] G. Yu, F. Parkbaz, F. Wudl and A. J. Heeger, [J] Semiconducting polymer diodes: large size, low cost photodetectors with excellent visible-ultraviolet sensitivity[J]. Appl. Phys. Lett., 1994, 64: 3422-3424
    [154] G. Yu, C. J. Hummelen, F. Wudl and A. J. Heeger[J]. Proceeding of SPIE, 2000, 3939: 118
    [155] G. Yu and A. J. Heeger, [J] Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions[J]. J. Appl. Phys., 1995, 78: 4510-4515
    [156] L. Ouali, V. V Krasnikov, U. Stalmach, G. Hadzzionannou, Oligo(phenylenevinylene)/fullerene photovoltaic cells[J]. influence of morphology, Adv. Mater., 1999, 11: 1515-1518
    [157] S. A. Jenekhe, and S. J. Yi, Efficient photovoltaic cells from semiconducting polymer heterojunction[J]. Appl. Phys. Lett., 2000, 77: 2635-2637
    [158] G. Yu, J. Cao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions[J]. Science, 1995, 270: 1789-1791
    [159] K. Petritsch, R. H. Friend, [J] Ultrathin organic photovoltaic devices[J]. Synth. Met., 1999, 102: 976
    [160] J. J. Dittmer, E. A. Marseglia, R. H. Friend, Electron trapping in dye/polymer blend photovoltaic cells[J]. Adv. Mater., 2000, 12: 1270-1274
    [161] J. C. Hummelen, J. Knol, L. Snchez, Stablities issues of conjugated polymer/fullerene solar cells from a chemical viewpoint[J]. Proceeding of SPIE, 2001, 4108:76
    [162] M. Onoda, K. Tada, Photovolatic effects of MDOPPV/PPy layer[J]. Thin Solid Films, 2001, 393: 284-290
    [163] W. Geens, T. Aernouts, J. Poortmans, G. Hadziioannou, Organic co-evaporated films of a PPV-pentamer and C60: model systems for donor/acceptor polymer blend[J].Thin Solid Films, 2002, 403: 438-443
    [164] D. M. Russell, A. C. Arias, R. H. Friend, C. Silva, Efficient light harvesting in a photovoltaic diode compose of a semiconductor conjugated copolymer blend[J]. Appl. Phys. Lett., 2002, 80: 2204-2206
    [165] E. Kymakis, G. A. J. Amaratunga, I. Alexandrou, M. Chhowalla, W. I. Miline, Photovoltaic response in poly(3-octylthiophene) based metal-semiconductor-metal-diodes[J]. Proceeding of SPIE, 2001, 4108: 112
    [166] M. Granstrom, K. Petritsch, A. C. Arias, A, Lux, M. R. Andersson, R. H. Friend, Laminated fabrication of polymeric photovoltaic diodes[J]. Nature, 1998, 395: 257-259
    [167] P. Peumans, V. Bolovic and S. R. Forrest, Efficient high-bandwidth organic multilayer photodetector[J]. Appl. Phys. Lett., 2000, 76: 3855-3857
    [168] P. Peumans and S. R. Forrest, Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells[J]. Appl. Phys. Lett., 2001, 79: 126-128
    [169] R. Schroeder, and B. Ullrich, Photovoltaic hybrid device with broad tunable spectral response achieved by organic/inorganic thin film heterpairing[J]. Appl. Phys. Lett., 2002, 81: 556-558
    [170] A. J. Breeze, Z. Schlesinger, S. A. Carter, H. H. Hoorhold, H. Tillmann, D. S. Ginley, P. J. Brock, Nanoparticle-polymer and polymer-polymer blend composite[J]. Proceedings of SPIE, 2001, 4108: 57
    [1]. Fletcher N. C. , Robinson T. C.,Behrendt A., Jeffery J. C., Reeves Z. R., Ward M. D[J]. J. Chem. Soc., Dalton Trans., 1999, 2999.
    [2]. Chan C. W., Peng S. M., Che C. M.[J]. Inorg. Chem., 1994, 33, 3656.
    [3]. Diaz R. A., Reyes O., Frencois A., Leivab A. M., Loebb B. [J]. Tetrahedron Lett., 2001, 42, 6463
    [4]. Calderazzo F., Pampaloni G..[J]. Inorg. Chim. Acta., 2002, 330, 136. .
    [5]. Gong, X.; Ng, P. K.; Chan, W. K.[J]. Adv. Mater. 1998, 10, 1337.
    [6]. Chan, W. K.; Ng, P. K.; Gong, X.; Hou, S.[J]. Appl. Phys. Lett. 1999, 75, 3920.
    [7]. Li, Y.; Liu, Y; Guo, J.; Wu, F.; Tian, W.; Li, B.; Wang, Y. [J]. Synth. Met. 2001, 118, 175.
    [8]. K. Z. Wang, L. Huang, L. H. Gao, L. P. Jin, and C. H. Huang[J]. Inorg. Chem. 41, 3353 (2002).
    [9]. Li, F.; Cheng, G.; Zhao, Y.; Feng, J.; Liu, S.; Zhang, M.; Ma, Y.; Shen, J.[J]. Appl. Phys. Lett. 2003, 83, 4716.
    [10]. Ley, K. D.; Whittle, C. E.; Bartberger, M. D.; Schanze, K. S.[J]. J. Am. Chem. Soc. 1997, 119, 3423.
    [11]. Buncel, E., Keum, S. R. [J]. Tetrahedron 1983, 39, 1091.
    [12]. V. W. W. Yam, Y. Yang, J. X. Zhang, B. W. K. Chu, and N. Y. Zhu[J]. Organometallics, 20, 4911 (2001).
    [13]. D. J. Stufkens and A.Vlcek[J]. Cood. Chem.Rev. 171, 93(1998).
    [14]. D. L. Mcaleese, and R. B. Dunlap[J]. Anal. Chem. 56, 2244 (1984).
    [15]. F. Li, M. Zhang, J. Feng, G. Cheng, Z. J. Wu, Y. G. Ma, and S. Y. Liu[J]. Appl. Phys. Lett. 83, 365 (2003).
    [16]. D. L. Mcaleese, and R. B. Dunlap[J]. Anal. Chem. 56, 2244 (1984).
    [17]. H. Kunkely, and A. Vogler[J]. Inorg. Chem. Commun. 398,(1998).
    [1]. P. P. Sun, J. P. Duan, H. T. Shih, and C. H. Cheng[J]. Appl. Phys. Lett. 81, 792 (2002).
    [2]. M. R. Waterland, K. C. Gordon, J. J. McGarvey and P. Jayaweera[J]. J. Chem. Soc. Dalton Trans. 609 (1998).
    [3]. Zou, X. H.; Ye, B. H.; Li, H.; Liu, J. G.; Xiong, Y.; Ji, L. N. Mono-and bi- nuclear Ruthenium(II) Complexes Containing a new Asymmetric Ligand 3-(pyrazin-2-yl)-as-triazino[5,6-f] 1,10-phenanthroline: Synthesis, Charact- rization and DNA-binding properties[J]. J. Chem. Soc. Dalton Trans. 1999, 1423-1428
    [4]. Sun, P. P.; Duan, J. P.; Lih, J. J.; Cheng, C. H. Synthesis of New Europium Complexes and Their Application in Electroluminescent Devices[J]. Adv. Funct. Mater. 2003, 13: 683-691
    [5]. 车广波 中国科学院研究生院博士学位论文 2006 N. Armroli, L. De Cola, V. Balzami, J. P. Sauvage, C. D. Dietich Buchecker, J. M. kern, Absorption and luminescence properties of 1,10- phenanthroline 2,9-diphenyl-1,10-phenanthroline -2,9-dianisyl-1,10-phenanthroline and their protonated forms in dichloromethane solution[J]. J. Chem. Soc. Faraday Trans., 1992, 88: 553-557. C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, Nearly 100% internal phosphorescence efficiency in an organic light-emitting device[J]. J. Appl. Phys. 2001, 90: 5048-5051
    [6]. K. Kalyanasundaram, Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues[J]. Coord. Chem. Rev. 1982, 46: 159-244
    [7]. B Li, M. T. Li, Z. R. Hong, W. L. Li, T. Z. Yu, and H. Z. Wei[J]. Appl. Phys. Lett. 85, 4786 (2004)
    [8]. F. Li, M. Zhang, J. Feng, G. Cheng, Z. J. Wu, Y. G. Ma, and S. Y. Liu[J]. Appl. Phys. Lett. 83, 365 (2003).
    [9]. 李文连著,有机/无机光电功能材料及其应用[M],科学出版社,2005年
    [10]. K.-F.Chin, K.-K. Cheung, H.-K. Yip, T. C. W. Mak, C. M. Che, Luminescent nitridometal complexes. Photophysical and photochemical properties of the 3[(d xy )1(d*)1] excited state of nitridoosmium(VI) complexes with polypyridine ligands[J]. J. Chem. Soc., Dalton Trans., 1995, 4: 657-663
    [11]. H. Rudmann, S. Shimada, M. F. Rubner, Solid-State Light-Emitting Devices Based on the Tris-Chelated Ruthenium(II) Complex. 4. High-Efficiency Light-Emitting DevicesBased on Derivatives of the Tris(2,2'-bipyridyl) Ruthenium(II) Complex[J]. J. Am. Chem. Soc. 2002, 124: 4918-4921
    [12]. L. T.-S.-Hee, A. K.-D. Mesmaeker, Spectroelectrochemical and flash photochemical reduction of 1,4,5,8-tetraazaphenanthrene and 1,4,5,8,9,12-hexaaza-triphenylene mono- and bi-metallic ruthenium(II) complexes[J]. J. Chem. Soc., Dalton Trans., 1994, 24: 3651-3658
    [13]. K. Kalyanasundaram and M. Gr?tzel, Applications of functionalized transition metal complexes in photonic and optoelectronic devices[J]. Coord. Chem. Rev. 1998, 177: 347-414
    [14]. S. Bernhard, X. Gao, G. G. Malliaras, H. D. Abruna, Efficient electrolumi- nescent devices based on achelated osmium(II) complexes[J]. Adv. Mater. 2002, 14: 433-436
    [15]. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature (London) 1998, 395: 151-154
    [16]. D.F. O'Brien, M.A. Baldo, M.E. Thompson, S.R. Forrest, Improved energy transfer in electrophosphorescent devices[J]. Appl. Phys. Lett. 1999,74: 442-444
    [17]. R. C. Kwong, S. Sibley, T. Dubovoy, M. Baldo, S. R. Forrest, M. E. Thompson, Efficient, Saturated Red Organic Light Emitting Devices Based on Phosphorescent Platinum(II) Porphyrins[J]. Chem. Mater., 1999, 11: 3709-3713
    [18]. W. Lu, B.-X. Mi, M. C. W. Chan, Z. Hui, N. Zhu, S.-T. Lee, C.-M. Che, [(C^N^N)Pt(C≡C)nR] (HC^N^N = 6-aryl-2,2’-bipyridine, n = 1–4, R = aryl, SiMe3) as a new class of light-emitting materials and their applications in electrophosphorescent devices[J]. Chem. Commun., 2002, 206-207.
    [1]. D.M. Chapin, C.S. Fuller, G.L. Pearson, A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power[J].J. Appl. Phys.,1954, 25, 676-677.
    [2]. M. A. Green, K. Emery, D.L. King, S. Igari, W. Warta, Solar Cell Efficiency Tables , Prog. Photovolt.: Res. Appl., 2003, 11, 347-352.
    [3]. A. Goetzberger, C. Hebling, H.W.Chock, Photovoltaic materials, history, status and outlook, Mater. Sci. Eng. R,2003, 40, 1.
    [4]. Pochettino, Acad. Lincei Rend. 1906, 15, 355.
    [5]. P.M. Borsenberger, D.S. Weiss, Organic photoreceptors for imaging systems, Marcel Dekker,New York, 1993.
    [6]. D. L. Morel, K. Ghosh, T. Feng, E. L. Stogryn, P. E. Purwin, R. F. Shaw and C. Fishman, High-efficiency organic solar cells[J]. Appl. Phys. Lett., 1978, 32, 495-497.
    [7]. K. Ghosh, T. Feng, Merocynanine organic solar cells[J]. J. Appl. Phys., 1978, 49, 5982-5986.
    [8]. C. W. Tang, Two-layer organic photovoltaic cell[J]. Appl. Phys. Lett., 1986, 48, 183-185.
    [9]. P. Peumans, V. Bulovic, S. R. Forrest, Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes[J]. Appl. Phys. Lett., 2000, 76, 2650-2652. P. Peumans, S. R. Forrest, Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells[J]. Appl. Phys. Lett., 2001, 79, 126-128.
    [10]. H. Spanggaard, F. C. Krebs, A brief history of the development of organic and polymeric photovoltaics, Solar Energy Materials & Solar Cell, 2004, 83, 125–146.
    [11]. I. Riedel, E. von Hauff, H. Parisi, N. Martin, F. Giacalone, V. Dyakonov[J]. Adv. Funct. Mater. 15 (2005) 1979.
    [12]. W.K Chan, C.S. Hui, K.Y.K. Man, K.W. Cheng, H.L. Wong, N.Y. Zhu, A.B. Djurisic[J]. Coord. Chem. Rev. 249(2005)1351.
    [13]. M. Zhang, P. Lu, X.M. Wang, L. He, H. Xia, W. Zhang, B. Yang, L.L. Liu, L. Yang, M. Yang, Y.G. Ma, J.K. Feng, D.J. Wang, N. Tamai[J]. J. Phys. Chem. B 108 (2004) 13185.
    [14]. B.P. Rand, J. Li, J.G. Xue, R.J. Holmes , M.E. Thompson, S.R. Forrest, [J]. Adv. Mater. 17 (2005) 2714.
    [15]. B. Chu, D. Fan, W.L. Li, Z.R. Hong, R.G. Li[J]. Appl. Phys. Lett. 81 (2002) 1
    [16]. A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, A. Von Zelewsky[J]. Coord. Chem. Rev. 84 (1988) 85.
    [17] L.L. Chen, W.L. Li, H.Z. Wei, B. Chu, B. Li,Organic Ultraviolet Photovoltaic Diodes based on copper phthalocyanine as an electron acceptor[J]. Solar Energy Materials & Solar Cells,2006, 190(12), 1788-1796.
    [18]. W.L. Ma, C.Y. Yang, X. Gong, K. Lee, A. J. Heeger[J]. Adv. Funct. Mater. 15 ( 2005), 1617.
    [19]. P.P. Sun, J.P. Duan, H.T. Shih, and C.H. Cheng[J]. Appl. Phys. Lett. 81 (2002) 792.
    [20]. C.Y. Fu, M.T. Li, Z.M. Su, Z.R. Hong, W.L. Li, B. Li[J]. Appl. Phys. Lett. 88 (2006) 93507.
    [21]. F. S. Wen, W.L. Li, Z. Liu, H.Z. Wei, Effect of electrode modification on organic photovoltaic devices[J]. Materials Chemistry and Physics, 2006, 95(1), 94-98.
    [22]. T. Noda, H. Ogawa, Y. Shirota, A Blue-Emitting Organic Electroluminescent Device Using a Novel Emitting Amorphous Molecular Material, 5,5'-Bis(dimesitylboryl)-2,2'-bithiophene[J]. Adv. Mater., 1999, 11, 283-285.
    [23]. K. Itomo, H. Ogawa,Y. Shirota, Exciplex formation at the organic solid-state interface: Yellow emission in organic light-emitting diodes using green-fluorescent tris(8-quinolinolato)aluminum and hole-transporting molecular materials with low ionization potentials[J]. Appl. Phys. Lett., 1998, 72, 636-638.
    [24]. K.Yoshino, K. Tada, A. Fujji, E. M. Conwell, A. A. Zakhidov, Novel photovoltaic devices based on donor-acceptor molecular and conducting polymer systems, IEEE TRANSACTIONS ON ELECTRON DEVICES, 1997, 44: 1315-1324
    [25]. Y. Shao, Y. Yang[J]., Adv. Mater. 17 (2005) 2841.
    [26]. Bo Liang,Mei Xiao Zhu, Wei Guo Zhu[J].. Chin. Chem. Lett., 2003, 14, 43.
    [27]. L. R. Melby, N. J. Rose, E. Abramson and J. C. Caris[J]. J. Am. Chem. Soc., 1964, 86, 5117.
    [1]. B.Raimondi M. E., Seddon J. M. [J] Liq. Cryst, 1999, 26 (3): 305-339
    [2]. Kresge C. T., Leonowicz M. E., Vartuli J. C. et al.[J]. Nature, 1992, 359: 710-712
    [3]. Attard G. S., Glyde J. C., Goltner C. G.[J] Nature, 1995, 378: 366-368
    [4]. Yam V.W.W., Li B.,Zhu N.Y. [J]. Adv. Mater. 2002, 14: 719-722
    [5]. FANG Ming (房铭), ZHANG Ping(张萍), LI Shou-Gui (李守贵) et al.[J]. Chem. J. Chinese Universities (高等学校化学学报), 2000,21 (7):1016-1017
    [6]. ZHU-Hui (朱辉), MA Yu-Guang (马於光), FAN Yu-Guo (樊玉国) [J]. Chem. J. Chinese Universities (高等学校化学学报), 2002, 23 (4): 682-684
    [7]. Demas J. N. Grosby G. A.[J]. J Phys Chem., 1971, 75(8): 901-1024
    [8]. Katritzky A. R., Long Q. H., Malhotra N. et al [J]. Synthesis, 1992, 911-913
    [9]. Sprintschnik G,Sprintschnik H W,Kirsch P P.Photochemical reactions in organized monolayer assemblies. 6. Preparation and photochemical reactivity of surfactant ruthenium (II) complexes in monolayer assemblies and at water-solid interfaces[J].J Am Chem Soc,1977,99(15):4947-4954.
    [10]. Juris A. J., Balzani V., Belser P.. Helv[J]. Chim. Acta, 1981, 64: 2175-2182
    [11]. Lawrence A. C. S.. Liquid Crystals 2nd Ed.[M], London:Gordon and Breach. 1969: 35-37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700