用户名: 密码: 验证码:
功能化氧化型离子液体的性能研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功能化离子液体是指在组成离子液体的阳离子或阴离子中含有特定的官能团,具有特殊理化性质的一类离子液体。随着离子液体理论及应用技术研究的不断深入。对新型的、具有特殊功能的离子液体的需求越来越强烈。在离子液体中嫁接各种官能团,实现离子液体的功能化以满足特定的需求,是当今离子液体研究方向的前沿。对扩展离子液体在实际应用中的范围,推进工业化进程有着极为重要的意义。
     本文为适应这一需求,制备三个系列12种未见文献报道的新型功能化氧化型离子液体,研究了它们的性质,探讨了其应用途径,同时还详细地研究了两类7种已知的功能化离子液体中的氧化反应。主要包括以下内容:
     1、设计合成了四种新型烷基咪唑过二硫酸盐离子液体:1-甲基-3-正丁基咪唑过二硫酸盐、1-甲基-3-正己基咪唑过二硫酸盐、1-甲基-3-正辛基咪唑过二硫酸盐、1-甲基-3-正癸基咪唑过二硫酸盐。运用FT-IR、1H NMR和元素分析对其组成和结构进行了确认,并研究了它们的熔点、密度、电导率、粘度、电化学稳定窗口、热稳定性和溶解性等性质。结果显示,这四种功能化离子液体的密度比水大,熔点较低(最高48℃),热分解温度在95℃左右,电导率变化范围为0.9x10-4 S/cm至2.8×10-4 S/cm(40℃),粘度变化范围为700-1450mPa·s(25℃),稳定电化学窗口均在1.2 V左右,在极性溶剂中溶解性良好。同时,利用这类功能化离子液体作为溶剂、反应试剂氧化某些有机物取得了良好的效果,转化率和产率较高,展示出这类功能化氧化型离子液体在氧化反应中的广阔的应用前景。
     2、设计合成了以高碘酸根为阴离子,烷基咪唑和烷基吡啶为阳离子的四种新型功能化氧化型离子液体:1-甲基-3-正辛基咪唑高碘酸盐、1-正己基吡啶高碘酸盐、1-正辛基吡啶高碘酸盐、1-正癸基吡啶高碘酸盐。运用FT-IR、1H NMR、元素分析、XRD确定了它们的组成、结构、并研究了它们的熔点、密度、电导率、粘度、电化学稳定窗口、热稳定性和溶解性等性质,结果显示,这四种离子液体具有较低的熔点(最高70℃),同时具有较差的热稳定性(热分解温度170℃),在有机溶剂中具有良好的溶解性。同时将这类离子液体应用到醇类的氧化反应中,反应产率和选择性均较高,且不需要使用溶剂和催化剂,符合现代绿色化学的原则,表现出这类功能化氧化型离子液体在绿色化学中的潜在功能和广阔的应用前景。
     3、利用卤素单质与卤离子离子液体制备了功能化三卤离子液体,并完成了以下研究工作:(1)将含[Cl-Br2]离子的离子液体溶液运应用于芳香化合物的亲核取代反应,高选择性地制备了亲核取代产物,讨论了离子液体种类、不同的芳香化合物、溴单质量及反应时间等因素对反应产物选择性的影响,并初步探究了反应机理。(2)将含[Cl3]-离子的离子液体体系用于某些有机氯代反应,如:酮的α-H氯代反应,烯烃加成反应及芳香化合物的氯代反应。反应过程简单易操作,污染少,产率高,并且反应后离子液体可重复利用。(3)依据含氯离子、溴离子的离子液体与碘单质所形成的[Cl-I2]-,[Br-I2]离子液体溶液在紫外光区有强烈特征吸收的特征,利用紫外分光光度法测定离子液体中卤离子的含量,该方法具有高精确性和灵敏性,简便实用,对疏水性和亲水性离子液体均能准确测定。
     4、制备了三种硝酸根功能化离子液体,并用于催化分子氧氧化苯甲醇类的反应中,其中质子离子液体硝酸吡啶盐为溶剂和催化剂,催化分子氧氧化苯甲醇,可实现清洁、高效氧化苯甲醇制备苯甲醛的目的,并且系统研究了离子液体的种类及质量、反应的温度等影响因素对产物产率的影响,并在此基础上优化反应条件。在优化的实验条件下苯甲醛的收率可达到95%,反应催化体系简单廉价,不使用其它有机溶剂,质子离子液体催化剂能简单的通过固液分离从反应体系中分离出来,为重复使用催化体系提供了可能和便利,符合绿色化学的原则。
     5、以1-甲基-3-正辛基咪唑鎓离子为阳离子,分别以重铬酸根、钼酸根、钨酸根、锑酸根离子作阴离子,合成了四种新型功能化离子液体:1-甲基-3-正辛基咪唑重铬酸盐、1-甲基-3-正辛基咪唑钼酸盐、1-甲基-3-正辛基咪唑钨酸盐、1-甲基-3-正辛基咪唑锑酸盐。运用FT-IR、1H NMR、UV-vis和元素分析确认其组成和结构,并研究了它们的熔点、密度、电导率、粘度、电化学稳定窗口、热稳定性和溶解性等性质。同时,利用这些离子液体在反应过程中“模板-溶剂-反应物功能”制备了金属氧化物纳米材料,并用XRD、TEM对材料进行了初步表征,结果显示所合成的金属纳米氧化物粒径较小,形貌多样。表现出这类离子液体在材料制备中潜在的功能和广阔的应用前景。
Task specific ionic liquids (TSILs) are attracting enormous interest due to the possibilities to modulate their physicochemical properties through an appropriate structure modification or component change and to tailor the best ionic liquid for each specific application. Intelligent choice of the anion and cation or the introduction of functional groups on cations and (or) anions of the ionic liquids can create a TSILs that has wide anodic or cathodic limits (or both), a more hydrophobic or less hydrophobic behavior, acid and/or base property, etc. Ecological and economic concerns associated with the chemical synthesis have posed stringent and compelling demands for greener, more sustainable technologies. Obviously, in developments of the various oxidation processes, fine-tuning the reactivity of common oxidants, expanding the application of 'new' oxidants, avoiding the use of conventional volatile solvents, application of solvent-free reaction and recycling reaction media are of prime importance to reduce dramatically energy, matter costs, wastes and risks. It should greatly enhance the interest of industry in oxidation chemistry.
     To take demends of chemical industry into account, we have designed and prepared twelve novel oxidizing task-specific ionic liquids and investigated the special oxidation reactions in other seven task-specific ionic liquids. Details are as follows:
     1. Four novel ionic liquids based on peroxydisulfate are designed and synthesized: 1-methyl-3-butylimidazolium peroxydisulfate, 1-methyl-3-hexylimidazolium peroxydi-sulfate, 1-methyl-3-octylimidazolium peroxydisulfate, 1-methyl-3-decylimidazolium peroxydisulfate. Their composition and structures have been confirmed by FT-IR, 1H NMR and element analysis. Their melting point, density, conductivity, viscosity, electrochemical window, thermal stability and solubility have been also investigated. Some alcohols and thiols are oxidized with relatively high conversion and yield, using these TSILs as solvents and reagents, which indicate the good prospects of application of TSILs in the oxidation reactions.
     2. Four ionic liquids based on alkyl-imidazolium or alkyl-pyridinium cation and periodate anion have been first prepared:1-methyl-3-octylimidazolium periodate, 1-hexyl-pyridinium periodate,1-octyl-pyridinium periodate,1-decylpyridinium periodate. They have been characterized by FT-IR,1H NMR, XRD and element analysis and their composition and structures have been confirmed. Their melting point, density, conductivity, electrochemical window, thermal stability and solubility have been studied. Without any other solvents and catalysis, alcohols are oxidized with relatively high conversion and yield using these TSILs as solvents and reagents. It shows bright potential of the ionic liquids in Green Chemistry.
     3. Trihalide task-specific ionic liquids are synthesized with halogen and halide ionic liquids for the application of nucleophilic substitution reaction of aromatic compounds, chlorination reaction of some organic compounds and quantitative determination of chloride ion. A series of work is described as follows. (1) The ionic liquid containing [Cl-Br2]- is applied to nucleophilic substitution reaction of aromatic compounds and the products are obtained with high selectivity. The influence of different ionic liquids, different aromatic compounds, the amounts of bromine and reaction time are discussed and the reaction mechanism is proposed to explain the reaction process. (2) The ionic liquid containing [Cl-Cl2]- is applied to the chlorination reaction of some organic compounds, such as alkenes, arenes, ketones. Reaction process is rather simple with high yield and less pollution. (3) Halogen ions in ionic liquids can be analyzed by Ultraviolet Spectrophotometric Determination because ionic liquid solution containing [Cl-I2]- or [Br-I2]- has a strong characteristic absorption in UV region. This method is available with high accuracy and sensitivity for both hydrophobic and hydrophilic ionic liquids.
     4. Three nitrate ionic liquids are prepared for catalytic oxidation of benzyl alcohol with molecular oxygen. Benzyl alcohol is converted to benzaldehyde with high effecincy and clean oxidation using proton ionic liquids (pyridinium nitrate) both as solvent and catalyst. The influence of the amounts of ionic liquids and reaction temperature are discussed. After optimization, the yield of the reaction is up to 95%. This catalyst system is simple and cheap without other organic solvents. Proton ionic liquid catalyst can be easily separated from the reaction system for the recycle of catalytic system.
     5. Four novel ionic liquids based on 1-methyl-3-octylimidazolium cation have been obtained with dichromate, molybdate, tungstate, and antimonate anions, respectively: 1-methyl-3-octylimidazolium dichromate, 1-methyl-3-octylimidazolium molybdate, 1-methyl-3-octylimidazolium tungstate, 1-methyl-3-octylimidazolium antimonate. Their melting point, density, conductivity, viscosity, electrochemical window, thermal stability and solubility have been investigated. Three nano metallic oxides have been synthesized using ionic liquid as the solvent, template and resource of metal. The nano materials are characterized by XRD、TEM and show small size and various shapes. It exhibits the application potential of ionic liquids in the preparation of special nano-materials.
引文
1 Song, C. E.; Shim, W. H.; Roh, E. J.; et al. Chem Commun,2000,17,1695.
    2 Kumar, A.; Pawar, S. S. Journal of Molecular Catalysis A:Chemical,2004,208, 33.
    3 Chiappe, C.; Pieraccini, D.; Saullo, P.; J. Org. Chem.,2003,68(17),6710.
    4 Kim, D. W.; Song, C. E.; Chi, D. Y.; J. Org. Chem.,2003,68(11),4281.
    5 Song, C.E.; Oh, C. R.; Choo, D. J.; Chem. Commun.,2000,18,1743.
    6 Gordon, C. M.; McCluskey, A.; Chem. Commun.,1999,15,1431.
    7 Liu, Z.; Chen, Z.; Zhang, Q. Org. Lett.2003,5(18),3321.
    8 Welton, T. Chem. Rev.1999,99,2071.
    9 Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed.2000,39,3772.
    10 Gordon, C. M. Appl. Catal. A:Gen.2001,222,101.
    11 Wasserscheid, P.; Welton, T. Ionic Liquids in Synthesis; Wiley-VCH:Weinheim, Germany,2003.
    12 Sheldon, R. Chem. Commun.2001,2399.
    13 Olivier-Bourbigou. H.; Magna, L. J. Mol. Catal. A:Chem.2002,182,419.
    14 Welton, T. Coord. Chem. Rev.2004,248,2459.
    15 Davis, J. H. J. Chem Lett,2004,33(9),1072.
    16 Dupont, J.; Souza, R. F.; Suarez, P. A. Z. Chem. Rev.2002,102,3667.
    17 Parshall, G. W. J. Am. Chem. Soc.1972,94,8719.
    18 Aserscheid, P. W.; Affenschmidt, H. W. J. Mol. Catal. A,2000,164,61.
    19 Hasan, M.; Kozhevnikov, V.; SiddiquiM, R.; Inorg. Chem.1999,38,5637.
    20 Sitze, M. S.; Schreiter, E. R.; Patterson, E. V.; Inorg. Chem.2001,40,2298.
    21 Hitchcock, P. B.; Seddon, K.R.; Welton, T. J. Chem. Soc. Dalton Trans.1993, 2639.
    22 Larsen, A. S.; Holbrey, J. D.; Tham, F. S. J. Am. Chem. Soc.2000,122,7264.
    23 Chun, S.; Dzyuba, S.V.; Bartsch, R. A. Anal. Chem.2001,73,3737.
    24 Howarth, J.; James, P.; Dai, J. Tetrahedron Lett.2000,41,10319.
    25 Varma, R. S.; Namboodiri, V. V. Chem. Commun.2001,643.
    26 Holbrey, J.D.; Seddon, K. R.; Wareing, R. Green Chem.2001,3,33.
    27 Dzyuba, S. V.; Bartsch, R. A. Chem. Commun.2001,1466.
    28 Wasserscheid, P.; Bsmann, A.; Bolm, C. Chem. Commun.2002,200.
    29 Bonhote, P.; Dias, A. P.; Papageorgiou, N.; Kalyanasundaram, K.; Gratzel, M. Inorg. Chem.1996,35,1168.
    30 Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed.2000,39,3772.
    31 Chauvin, Y.; Olivier, B.; H. Chemtech.1995,25,26.
    32 Sun, J.; Forsyth, M.; MacFarlane, D. R. J. Phys. Chem. B 1998,102,8858.
    33 Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. Inorg. Chem.2004,43, 3447.
    34 Bradaric, C. J.; Downard, A.; Kennedy, C.; Robertson, A. J.; Zhou, Y H. Green Chem.2003,5,143.
    35 Netherton, M. R.; Fu, G. C. Org. Lett.2001,26,4295.
    36 Del Sesto, R. E.; Corley, C.; Robertson, A.; Wilkes, J. S. J. Organomet. Chem. 2005,690,253.
    37 Hirao, M.; Sugimoto, H.; Ohno, H. J. Electrochem. Soc.2000,147,4168.
    38李雪辉,赵东滨,费兆福,王乐夫;中国科学B辑化学.2006,36(3),181.
    39 Amanda, C. C.; James, H. D. J. Am. Chem. Soc.2002,124,5962.
    40 Dongmei, L.; Feng, S.; Shu, G.; You, Q. D. J. Org. Chem.2004,69,3582.
    41 Kim, K. S.; Demberelnyamba, D.; Huen, L. Langmuir 2004,20,556.
    42 Lee, K. W.; Lee, Y. T.; Lin, J. B. J. Mater. Chem.2003,13,1079.
    43 Garcia, M. T.; Peter, N. G. J. Scammells Green. Chem.2005,7,9.
    44 Gathergood, N.; Peter. J. Scammells Green Chem,2004,6,166.
    45 James F.; Wisharta. R. E. Rad. Phy. Chem.2005,72,99.
    46 Dubreuil, J. F.; Bazureau, J. P. Tetrahedron 2003,59,6121.
    47 Moura Ramosl, J. J. J. Therm. Analy. Calorim.2003,71,659.
    48 Merrigan, T. L.; Dorman, S. G.; Davis, J. H. Jr. Chem. Commun.2000,2051.
    49 Singh, R. P.; Shreeve, J. M. Tetrahedron Letters 2002,43,9497.
    50 Peter W.; Steffensa, H. C. Chem Commun,2003,2038.
    51 Zhao, D.B.; Fei, Z.F.; Dyson, P. J. Inorganic Chemistry,2004,43,2197.
    52 Egashiraa, M.; Drib, D. A.; Journal of Power Sources 2004,138,240.
    53 Gui, J. Z.; Deng Y.Q.; Hua, Z. D.; lin, Z. Tetrahedron Letters 2004,45,2681.
    54 Anjaiah, S.; Chandrasekhar, S.; Gree, R. Tetrahedron Letters 2004,45,569.
    55 Visser A.; Richardp. Environ. Sci. Technol.2002,36,2523.
    56张素梅,2005届研究生博士学位论文,华东师范大学,2005.
    57 Zhao, D. B.; Fei, Z. F.; Dyson, P. J. J. Am. Chem. Soc.2004,126,15876.
    58 Xie, H. B.; Zhang, S. B.; Duan, H. F. Tetrahedron Letters 2004,45,2013.
    59 Demberelnyamba, D.; Shin, B, K.; Lee, H. Chem Commun.2002,1538.
    60 Sakaebe, H.; Matsumoto H. Elec. Comm.2003,5,594.
    61 Kim, K. S.; Lee, B. B.; Mun, S. J. Chem. Commun.2004,828.
    62 Singh, R. P.; Shreeve J. M. Inorg. Chem.2003,42,7416.
    63 Singh, R. P.; Shreeve J. M. Chem. Commun.2003,1366.
    64 Bjerrum, V.B.; Pertrushina, N.J.; Hjuler, I. J. Electrochem. Soc.1993,140,3108.
    65 Tomoharu N. JP.11273734,1999.
    66 Mamantov, G. G.; Dunstan, T. D. US Patent,5552241,1996.
    67 Yousef, R.; Shreeve, J. M. J. Org. Chem.2002,67,9340.
    68 Davis, J. H.; Forrester, K. J. Tetrahedron Letters,1999,40,1621.
    69 Schreiter, E. R.; Stevens, J. E.; Ortwerth, M. F. Inorg. Chem.1999,38,3935.
    70 Deetlefs, D.; Raubenheimer, H. D.; Esterhuysen, M. W. Catalysis Today 2002,72, 29.
    71 Visser, A. E.; Holbrey, J. D.; Rogers, R. D.; Chem. Commun.2001,2484.
    72 Singh, R. P.; Winter, R. W.; Gard, G. L.; Gao, Y.; Shreeve, J. M. Inorg. Chem. 2003,42,6142.
    73 Patrascu, C.; Sugisaki, C.; Mingotaud, C.; Marty, J. D.; Genissonm, Y.; Viguerie, N. L. Heterocycles 2004,63,2033.
    74 Gao, Y.; Shreeve, J. M. Synthesis 2004,7,1072.
    75 Zhang, S. M.; Hou, Y M.; Huang, W. G.; Shan, Y K. Electrochim.Acta 2005,50, 4097.
    76 Ito, K.; Nishina, N.; Ohno, H. Electrochimica Acta,2000,45,1295.
    77 Ohno, H. Electrochimica Acta,2001,46,1407.
    78 All, S.; Castro,S.; Engeletal, R. Chem. Commun.2000,2413.
    79 Ohno, H.; Yoshizawa, M.; Ogihara, W. Electrochimica Acta 2004,50,255.
    80 Tang, J.; Sun, W.; Tang, H.; Radosz, M.; Shen, Y. Macromolecules,2005,38, 2037.
    81 Marcilla, R.; Blazquez, J. A.; Fernandez, R.; Grande, H.; Pomposo, J. A.; Mecerreyes, D. Macromol. Chem. Phys.2005,206,299.
    82 Matsumoto, K.; Hagiwara, R.; Ito, Y. J. Flu.Chem.2002,115,133.
    83 Hagiwara, R.; Hirashige, T.; Tsuda, T. etc. J. Flu. Chem.1999,99,1.
    84 Kim, J. W.; Singh, R. P.; Shreeve, J. M. Inorg. Chem.2004,43,2960
    85 Robinson, J.; Osteryoung, R. A. J. Am. Chem. Soc,1979,1012,323.
    86 Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. Inorg. Chem.2004,43, 3447.
    87 Sitze, M. S,; Schreiter, E. R,; Patterson, E. V. etc. Inorg. Chem.2001,40,2298.
    88 George, W. P. J. Am. Chem. Soc.94,25,8716.
    89 Abbott, A. P.; Davies, G. C,; Munro, H. L, etc, Chem. commun,2001,2010.
    90 Neve, F. Chem. Mater.2001,13,2032.
    91 Yang, J. Z.; Tian, P.; He, L. L, etc. Fluid Phase Equilibria 2002,5119,1.
    92 Hasan, M.; Kozhevnikov, I. V.; Siddiqui, M. R. H. etc, Inorg. Chem,1999,38, 5637.
    93 Golding, J.; Forsyth,S.; MacFarlane, D. R.; Deacon, G B. Green Chemistry,2002, 4,223.
    94 Holbrey, J. D.; Seddon, K. R.; Rogers, R. D. Green Chemistry,2002,4,407.
    95 Peter, W.; Roy, H.; Bosmann, A. Green Chemistry,2002,4,400.
    96 Crosthwaite, J. M.; Muldoon, M. J.; Dixon, J. K.; Anderson, J. L.;Brennecke, J. F. J. Chem. Thermodyn.2005,37,559.
    97 Pomaville, R. M.; Poole, C. F. Anal. Chem.1988,60,1103.
    98 Poole, S. K.; Shetty, P. H.; Poole, C. F. Anal. Chim. Acta 1989,218,241.
    99 Larsen, A. S.; Holbrey, J. D.; Tham, F. S. etal. J. Am. Chem. Soc.2000,122, 7264.
    100 Ronig, B.; Pantenburg, I.; Wesemann, L. Eur. J. Inorg. Chem.2002,319.
    101 Xu, W.; Wang, L. M.; Nieman, R. A.; Angell, C. A. J. Phys. Chem. B 2003,107, 11749.
    102 Bortolini, O.; Bottai, M.; Chiappe, C.; Conte, V. Green Chem,2002,621.
    103 Leng, Y.; Wang, Jun.; Zhu, D.R.; Ren, X.Q.; Ge, H.Q.; Shen, L. Angew. Chem. 2009,121,174.
    104 Richard, J. C.; Brown, T. W.; Paul, J. D.; David, J. E. Chem. Commun.2001, 1862.
    105 Timofte, T.; Pitula, S.; Mudring, A. V. Inorg. Chem.2007,46,10938.
    106 Peter, N.; Ben, T.; Niels, P.; Kristof, V. H.; Meervelt, L. V.; Binnemans, K. J. Am. Chem. Soc.2006,128,13658.
    107 Walker, A. J.; Brucea, N. C.; Tetrahedron,2004,60,561.
    108 Gui, J.; Ban, H.; Cong, X. et al. Journal of Molecular Catalysis A:Chemical., 2005,225,27.
    109王强,梁洪泽,包伟良;应用化学,2007,24,117.
    110杨雅立,王晓化,寇元等;化学进展,2003,15,471.
    111王敬娴,吴芹,黎汉生,甄彬;化工进展,2008,27,1574.
    112 Cole, A. C.; Jensen, J. L.; Ntai, I. et al J. Am. Chem. Soc.2002,124,5962.
    113 Sahoo, S.; Joseph, T.; Halligudi, S. B. J. Mol. Catal. A:Chemical,2006,244,179.
    114 Zheng, R. W.; Wang, X. X.; Xu, H. et al. Synthetic Communications,2006,36, 1503.
    115 Weng, J. Y.; Wang, C. M.; Li, H. R. et al. Green Chemistry,2006,8,96.
    116 Singh, J.; Gupta, N.; Kad, G. L. et al. Synthetic Communications,2006,36,2893.
    117 Xu, D. Q.; Yang, W. L.; Luo, S. P. et al. Eur. J. Org. Chem.2007,6,1007.
    118 Fraga, D. J.; Bourahla, K.; Rahmouni, M. et al. Catalysis Communications,2002, 3,185.
    119李雪辉,李榕,陈学伟,王芙蓉,王乐夫;工业催化,2007,15,1.
    120 Bates, E.; Mayton, R.; Ntai, I.; Davis, J. J. Am. Chem. Soc.2002,124,926.
    121 Yuan, X.; Zhang, S.; Liu, J.; Lu, X. Fluid Phase Equilib,2007,257,195.
    122 Zhang, J.; Zhang, S.; Dong, K.; Zhang, Y.; Shen, Y.; Lu, X. J. Chem. Eur.2006, 12,4021.
    123 Zhang, Y.; Zhang, S.; Lu, X.; Zhou, Q.; Fan, W.; Zhang, X. J. Chem. Eur,2009, 15,3003.
    124 Wu, W.; Han, B.; Gao, H.; Liu, Z.; Jiang, T.; Huang. Angew. Chem. Int. Ed.2004, 43,2415.
    125 Song, G. H.; Cai, Y Q.; Peng, Y.Q. J. Comb. Chem,2005,7,561.
    126 Cai, Y Q.; Peng, Y.Q. Song, G. H. Catalysis Lett,2006,109,61.
    127 Mehnert, C. P.; Dispenziere, N. C.; Cook, R. A. Chem. Commun.2002,2,1610.
    128 Brindaban, C. R.; Subhash, B. Org. Lett,2005,7,3049.
    129刘伟山,陶国宏,何玲,寇元;有机化学,2006,26,1031.
    130 Baudequin,C.; Baudoux, J.; Levillain, J.; Cahard, D.; Gaumont, A. C.; Plaqueventa, J. C.Tetrahedron:Asymmetry 2003,14,3081.
    131 Ding, J.; Armstrong, D. W. Chirality 2005,17,281.
    132 Howarth, J.; Hanlon, K.; Fayne, D.; McCormac, P. Tetrahedron Lett.1997,38, 3097.
    133 Biedron, T.; Kubisa, P. Polym. Int.2003,52,1584.
    134 Earle, M. J.; McCormac, P. B.; Seddon, K. R. Green Chem.1999,1,23.
    135 Fukumoto, K.; Yoshizawa, M.; Ohno, H. J. Am. Chem. Soc.2005,127,2398.
    136 Bao, W.; Wang, Z.; Li, Y. J. Org. Chem.2003,68,591.
    137 Ma, H.; Wan, X.; Chen, X.; Zhou, Q. Chin. J. Polym. Sci.2003,21,265.
    138 Ding, J.; Desikan, V.; Han, X.; Xiao, T. L.; Ding, R.; Jenks, W.; Armstrong, D. W. Org. Lett.2005,7,335.
    139 Wasserscheid, P.; Bosmann, A.; Bolm, C. Chem. Commun.2002,200.
    140 Ishida, Y.; Miyauchib, H.; Saigo, K. Chem. Commun.2002,2240.
    141 Ishida, Y.; Sasaki, D.; Miyauchi, H.; Saigo, K. Tetrahedron Lett.2004,45,9455.
    142 Xi, J. C.; Shr, J. M. J. org. Chem.,2005,70,3072.
    143 Zhao, D.; Fei, Z.; Geldbach, T. J. Am. Chem. Soe.,2004,126,15876.
    144 Geldbach, T. J.; Dyson, P. J.; J. Am. Chem. Soc.,24,126,8114.
    145 Visser, A. E.; Swatloski, R. P.; Rogers, R. D. et al. Environ Sci Technol,2002,36, 2523.
    146 Visser, A. E.; Swatloski, R. P.; Rogers, R. D. et al. Chem. Commun,2001,135.
    147 Juan M. R.; Angel, A. J.; Amal, I. S.; Iko, M. B.; Alan, M. B. Anal. Chem.2010, 82,7691.
    148 Harjani, I. R.; Friscic, T.; Leonard, R. M.; Singer, R. D. Inorg. Chem.2006,45, 10025.
    149 Macfarlane, D. R.; Golding, J.; Forsyth, S. et al. Chem. Commun.,2001,1430.
    150 Le, Z. G.; Chen, Z. C.; Hu, Y,; Chin. J. Chem.2005,23(11),1537
    151 Le, Z. G.; Chen, Z. C.; Hu, Y.; Zheng, Q. G.; Chin. Chem. Lett.2005,16(8), 1007
    152 Balasubramanian, R.; Wang, Wei.; Murray, R. W. J. Am. Chem. Soc.2006,128, 9994.
    153 Chiappe, C.; Leandri, E.; Tebano, M. Green Chem.,2006,8,742.
    154 Stracke, M. P.; Ebeling, G.; Catalun a, R.; Dupont, J. Energy & Fuels 2007,21, 1695.
    155 Gathergood, N.; Garcia, M. T.; Scammells, P. J. Green chem,2004,6,166.
    156 Garcia, M. T.; Gathergood, N.; Scammells, P. J.Green. Chem.,2005,7,9.
    157 Tang, S.; Babai, A.; Mudring, A. V. Angew. Chem. Int. Ed.2008,47,7631.
    158 Mallick, B.; Balke, B.; Felser, C.; Mudring, A. V. Angew. Chem. Int. Ed.2008,47, 7635.
    159于培盈,郑亚萍,张娇霞,杨晓东,石伟,兰岚;化工进展,2010,29(7),1251.
    160 Migowski, P.; Teixeira, S. R.; Machado, G. et al. J. Electron. Spectrosc. Relat. Phenom.,2007,156,195.
    161 Narayan, S. H.; Zhu, Y. H.; John, A. M. et al. J. Organomet. Chem.,2009,694, 1690.
    162 Cha, J. H.; Kim, K. S.; Lee, H. Korean. J. Chem. Eng.,2009,26,760.
    163 Itoh, H.; Naka, K.; Chujo, Y. J. Am. Chem. Soc.2004,126,3026.
    164 Kim, K. S.; Demberelnyamba, D.; Lee, H. J. Langmuir,2004,20,556.
    1 J. H. J. Davis, Chem Lett,2004,33(9),1072.
    2 F. M. Kerton, Alternative Solvents for Green Chemistry. the Royal Society of Chemistry,2009,118-142
    3 B. C. Ranu, S. Banerjee. Org. Lett.2005,7,3049.
    4 A.C. Cole, J.L. Jensen, I. Ntai, T. Tran, K.J. Weaver, D.C. Forbes, J.H. Davis Jr, J. Am. Chem. Soc.2002,124,5962.
    5 E. D. Bates, R. D. Mayton, I. Ntai, J. H. Davis Jr, J. Am. Chem. Soc.2002,124, 926.
    6 H. Itoh, K. Naka, Y. Chujo, J. Am. Chem. Soc.2004,126,3026.
    7 K. S. Kim, D. Demberelnyamba, H. Lee, Langmuir 2004,556.
    8 A. E. Visser, R. P. Swatloski, W. M. Reichert, J. H. Davis Jr, R. D. Rogers, R. Mayton, S. Sheff, A. Wierzbicki, Chem. Commun.2001,135.
    9 B. Chamiot, C. Rizzi, L Gaillon, J Sirieix-Ple'net, J. Lelievre, Langmuir 2009, 1311.
    10 R. Balasubramanian, W. Wang, R. W. Murray, J. Am. Chem. Soc.2006,128, 9994.
    11 R. K. Grasselli, Catalysis Today 1999,49,141.
    12 C. Bolm, O. Beckmann, A. G. Dabard, Angew. Chem.1999,111,957-959, Angew. Chem. Int. Ed. Engl.1999,38,907.
    13 W. R. Sanderson, Pure Appl. Chem.2000,72,1289.
    14侯亚伟,2009届研究生博士学位论文,华东师范大学,2009.
    15 S. K. Ghosh, S. K. Saha, M. C. Ghosh, R. N. Bose, J. W. Reed, E. S. Gould, Inorg. Chem.1992,31,3358.
    16 P. Froba, H. Kremer, A. Leipertz, J. Phys. Chem. B 2008,112,12420.
    17 R. Rao, T. Rajkumar, B. Varghese, Solid State Sciences 2009,11,36
    18 M. I. Guzman, L. Hildebrandt, A. J. Colussi, M. R. Hoffmann, J. Am. Chem. Soc. 2006,128,10621.
    19 Bonhote, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Graltzel, Inorg. Chem.1996,35,1168.
    20 Fredlake, C. P.; Crosthwaite, J. M.; Hert, D. G.; Aki, S. N. V. K.; Brennecke, J. F. J. Chem. Eng. Data 2004,49,954.
    21 P. Bonhote, A. Dias, N. Papageorgiou, K. Kalyanasundaram,M. Gratzel, Inorg. Chem.1996,35,1168.
    22 X. Wang, D. M. Stanbury, Inorg. Chem.2008,47,1224.
    23 K. K. Kottapalli, K. K. Adari, P. Vani, S. K. Govindan, Trans.Met. Chem.2005, 30,773.
    24 G. A. Ayoko, M. A. Olatunji, Polyhedron 1983,2,577.
    25 J. D. Holbrey, K. R. Seddon, J. Chem. Soc., Dalton Trans.1999,2133.
    26 A. Grandjean, M. Malki, C. Simonnet, D. Manara, B. Penelonl, Phys. Rev. B 2007,75,054112.
    27 G. Gruener, P. Odier, D. Meneses, P. Florian, P. Richet, Phys. Rev. B 2001,64, 024206.
    28 B. Singh, S. S. Sekhon, J. Phys. Chem. B 2005,109,16539..
    29 S. M. Zhang, Y. W. Hou, W. G. Huang, Y. K. Shan, Electrochimica Acta 2005,50, 4097.
    30 P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Graltzel, Inorg. Chem.1996,35,1168.
    31 M. C. Buzzeo, R. G. Compton, ChemPhysChem 2004,5,1106.
    32 P. Bonhote, A. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Gratzel, Inorg. Chem.1996,35,1168.
    33 E. Caillot, M. J. Duclot, J. L. Souquet, M. Levy, Phys. Chem. Glasses 1994,35, 22.
    34 H. Vogel, Phys. Z.1921,22,645;
    35 G. S. Fulcher, J. Am.Ceram. Soc.1923,8,339.
    36 S. Seki, K. Hayamizu, S. Tsuzuki,K. Fujii, Y. Umebayashi, T. Mitsugi, T. Kobayashi, Y. Ohno, Y. Kobayashi, Y. Mita, H. Miyashiro, S. Ishiguro, Phys. Chem. Chem. Phys.2009.11,3509.
    37 M. Zhang, Y. W. Hou, W. G. Huang, Y. K. Shan, Electrochimica Acta 2005,50, 4097.
    38 A. P. Froba, H. Kremer, A. Leipertz, J. Phys. Chem. B 2008,112,12420.
    39 A. Noda, K. Hayamizu, M. Watanabe, J. Phys. Chem. B 2001,105,4603.
    40 J. L. Souquet, M. Levy, M. Duclot, Solid State Ionics 1994,70&71,337.
    41 A. P. Abbott, G. Capper, D. L. Davies, R. Rasheed, Inorg. Chem.2004,43,3447.
    42 Rossberger, Ger. Offen.1975 DE 2346945 19750327
    1 B. G Hudsonann, R. Baker, J. Org. Chem.1967,32,2101.
    2 C. F. Huebner, K. P.Link,J. Am. Chem. Soc.1950,72 (10),4812.
    3 S. Vicini, E. Princi, S Vicini,et al. Thermochimica Acta,2004,418.
    4 S. V. Ley, C. Ramarao, A. L. Lee, N. Ostergaard, S. C. Smith, I. M. Shirley, Org. Lett.2003,5,185.
    5 D. Yang, C. Zhang, J. Org. Chem.2001,66,4814.
    6 B. Plietker, M. Niggemann, Org. Lett.2003,3353.
    7 A. A. Scholte, M. H. An, M. L. Snapper, Org. Lett.2006,8,4759.
    8 L. Kraszkiewicz, M. Sosnowski, L. Skulski, Synthesis,2006,1195.
    9 M. Huibers, I. Manuzi, F. P. J. T. Rutjes, F. L. van Delft, J.Org.Chem.2006,71, 7473.
    10 M.A. Zolfigol, F. Shirini, G. Chehardolia, E. Kolvari, Journal of Molecular Catalysis A:Chemical 265 (2007) 272.
    11 M. Lei, R.J. Hu,Y.G Wang, Tetrahedron 62 (2006) 8928.
    12 T. A. Shaikh, L. Emmanuvel, A. Sudalai J. Org. Chem.,2006,71 (13),5043.
    13 A. S. Larsen, J. D. Holbrey, F. S. Tham, C. A. Reed, J. Am. Chem. Soc.2000, 122,7264
    14 A. E. Visser,R. P. Swatloski,W. M. Reichert,R. Mayton, S. Sheff,A. Wierzbicki,J. H. Davis, Jrac and R. D. Rogers, Chem. Commun.2001,135.
    15 G. Law,Watson, P. R. Langmuir,2001,17,6138.
    16 C. J. Bowlas, D. W. Bruce, K. R. Seddon, Chem. Commun.1996,1625.
    17 C. P. Fredlake, J. M. Crosthwaite, D. G. Hert, S. N. V. K. Aki, J. F. Brennecke, J. Chem. Eng. Data; 2004; 49; 954.
    18 A. Juergen,S. Stefan, B. Andrea, S. Frauke,P. William-Robert,W. Biermann, Urs; J. Bernd,R. Johannes,Green Chem.2008,10,47.
    19侯亚伟,2009届研究生博士学位论文,华东师范大学,2009.
    20 J. M. Crosthwaite, M. J. Muldoon, J. K. Dixon, J. L. Anderson, J. F. Brennecke, J. Chem. Thermodyn.2005,37,559.
    21 S. N. Baker, G A. Baker, M. A. Kane, F. V. Bright, J. Phys. Chem.B 2001,105, 9663.
    22 P. Bonhote, A. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Gratzel, Inorg. Chem.1996,35,1168.
    23 J. A. Widegren, E. M. Saurer, K. N. Marsh, J. W. Magee, J. Chem. Thermodyn. 2005,37,569.
    24 A. Taubert, P. Steiner, A. Mantion, J. Phys. Chem. B 2005,109,15542.
    25 J. D. Holbrey, K. R. Seddon, J. Chem. Soc. Dalton Trans.1999,2133.
    26 A. Grandjean, M. Malki, C. Simonnet, D. Manara, B. Penelonl, Phys. Rev. B 2007,75,054112.
    27 G. Gruener, P. Odier, D. Meneses, P. Florian, P. Richet, Phys. Rev. B 2001,64, 024206.
    28 J. L. Souquet, M. Levy, M. Duclot, Solid State Ionics 1994,70&71,337-
    29 S. M. Zhang, Y. W. Hou, W. G. Huang, Y. K. Shan, Electrochimica Acta 2005,50, 4097.
    30 P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Graltzel, Inorg. Chem.1996,35,1168.
    31 J. Zhang, W. Wu, T. Jiang, H. Gao, Z. Liu, J. He, B. Han, J. Chem. Eng. Data 2003,48,1315.
    32 S. M. Zhang, Y. W. Hou, W. G. Huang, Y. K. Shan, Electrochimica Acta 2005,50, 4097.
    33 J. D. Holbrey,K. R. Seddon,J. Chem. Soc.,Dalton Trans.1999,2133.
    34 F. Neve, O. Francescangeli; Chem. Mater,2001,2032.
    1 Crawford, E.; J. McIndoe, S.; Tuck, D.; Can. J. Chem.2006,84,1607.
    2 Robbiani, R.; Franklin, J. L.; J. Am. Chem. Soc.1979,101 (3),764.
    3 Chiappe, C.; Leandri, E.; Pieraccini; D.; Chem. Commun.2004,2536.
    4 Deetlefs, M.; Seddona, K.; Sharab, M.; New J. Chem.,2006,30,317.
    5 Charushina, V.; Chupakhin, O.; Mendeleev Commun.2007,17,249.
    6 Makosza, M.; Wojciechowski, K.; Chem. Rev.2004,104,2631.
    7 Sachs, F.; Ber.1906,39,3006,3023,3081
    8 Nozaki, H.; Yamamoto, Y;. and Noyuri, R.; Tetrahedron Letters,1966,1123
    9 Nozaki, H.; Yamamoto, Y; and Nisimara, T.; Tetrahedron Letters,1968,4625.
    10 Russeland, G.; Weiner, A.; J. Org. Chem.1966,31,248
    11 Bowlas, C. J.; Bruce, D. W.; Seddon, K. R. Chem. Commun.1996,1625.
    12 Fredlake, C. P.; Crosthwaite, J. M.; Hert, D. G.; Aki, S. N. V. K.; Brennecke, J. F. J. Chem. Eng. Data; 2004; 49; 954.
    13 Juergen; A.; Stefan; S.; Andrea; B.; Frauke; S.; William-Robert; P.; Biermann, Urs; W.; Green Chem.2008,10,47.
    14 Hitchcock, P. B.; Seddon, K. R.; Welton, T.; J. Chem. Soc. Dalton Trans.1993, 2639.
    15 Sun, H.; Yu, L.; Jin, X.; Hu, X.; Wang, D.; Chen Electrochem. Comm.2005,7, 685.
    16 Chiappe, C.; Moro, F.; Raugi, M.; Eur. J. Org. Chem.2001,3501.
    17 Grodkowski, J.; Neta, P. J. Phys. Chem. A,2002,106,11130.
    18 Chiappe, C.; Pieraccini, D.; J. Org. Chem.2004,69,6059.
    19 Ingold, C. K.; Structure and Mechanism in Organic Chemistry,2nd ed.; Bell: London,1969.
    20 Lancaster, N.; Salter, P.; Welton, T.; and Young, G.; J. Org. Chem.2002,67, 8855.
    21 Metrangolo, P.; Neukirch, H.; Pilati, T. and Resnati, G.; Acc. Chem. Res.2005, 38,386.
    22 Espallargas, G.; Brammer, L.; and Sherwood, P.; Angew. Chem. Int. Ed.2006,45, 435.
    23 Nguyen, H.; Peter, N.; Michael, H.; Legon, A.; Bruce, D.; J. Am. Chem. Soc. 2004,126,16.
    24 Golden, D.; Rodgers,A.; Benson, S.; J. Am. Chem. Soc.,1966,88 (14),3196.
    25 Legon, A.; Angew. Chem. Int. Ed.1999,38,2686.
    26 Havinga, E.; Wiebenga, E. Rec. Trav. Chim.1959,78,724.
    27 Makosza, M.; Winiarski, J.; Acc. Chem. Res.1987,20,282.
    28 Clayden, J.; Geeves, N.; Warren; S. Organic Chemistry Oxford University Press 2002,566.
    29 Vyas, P. V.; Bhatt, A. K.; Ramachandraiah, G.; Bedekar, A. V. Tetrahedron Letters 2003,44,4085.
    30 Welton; T.; Chem. Rev.1999,99,2071.
    31 Parvulescu, V.; Hardacre, C. Chem. Rev.2007,107,2615.
    32 Chiappe, C.; Leandri, E.; Pieraccini; D. Chem. Commun.2004,2536.
    33 Le, Z. G.; Chen, Z. G.; Hu, Y,; Chin. J. Chem.2005,23(11),1537.
    34 Le, Z. G.; Chen, Z. C.; Hu, Y.; Zheng, Q. G.; Chin. Chem. Lett.2005,16(8), 1007.
    35 Zhang, S. J.; Le, Z. G. Chin. J. Org. Chem.2006,26(2),236.
    36 Schlama, T.; Gabriel, K.; Gouverneur, V.; Mioskowski, C. Angew. Chem. Int. Ed. Engl.1997,36,2342.
    37 Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H. D.; Broker, G. A.; Rogers, R. D. Green Chem.2001,4,156.
    38 Giordano, M. C.; Macagno, V. A.; Serano, L. E. Anal. Chem.1973,45 (1),205.
    39 Pavlinac, J.; Zupan, M.; Laali, K. K.; Stavber, S. Tetrahedron 2009,65,5625.
    40 McCamley, K.; Warner, N.; and Singer, R. D.; Green Chem.2004,6,341.
    41 Villagran, C.; Banks, C. E.; Hardacre, C.; Compton, R. G.; Anal. Chem.2004,76 (7),1998.
    42 Bortolini, O.; Bottai, Michele.; Chiappe, Cinzia.; Contec, V.; Pieraccini, D.; Green Chemistry,2002,4,621.
    43 Popov, I. A.; Swensen, R. F.; J. Am. Chem. Soc.,1955,77 (14),3724.
    44 Fredlake, C. P.; Crosthwaite, J. M.; Hert, D. G.; Aki, S. N. V. K.;Brennecke, J. F.; J. Chem. Eng. Data 2004,49,954.
    45 Holbrey, J. D.; Seddon, K. R. J. Chem. Soc., Dalton Trans.1999 (13),2133.
    46 Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H. D.;Broker, G. A.; Rogers, R. D.Green Chem.2001,3,156.
    47 Bent, A. H.; Chem. Rev.,1968,68 (5),587.
    48 Olsson, L. F.; Inorg. Chem.1985,24 (9),1398.
    49 Eyal, E.; and Treinin, A.; J. Am. Chem. Soc.1964,86 (20),4287.
    1 V. Parvulescu, C. Hardacre, Chem. Rev.2007,107,2615-2665
    2 Walden, P. Bull. Acad. Imp. Sci.1914,1800.
    3 Arancibia, E. L.; Castells, R. C.; Nardillo, A. M. J. Chromatogr.1987,398,21
    4 Schneider, H.; Stroka, J. Pol. J. Chem.1994,68,795.
    5 G. Tao, L. He, N. Sun, Y. Kou, Chem. Commun.2005,3562.
    6 C. L. Chiappe, M. Tebano, Green Chem.2006,8,742.
    7 M. J. Earle, S. P. Katdare, and K. R. Seddon, Org. Lett.2004,6(5),707.
    8 P. J. Belieres, C. A. Angell, J. Phys. Chem. B,2007,111,4926.
    9 M. Hudlicky, Oxidations in Organic Chemistry, American Chemical Society, Washington, DC,1990.
    10 J..D Lou, M. Wang, L.Y. Zhu, Z. G. Fang, Catal Commun 2003 (4),647.
    11 J. D. Lou, Z. N. Xu, Tetrahedron Lett.2002,43,8843.
    12 I. E. Marko, P. R. Giles, M. Tsukazaki, S. M. Brown, C. J. Science 1996,274, 2044.
    13 H. M. Watanabe, C. J. Kiely, D. W. Knight, Science 2006,311,362.
    14 N. Jiang and A. J. Ragauskas, J. Org. Chem.2006,71,7087.
    15 K. P. Peterson and R. C. Larock, J. Org. Chem.1998,63,3185.
    16 R. Liu, X. Liang, C. Dong, and X. Hu, J. Am. Chem. Soc.2004,126,4112.
    17 R. Mu, Z. Liu, Z. Yang, Z. Liu, L. Wu, Z. Liu, Adv. Synth. Catal.2005,347, 1333.
    18 P. Strazzolini, A. Runcio, Eur. J. Org. Chem.2003,526.
    19 H. Suzuki, M. Iwaya, T. Mori, Tetrahedron Lett.1997,38(32),5647.
    1 J. Huang, T. Jiang, B. X. Han, H. X. Gao, Y. H. Chang, G. Y. Zhao, W. Wu,Chem. Commun.2003,1654.
    2 C. W. Scheeren, G. Machado, J. Dupont, F. P. Paulo Fichtner, S. R. Texeira, Inorg. Chem.2003,42(15),4738.
    3 J. Dupont, Fonseca, G. S. Umpierre, A. P. Fichtner, P. F. P. Teixeira, S. R. J. Am. Chem. Soc.2002,124(16),4228.
    4 Y. J. Zhu, W. W. Wang, R. J. Qi, X. L. Hu, Angew. Chem. Int. Ed.2004,43, 1410.
    5 T. Nakashima, N. Kimizuka, J. Am. Chem. Soc.2003,125,6386.
    6 H. S. Park, S. H. Yang, Y. S. Jun, W. H. Hong, J. K. Kang, Chem. Mater.2007,19, 535.
    7 Y. J. Zhu, W. W. Wang, R. J. Qi, et al, Angew Chem Int Ed,2004,43,1410.
    8 M. Antonietti, D. B. Kuang, B. Smarsly, et al. Angew Chem Int Ed,2004, 43,4988.
    9 Y. J. Zhang, Y. F. Shen, J. H. Yuan, et al. Angew Chem Int Ed,2006,45,5867.
    10 Y. Zhou,Current Nanoscience,2005,1,35.
    11 赵海丽,尤景汉,张庆国,汤正新,化学通报,2009,15,1065.
    12 T. Nakashima, N. Kimizuka,J. Am. Chem. Soc.2003,125,6386.
    13 Y. Zhou, M. Antonietti,J. Am. Chem. Soc.2003,125,14960.
    14 H. Kaper, F. Endres, I. Djerdj et al. Small,2007,3(10).1753.
    15 D. B. Zou, C. Xu, H. Luo et al. Chem. Lett.2008,62,1976.
    16 E. R. Cooper, C. D. Andrews, P. S. Whearley et al. Nature,2004,430,1012.
    17 E. R. Parnham, R. E. Morris,J. Mater. Chem.2006,16,3682.
    18 A. Taubert,Z. H. Li,Dalton Trans.2007,723.
    19 陈利娟,张晟卯,吴志申等,应用化学,2005,22(5),554.
    20 S. K. Ghosh, S. K. Saha, M. C. Ghosh, R. N. Bose, J. W. Reed, E. S. Gould, Inorg. Chem.1992,31,3358.
    21侯亚伟,2009届研究生博士学位论文,华东师范大学,2009.
    22 M. I. Guzman, L. Hildebrandt, A. J. Colussi, M. R. Hoffmann, J. Am. Chem. Soc. 2006,128,10621.
    23 P. Bonhote, A. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Gratzel, Inorg. Chem.1996,35,1168.
    24 A. Grandjean, M. Malki, C. Simonnet, D. Manara, B. Penelonl, Phys. Rev. B 2007,75,054112.
    25 S. M. Zhang, Y. W. Hou, W. G. Huang, Y. K. Shan, Electrochimica Acta,2005, 50,4097.
    26 P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Graltzel, Inorg. Chem.1996,35,1168.
    27 E. Caillot, M. J. Duclot, J. L. Souquet, M. Levy, Phys. Chem. Glasses 1994,35, 22.
    28 A. P. Froba, H. Kremer, A. Leipertz, J. Phys. Chem. B 2008,112,12420.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700