用户名: 密码: 验证码:
过渡金属催化的含氮芳香化合物的反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
]
     含氮芳香化合物是一类非常重要的有机化合物,他们广泛存在于天然产物、药物活性分子和有机材料结构中。因此,含氮芳香化合物的合成一直以来都是人们关注的热点。近几十年来,这类化合物的合成已经取得了很多重要进展。尽管如此,随着这类化合物应用的扩大,需要发现更多简单高效的合成方法。本论文主要研究了邻芳基取代吡啶、芳基取代哌啶、多芳基取代中氮茚、三芳胺等几类含氮芳香化合物的合成新方法,取得了以下研究成果:
     建立了一种全新的钯催化的N-苯甲酰甲基吡啶盐直接邻位芳基化体系。该体系的显著特点是反应结束后活化基团能够从芳基化的底物自动离开。同位素实验表明反应通过C-H活化的途径进行。实验和DFT计算表明N-苯甲酰甲基起到了两个关键作用:1)通过形成叶立德活化吡啶分子;2)通过与钯的配位控制芳基化的位置。
     建立了一种简单高效的Pd/C-PtO_2双金属催化氢化体系,实现了对芳基取代吡啶的催化氢化。在偕二氯化合物存在条件下,利用Pd/C较强的催化氢化去氯能力和PtO_2对吡啶环较强的还原能力,在温和条件下制备了芳基取代哌啶盐酸盐。
     建立了一种新型的2,3-二芳基取代中氮茚的合成方法。该方法以2-甲基-N-苯甲酰甲基吡啶盐和溴代芳烃作为底物,在Pd(OAc)_2/PPh_3催化体系的作用下,实现了2,3-二芳基取代中氮茚的合成。这种方法是对目前所存在的取代中氮茚合成方法的重要补充。
     建立了一种三芳胺类化合物的合成方法。该方法不需要加热,不使用配体和碱,只需在Cu(OAc)_2的作用下,邻氨基苯酚和芳香硼酸在甲醇中常温搅拌就可制备三芳胺化合物。此外我们讨论了邻氨基苯酚作为底物的特殊性。
     另外,本论文还开发了一种简单、高效、通用的苯酚类化合物的合成体系。这个体系反应条件简单,只需采用易得的苯硼酸作为原料,在简单铜催化剂的作用下室温水中即可短时间内高产率的制备苯酚化合物。
Nitrogen-containing aromatic compounds are important family in organic chemistry and have important applications in the preparations of natural products, drugs and chemical materials. Therefore, development of synthetic methods for nitrogen-containing aromatic compounds is an important and interesting project. In past decades, great progesses have been made for this purpose. In this dissertation, several novel synthetic methods were studied, by which nitrogen-containing aromatic compounds including ortho-arylated pyridines, arylated piperidines, aryl-substituted indolizines and triarylamines were prepared. We have obtained some important results as follows:
     A novel Pd-catalyzed direct ortho-arylation of N-phenacylpyridinium bromide was developed. Its unique feature is that the activating group can depart from the arylated pyridines automatically. A kinetic isotope effect study proved that the reaction went through a C-H bond activation pathway. The results from experiments and DFT calculations indicated that the N-phenacyl group played two crucial roles: 1) activation of the pyridine ring by forming an ylid and 2) regioselective control of the arylation by coordination with Pd at the ortho-position of pyridine.
     A simple and efficient Pd/C-PtO_2 bimetallic catalytic hydrogenation system for the hydrogenation of arylated pyridines was developed. In the present of geminal dichloroalkane, Pd/C has strong ability in hydrodechlorination reactions and PtO_2 is an ideal catalyst for the reduction of pyridine nuclei. Thus, a series of arylated piperidines were prepared by hydrogenation of arylated pyridines smothly under mild conditions.
     A novel catalytic method for the synthesis of 2,3-diaryl-substituted indolizines was developed. Thus, a series of 2,3-diaryl-substituted indolizines were prepared from 2-methyl-N-phenacylpyridinium bromide and bromo-aromatics in the present of Pd(OAc)_2/PPh_3 in one-pot reaction. The method characterized with simple procedures, mild conditions, and high yields, which is an important addition for the existed methods in the synthesis of indolizines.
     A convenient synthestic method for triarylamines was developed, by which highly steric triaryl amines were prepared smoothly at room temperature by using Cu(OAc)_2 as catalyst and o-aminophenol and aromatic bronic acids as substrates. The contional experiments proved that the hydroxyl group in o-aminophenol is necessary.
     Finally, a general and efficient procedure for the preparation of phenols was developed by a copper-catalyzed direct hydroxylation of arylboronic acids at room temperature in water. The method is characterized by the use of a cheap catalyst, mild conditions, simple performance, short reaction time and high yield results.
引文
[1] Zeise W C, Besondere platinverbindung. Ann. Phys., (Leipzig), 1827, 9: 632.
    [2] Coolen H K A C, Meeuwis J A M, Vanleeuwen P W M N, et al. Substrate selective catalysis by rhodium metallohosts. J. Am. Chem. Soc., 1995, 117: 11906-11913.
    [3] Rose D, Gilbert J D, Richardson R P, et al. Preparation and properties of hydrido- carboxylatotris(triphenylphosphine)ruthenium(II)complexes, including homogeneous catalytic hydrogenation of alk-1-enes. J. Chem. Soc. A, 1969: 2610-2615.
    [4] Zou Y, Lobera M, Snider B B, Synthesis of 2, 3- dihydro- 3- hydroxy- 2–hydroxylalkyl benzofurans from epoxy aldehydes. one-step syntheses of brosimacutin G, vaginidiol, vaginol, smyrindiol, xanthoarnol, and avicenol A. biomimetic syntheses of angelicin and psoralen. J. Org. Chem., 2005, 70: 1761-1770.
    [5] Wang, W B, Lu, S M, Yang, P Y, et al. Highly enantioselective Iridium-catalyzed hydrogenation of heteroaromatic compounds, quinolines. J. Am. Chem. Soc., 2003, 125: 10536-10537.
    [6] Miyaura N, Suzuki A. Palladium-catalyzed cross-coupling reactions of O ganoboron compounds. Chem. Rev., 1995, 95: 2457-2483.
    [7] Stavenuiter J, Hamzink M, Van der Hulst R, et al. Palladium-catalyzed cross-coupling of phenylboronic acid with heterocyclic aromatic halides. Heterocycles, 1987, 26: 2711-2716.
    [8] Unrau C M, Campbell M G, Snieckus V. Directed ortho metalation. Suzuki crosscoupling connections. Convenient regiospecific routes to functionalized m- and p-teraryls and m-quinquearyls. Tetrahedron Lett., 1992, 33: 2773-2776.
    [9] Feuerstein M, Doucet H, Santelli M. Efficient coupling of heteroaryl bromides with arylboronic acids in the presence of a palladium-tetraphosphine catalyst. Tetrahedron Lett., 2001, 42: 5659-5662.
    [10] Tagata T, Nishida M. Palladium charcoal-catalyzed Suzuki-Miyaura coupling to obtain arylpyridines and Arylquinolines. J. Org. Chem., 2003, 68: 9412-9415.
    [11] Hardy J J E, Hubert S, Macquarrie D J, et al. Chitosan-based heterogeneous catalysts for Suzuki and Heck reactions. Green Chem., 2004, 6: 53-56.
    [12] Deng C-L, Guo S-M, Xie Y-X, et al. Mild and ligand-free palladium-catalyzed cross-couplings between aryl halides and arylboronic acids for the synthesis of biaryls and heterocycle-containing biaryls. Eur. J. Org. Chem., 2007, 9: 1457-1462.
    [13] Mohanty S, Suresh D, Balakrishna M, et al. An inexpensive and highly stable ligand 1,4-bis(2-hydroxy-3,5-di-tert-butylbenzyl)piperazine for Mizoroki-Heck and room temperature Suzuki-Miyaura cross-coupling reactions. Tetrahedron, 2008, 64: 240-247.
    [14] Ma J, Cui X, Zhang B, et al. Ferrocenylimidazoline palladacycles: efficient phosphine- free catalysts for Suzuki-Miyaura cross-coupling reaction. Tetrahedron, 2007, 63: 5529-5538.
    [15] Negishi E, Takahashi T, King A O. Synthesis of biaryls via palladium-catalyzed cross coupling: 2-methyl-4'-nitrobiphenyl. Org. Syn., 1988, 66: 67-74.
    [16] Riguet E, Alami M, Cahiez G. Organomanganese reagents. XXXV. Palladium-catalyzed selective synthesis of unsymmetrical biaryls from aryl halides or triflates andorganomanganese reagents. Tetrahedron Lett., 1997, 38: 4397-4400.
    [17] Bonnet V, Mongin F, Trecourt F, et al. Syntheses of substituted pyridines, quinolines and diazines via palladium-catalyzed cross-coupling of aryl Grignard reagents. Tetrahedron, 2002, 58: 4429-4438.
    [18] Korn T, Cahiez G, Knochel P. New cobalt-catalyzed cross-coupling reactions of heterocyclic chlorides with aryl and heteroaryl magnesium halides. Synlett, 2003, 12: 1892-1894.
    [19] Yoshikai N, Mashima H, Nakamura E. Nickel-catalyzed cross-coupling reaction of aryl fluorides and chlorides with Grignard reagents under nickel/magnesium bimetallic cooperation. J. Am. Chem. Soc., 2005, 127: 17978-17979.
    [20] Ackermann L, Born R, Spatz J H, et al. Efficient aryl-(hetero)aryl coupling by activation of C-Cl and C-F bonds using nickel complexes of air-stable phosphine oxides. Angew. Chem. Int. Ed., 2005, 44: 7216-7219.
    [21] Mukhopadhyay S, Rothenberg G, Gitis D, et al. Regiospecific cross-coupling of haloaryls and pyridine to 2-phenylpyridine using water, zinc, and catalytic palladiumon Carbon. J. Chem. Soc., Perkin Trans. 2, 2000, 9: 1809-1812.
    [22] Godula K, Sezen B, Sames D. Site-specific phenylation of pyridine catalyzed by phosphido-bridged ruthenium dimer complexes: A prototype for C-H arylation of electron-deficient heteroarenes. J. Am. Chem. Soc., 2005, 127: 3648-3649.
    [23] Berman A M, Lewis J C, Bergman R G, et al. Rh(I)-catalyzed direct arylation of pyridines and quinolines. J. Am. Chem. Soc., 2008, 130: 14926-14927.
    [24] Campeau L-C, Rousseaux S, Fagnou K. A solution to the 2-pyridyl organometallic cross-coupling problem: Regioselective catalytic direct arylationof pyridine N-oxides. J. Am. Chem. Soc., 2005, 127: 18020-18021.
    [25] Larivee A, Mousseau J J, Charette A B. Palladium-catalyzed direct C-H arylation of N-iminopyridinium ylides: Application to the synthesis of (±)-anabasine. J. Am. Chem. Soc., 2008, 130: 52-54.
    [26] Adkins H, Kuick L F, Farlow M, et al. Hydrogenation of derivatives of pyridine. J. Am. Chem. Soc., 1934, 56: 2425-2428.
    [27] Overberger C G, Herin L P. Azo compounds. XXXVIII. The mercuric oxide oxidation of l-amino-2-phenylpiperidine. J. Org. Chem., 1962, 27: 417-422.
    [28] Kamochi Y, Kudo T. The novel reduction of pyridine derivatives with samarium diiodide. Heterocycles, 1993, 36: 2383-2396.
    [29] Wu L, Li Z-W, Zhang F, et al. Air-stable and highly active dendritic phosphine oxide-stabilized palladium nanoparticles: preparation, characterization and applicationsin the carbon-carbon bond formation and hydrogenation reactions. Adv. Synth. & Catal., 2008, 350: 846-862.
    [30] Tani K, Onouchi J, Yamagata T, et al. Iridium (I)-catalyzed asymmetric hydrogenation of prochiral imines; protic amines as catalyst improvers. Chemistry Lett., 1995, 10: 955-956.
    [31] Williams G D, Pike R A, Wade C E, et al. A one-pot process for the enantioselective synthesis of amines via reductive amination under transfer hydrogenation conditions. Organic Lett., 2003, 5: 4227-4230.
    [32] Esquivias J, Arrayas R G, Carretero J C. Alkylation of aryl N-(2-pyridylsulfonyl)- aldimines with organozinc halides: conciliation of reactivity and chemoselectivity. Angew. Chem. Int. Ed., 2007, 6: 9257-9260.
    [33] Yamaguchi R, Kawagoe S, Asai C, et al. Selective synthesis of secondary and tertiary amines by cp*iridium-catalyzed multialkylation of ammonium salts with alcohols. Organic Lett., 2008, 10: 181-184.
    [34] Buu-Hoi N P, Jacquignon P, Xuong N D, et al. 2-Arylpyrrocolines and 2-arylpyrimidazoles. J.Org. Chem., 1954, 19: 1370-1375.
    [35] Linn W J, Webster O W, Benson R E. Tetracyanoethylene oxide. I. Preparation and reaction with nucleophiles. J. Am. Chem.Soc., 1965, 87: 3651-3656.
    [36] Wei X, Hu Y, Li T, et al. A facile preparation of 1, 2, 3-triaroylindolizines. Synth. Comm., 1992, 22: 2103-2109.
    [37] Wei X, Hu Y, Li T, et al. A facile one-step synthesis of aromatic indolizines by 1, 3-dipolar cycloaddition of pyridinium and related heteroaromatic ylides with alkenes in the presence of TPCD [Copy4(HCrO4)2]. J. Chem. Soc., Perkin Trans. 1, 1993, 20: 2487-2489.
    [38] Zhang L, Liang F, Sun L, et al. A novel and practical synthesis of 3-unsubstituted indolizines. Synthesis, 2000, 12: 1733-1737.
    [39] Yan B, Liu Y. Gold-catalyzed multicomponent synthesis of aminoindolizines from aldehydes, amines, and alkynes under solvent-free conditions or in water. Org. Lett., 2007, 9: 4323-4326.
    [40] Yan B, Zhou Y, Zhang H, et al. Highly efficient synthesis of functionalized indolizines and indolizinones by copper-catalyzed cycloisomerizations of propargylic pyridines. J. Org. Chem., 2007, 72: 7783-7786.
    [41] Li J J, Li J J, Li J, et al. A synthesis of N-bridged 5, 6-bicyclic pyridines via a mild cyclodehydration using the burgess reagent and discovery of a novel carbamylsulfonylation reaction. Org. Lett., 2008, 10: 2897-2900.
    [42] Ullmann F. On a new formation of diphenylamine derivatives. Ber. Dtsch. Chem. Ges., 1903, 36: 2382-2384.
    [43] Goldberg I. Phenylation in the presence of copper as catalyst. Ber. Dtsch. Chem. Ges., 1906, 39: 1691-1692.
    [44] Hartwig J F, Kawatsura M, Hauck S I, et al. Room-temperature palladium-catalyzed amination of aryl bromides and chlorides and extended scope of aromatic C-N bond formation with a commercial ligand. J. Org. Chem., 1999, 64: 5575-5580.
    [45] Kataoka N, Shelby Q, Stambuli J P, et al. Air stable, sterically hindered ferrocenyl dialkylphosphines for palladium-catalyzed C-C, C-N, and C-O bond-forming cross-couplings. J. Org. Chem., 2002, 67: 5553-5566.
    [46] Xie X, Zhang T Y, Zhang Z. Synthesis of bulky and electron-rich MOP-type ligands and their applications in palladium-catalyzed C-N bond formation. J. Org.Chem., 2006, 71: 6522-6529.
    [47] Ishibashi K, Tsue H, Tokita S, et al. Regioselectively N-methylated azacalix[8]arene octamethyl ether prepared by catalytic aryl amination reaction using a temporal N-silylation protocol. Organic Lett., 2006, 8: 5991-5994.
    [48] Chen G, Lam W H, Fok W S, et al. Easily accessible benzamide-derived P, O ligands (Bphos) for palladium-catalyzed carbon-nitrogen bond-forming reactions. Chem. Asian. J., 2007, 2: 306-313.
    [49] Park S-E, Kang S B, Jung K-J, et al. Efficient palladium-catalyzed amination of aryl chlorides using dicyclohexylamino[(2,6-dimethyl)morpholino]phenylphosphine asa PN2 ligand. Synthesis, 2009, 5: 815-823.
    [50]邓纬,刘磊,郭庆祥.铜催化交叉偶联反应研究的新进展.有机化学,2004,24: 150-165.
    [51]武汉大学,吉林大学.无机化学.北京:高等教育出版社, 1983: 477.
    [52] Ley S V, Thomas A W. Modern synthetic methods for copper-mediated C(ary C(aryl)-N,and C(aryl)-S bond formation. Angew. Chem. Int. Ed., 2003, 42: 5400-5449.
    [53]武汉大学,吉林大学.无机化学.北京:高等教育出版社, 1983: 283.
    [54] Paine A J. Mechanisms and models for copper mediated nucleophilic aromatic substitution. 2. Single catalytic species from three different oxidation states of copperin an Ullmann synthesis of triarylamines. J. Am. Chem. Soc., 1987, 109: 1496-1502.
    [55] Bryant R J. Substitution of aromatic organic compounds. 1982, 97, 215738. (U.K. Patent Appl. GB 2,089,672, 1982)
    [56] Capdevielle P, Maumy M. Esters are effective cocatalysts in copper-catalyzed methanolysis of aryl bromides. Tetrahedron Lett., 1993, 34: 1007-1010.
    [57] Goodbrand H B, Hu N-X. Ligand-accelerated catalysis of the Ullmann condensation: Application to hole conducting triarylamines. J. Org. Chem., 1999, 64: 670-674.
    [58] Ma D, Cai Q, Zhang H. Mild method for Ullmann coupling reaction of aminesand aryl halides. Organic Lett., 2003, 5: 2453-2455.
    [59] Gujadhur R K, Bates C G, Venkataraman D. Formation of aryl-nitrogen, aryl-oxygen, and aryl-carbon bonds using well-defined copper(I)-based catalysts. Org. Lett., 2001, 3: 4315-4317.
    [60] Nandurkar N S, Bhanushali M. J, Bhor M D, et al. N-arylation of aliphatic, aromatic and heteroaromatic amines catalyzed by copper bis(2,2,6,6-tetramethyl-3,5-heptanedionate). Tetrahedron Lett., 2007, 48: 6573-6576.
    [61] Gujadhur R, Venkataraman D, Kintigh J T. Formation of aryl-nitrogen bonds usinga soluble copper(I) catalyst. Tetrahedron Lett., 2001, 42: 4791-4793.
    [62] Liu, Y-H, Chen C, Yang L-M. Diazabutadiene: a simple and efficient ligand for copper-catalyzed N-arylation of aromatic amines.Tetrahedron Lett., 2006, 47: 9275-9278.
    [63] Wong K-T, Ku S-Y, Yen F-W. Facile synthesis of 9-azajulolidine and its application to post-Ullmann reactions. Tetrahedron Lett., 2007, 48: 5051-5054.
    [64] Rao H, Jin Y, Fu H, et al. A versatile and efficient ligand for copper-catalyzed formation of C-N, C-O, and P-C bonds: pyrrolidine-2-phosphonic acid phenyl monoester. Chem. Eur. J., 2006, 12: 3636-3646.
    [65] Chan D M T, Monaco K L, Wang R-P, et al. New N- and O-arylation with phenylboronic acids and cupric acetate. Tetrahedron Lett., 1998, 39: 2933-2936.
    [66] Evans D A, Katz J L, West T R. Synthesis of diaryl ethers through the copper-promoted arylation of phenols with arylboronic acids. An expedient synthesis of thyroxine. Tetrahedron Lett., 1998, 39: 2937-2940.
    [67] Lam P Y S, Clark C G, Saubern S, et al. New aryl/heteroaryl C-N bond cross-coupling reactions via arylboronic acid/cupric acetate arylation. Tetrahedron Lett., 1998, 39: 2941-2944.
    [68] Antilla J C, Buchwald S L. Copper-catalyzed coupling of arylboronic acids and amines. Org. Lett., 2001, 3: 2077-2079.
    [69] Chiang G C H, Olsson T. Polymer-supported copper complex for C-N and C-O cross-coupling reactions with aryl boronic acids. Org. Lett., 2004, 6: 3079-3082.
    [70] Kantam M L, Venkanna G T, Sridhar C, et al. An efficient base-free N-arylation of imidazoles and amines with arylboronic acids using copper-exchanged fluorapatite. J. Org. Chem., 2006, 71: 9522-9524
    [71] Chen S, Huang H, Liu X, et al. Microwave-assisted efficient copper-promoted N-arylation of amines with arylboronic acids. J. Comb. Chem., 2008, 10: 358-360.
    [72] Lam P Y S, Deudon S, Averill K M, et al. Copper-promoted C-N bond cross-coupling with hypervalent aryl siloxanes and room-temperature N-arylation with aryl iodide. J. Am. Chem. Soc., 2000, 122: 7600-7601.
    [73] Lam P Y S, Clark C G, Saubern S, et al. Copper promoted aryl/saturated heterocyclic C-N bond cross-coupling with arylboronic acid and arylstannane. Synlett, 2000, 5: 674-676.
    [74] Lam P Y S, Vincent G, Bonne D, et al. Copper-promoted C-N bond cross-coupling with phenylstannane. Tetrahedron Lett., 2002, 43: 3091-3094.
    [75] Kang, S-K, Lee S-H, Lee D. Copper-catalyzed N-arylation of amines with hypervalent iodonium salts. Synlett, 2000, 7: 1022-1024.
    [76] Lopez-Alvarado P, Avendano C, Mendendez J C. N-Arylation of azoles and their benzo derivatives by p-tolyllead triacetate. Tetrahedron Lett., 1992, 33: 659-662.
    [77] Lopez-Alvarado P, Avendano C, Mendendez J C. New synthetic applications of aryllead triacetates. N-arylation of azoles. J. Org. Chem., 1995, 60: 5678-5682.
    [78] Esteves M A, Narander M, Marcelo-Curto M J, et al. Synthetic derivatives of abietic acid with radical scavenging activity. J. Nat. Prod., 2001, 64: 761-766.
    [79] Barbay J K, Gong Y, Buntinx M, et al. Synthesis and characterization of 5,6,7,8-tetrahydroquinoline C5a receptor antagonists. Bioorg. Med. Chem. Lett., 2008, 18: 2544-2548.
    [80] Andrews D M, Gibson K M, Graham M A, et al. Design and campaign synthesis of pyridine-based histone deacetylase inhibitors. Bioorg. Med. Chem. Lett., 2008, 18: 2525-2529.
    [81] Hartnett J C, Barnett S F, Bilodeau M T, et al. Optimization of 2,3,5-trisubstituted pyridine derivatives as potent allosteric Akt1 and Akt2 inhibitors. Bioorg. Med. Chem. Lett., 2008, 18: 2194-2197.
    [82] Gellibert F, de Gouville A–C, Woolven J, et al. Discovery of 4 - {4- [3- (pyridin-2-yl)-1H- pyrazol-4-yl]pyridin-2-yl}-N-(tetrahydro-2H-pyran-4-yl)benzamide (GW788388): a potent, selective, and orally active transforming growth factor-beta type I receptor inhibitor. J. Med. Chem., 2006, 49: 2210-2221.
    [83] Anderson D R, Meyers M J, Vernier W F, et al. Pyrrolopyridine inhibitors of mitogen-activated protein kinase-activated protein kinase 2 (MK-2). J. Med. Chem., 2007, 50: 2647-2654.
    [84] Fang A G, Mello J V, Finney N S. Exploiting the versatile assembly of arylpyridine fluorophores for wavelength tuning and SAR. Org. Lett., 2003, 5: 967-970.
    [85] Hassan J, Svignon M, Gozzi C, et al. Aryl-aryl bond formation one century after the discovery of the Ullmann reaction. Chem. Rev., 2002, 102: 1359-1469.
    [86] Campeau L-C, Fagnou K. Applications of and alternatives toπ-electron-deficient azine organometallics in metal catalyzed cross-coupling reactions. Chem. Soc. Rev., 2007, 36: 1058-1068.
    [87] Billingsley K L, Buchwald S L. A general and efficient method for the Suzuki-Miyaura coupling of 2-pyridyl nucleophiles. Angew. Chem. Int. Ed., 2008, 47: 4695-4698.
    [88] Deng J Z, Paone D V, Ginnetti A T, et al. Copper-facilitated Suzuki reactions: application to 2-heterocyclic boronates. Org. Lett., 2009, 11: 345-347.
    [89] Yang D X, Colletti S L, Wu K, et al. Palladium-catalyzed Suzuki-Miyaura coupling of pyridyl-2-boronic esters with aryl halides using highly active and air-stable phosphine chloride and oxide ligands. Org. Lett., 2009, 11: 381-384.
    [90] Alberico D, Scott M E, Lautens M. Aryl-aryl bond formation by transition-metal-catalyzed direct arylation. Chem. Rev., 2007, 107: 174-238.
    [91] Campeau, L.-C.; Fagnou, K. Palladium-catalyzed direct arylation of simple arenes in synthesis of biaryl molecules. Chem. Commun., 2006, 12: 1253-1264.
    [92] Godula K, Sames D. C-H bond functionalization in complex organic synthesis. Science, 2006, 312: 67-72.
    [93] Seregin I V, Gevorgyan V. Direct transition metal-catalyzed functionalization of heteroaromatic compounds. Chem. Soc. Rev., 2007, 36: 1173-1193.
    [94] Stuart D R, Fagnou K. The Catalytic cross-coupling of unactivated arenes. Science, 2007, 316: 1172-1175.
    [95] Do H-Q, Kashif Khan R M, Daugulis O. A general method for copper-catalyzed arylation of arene C-H bonds. J. Am. Chem. Soc., 2008, 130: 15185-15192.
    [96] Liegault B, Lapointe D, Caron L, et al. Establishment of broadly applicable reaction conditions for the palladium-catalyzed direct arylation of heteroatom-containing aromatic compounds. J. Org. Chem., 2009, 74: 1826-1834.
    [97] Kr?hnke F, Zecher W, Curtze J, et al. Syntheses using the Michael adddition of phridinium salts. Angew. Chem. Int. Ed., 1962, 1: 626-632.
    [98] Kr?hnke F. The specific synthesis of pyridines and oligopyridines. Synthesis, 1976, 1-24.
    [99] Park C-H, Ryabova V, Seregin I V, et al. Palladium-catalyzed arylation and heteroarylation of indolizines. Org. Lett., 2004, 6: 1159-1162.
    [100] Hwang S J, Cho S H, Chang S. Synthesis of condensed pyrroloindoles via Pd-catalyzed intramolecular C-H bond functionalization of pyrroles. J. Am. Chem. Soc., 2008, 130: 16158-16159.
    [101] Cho S H, Hwang S J, Chang S. Palladium-catalyzed C-H functionalization of pyridine N-oxides: Highly selective alkenylation and direct arylation with unactivated arenes. J. Am. Chem. Soc., 2008, 130: 9254-9256.
    [102] Chiong H A, Pham Q-N, Daugulis O. Two methods for direct ortho-arylation of benzoic acids. J. Am. Chem. Soc., 2007, 129: 9879-9884.
    [103] Cai G, Fu Y, Li Y, et al. Indirect ortho functionalization of substituted toluenes through ortho olefination of N, N-dimethylbenzylamines tuned by the acidity of reaction conditions. J. Am. Chem. Soc., 2007, 129: 7666-7673.
    [104] G-Cuadrado D, Braga A A C, Maseras F, et al. Proton abstraction mechanism for the palladium-catalyzed intramolecular arylation. J. Am. Chem. Soc., 2006, 128: 1066-1067.
    [105] Campeau L-C, B-Laperle M, Leclerc J-P, et al. C2, C5, and C4 azole N-oxide direct arylation including room-temperature reactions. J. Am. Chem. Soc., 2008, 130: 3276-3277.
    [106] Wang J–X, McCubbin J A, Jin M, et al. Palladium-catalyzed direct heck arylation of dual pi-deficient/pi-excessive heteroaromatics. Synthesis of C-5 arylated imidazo [1, 5-a] pyrazines. Org. Lett., 2008, 10: 2923-2926.
    [107] Mousset D, Gillaizeau I, Sabati A, et al. Synthesis and reactivity of imide-derived bisvinyl phosphates. Reactivity of 2, 6-disubstituted 1,4-dihydropyridines. J. Org. Chem., 2006, 71: 5993-5999.
    [108] Newkome G R, Fishel D L. Pyrolysis of ketone N, N, N-trimethylhydrazonium fluoroborates. Evidence for the genesis of pyridines. J. Org. Chem., 1972, 37: 1329-1336.
    [109] Parmentier M, Gros P, Fort Y. Pyridino-directed lithiation of anisylpyridines: new access to functional pyridylphenols. Tetrahedron, 2005, 61: 3261-3269.
    [110] Bonnet V, Mongin F, Trecourt F, et al. Syntheses of substituted pyridines, quinolines and diazines via palladium-catalyzed cross-coupling of aryl Grignard reagents. Tetrahedron, 2002, 58: 4429-4438.
    [111] Katritzky A R, Chermprapai A, Patel R C, et al. Pyridinium ylides derived from pyryliums and amines and a novel rearrangement of 1-vinyl-1,2-dihydropyridines. J. Org. Chem., 1982, 47: 492-497.
    [112] Fang A G, Mello J V, Finney N S. Structural studies of biarylpyridines fluorophores lead to the identification of promising long wavelength emitters for use in fluorescent chemosensors. Tetrahedron, 2004, 60: 11075-11087.
    [113] Silva A M S, Almeida L M P M, Cavaleiro J A S. Synthesis and molecular structure of new O/N/O ligands: bis-phenol-pyridine and bis-phenol-pyrazole. Tetrahedron, 1997, 53: 11645-11658.
    [114] Newkome G R, Taylor H C R. Chemistry in heterocyclic compounds. 38. Synthesis of biheteroaryls by facile decarbonylation of electron-poor heteroaromatic ketones. J. Org. Chem., 1979, 44: 1362-1363.
    [115] Wenkert E, Jr Hanna J M, Leftin M H, et al. Replacement of methylthio functions on aromatic heterocycles by hydrogen, alkyl and aryl groups via nickel-induced Grignard reactions. J. Org. Chem., 1985, 50: 1125-1126.
    [116] Shigehiro A , Hitoshi B, Kouichi K, et al. Novel 1,4-diarylpiperidine-4-methylureas as anti-hyperlipidemic agents: Dual effectors on acyl-CoA:cholesterol O-acyltransferase and low-density lipoprotein receptor expression. Bioorg. Med. Chem. Lett., 2009, 19: 1062-1065.
    [117] Andrew S, Joseph A M, Gilles O, et al. Synthesis and biological activity of anticoccidial agents: 2,3-diarylindoles. Bioorg. Med. Chem. Lett., 2009, 19: 1517-1521.
    [118] Sikazwe D M N, Nancy T N, Altundas R, et al. Synthesis and evaluation of ligands for D2-like receptors: The role of common pharmacophoric groups. Bioorg. Med. Chem., 2009, 17: 1716-1723.
    [119] Meegalla S K, Wall M J, Chen J, et al. Structure-based optimization of a potent class of arylamide FMS inhibitors. Bioorg. Med. Chem. Lett., 2008, 18 : 3632-3637.
    [120] Spivey A C, Martin L J, Tseng C-C, et al. A strategy for isotope containment during radiosynthesis-devolatilisation of bromobenzene by fluorous-tagging–Ir-catalysed borylation en route to the 4-phenylpiperidine pharmacophore. Org. Biomol. Chem., 2008, 6: 4093-4095.
    [121] Xie Y F, Sircar I, Lake K, et al. Identification of novel series of human CCR1 antagonists. Bioorg. Med. Chem. Lett., 2008, 18: 2215-2221.
    [122] Jiang Y, Chen C-A, Lu K, et al. Synthesis and SAR investigations for novel melanin-concentrating hormone 1 receptor (MCH1) antagonists part 1. The discovery of arylacetamides as viable replacements for the dihydropyrimidinone moiety of an HTS hit. J. Med. Chem., 2007, 50: 3870-3882.
    [123] Chen C-A, Jiang Y, Lu K, et al. Synthesis and SAR investigations for novel melanin-concentrating hormone 1 receptor (MCH1) antagonists Part 2: A hybrid strategy combining key fragments of HTS hits. J. Med. Chem., 2007, 50: 3883-3890.
    [124] Rice K, Sprengler P A. Current opinion in drug discovery and development, 1999, 2: 463-474.
    [125] Zhang M Q, Timmerman H. Mediators inflamn., 1997, 112: 311-317.
    [126] Graf, C-D, Tappertzhofen, C, Sledeski A W. Process for the preparation of tryptase inhibitors. Eur. Pat. Appl., 2005, EP 1571150.
    [127] Sonesson C, Swanson L, Waters N. Preparation of substituted piperidines as modulators of dopamine neurotransmission. PCT Int. Appl. 2005, WO 2005121092.
    [128] Lameijer E-W, Tromp R A, Spanjersberg R F, et al. Designing active template molecules by combining computational de novo design and human chemist's expertise. J. Med. Chem., 2007, 50: 1925-1932.
    [129] Palmer B D, Thompson A M, Booth R J, et al. 4- Phenylpyrrolo [3,4-c] carbazole-1,3 (2H,6H)-dione inhibitors of the checkpoint kinase wee1. Structure-activity relationships for chromophore modification and phenyl ring substitution. J. Med. Chem., 2006, 49: 4896-4911.
    [130] Hacksell U, Arvidsson L-E, Sevenssen U, et al. 3-Phenylpiperidines. Central dopamine- autoreceptor stimulating activity. J. Med. Chem., 1981, 24: 1475-1482.
    [131] Kieboom A P G, Rantwijk F. Hydrogenation and hydrogenolysis in synthetic organic chemistry. Delft, the Netherlands: Delft University Press, 1977: 3-11.
    [132] Cheng C J, Wang X Y, Xing L X, et al. An efficient and practical method for highly chemoselective hydrogenation of nitrobenzylamines to aminobenzylamine hydrochlorides. Adv. Synth. & Catal., 2007, 349: 1775-1780.
    [133] Cheng C, Sun J, Xing L, et al. Highly chemoselective Pd?C catalytic hydrodechlorination leading to the highly efficient N-debenzylation of benzylamines. J. Org. Chem., 2009, 74: 5671-5674.
    [134] Cheng C, Xu J, Zhu R, et al. A highly efficient Pd–C catalytic hydrogenation of pyridine nucleus under mild conditions. Tetrahedron, 2009, 65: 8538-8541.
    [135] Saeys M, Reyniers M-F, Marin G B. Density functional study of benzene adsorption on Pt(111). J. Phys. Chem. B, 2002, 106: 7489-7498.
    [136] Rodriguez-Arias E N, Gainza A E, Hernandez A J, et al. Pyridine interaction with a partially hydrogenated MoS2 modelled surface. A molecular orbital study. J. Mol. Cat. A: Chemical, 1995, 102: 163-174.
    [137] Morin C, Simon D, Sautet P. Intermediates in the hydrogenation of benzene to cyclohexene on Pt(111) and Pd(111): A comparison from DFT calculations. Surf. Sci., 2006, 600: 1339-1350.
    [138] Mittendorfer F, Hafner J. Density-functional study of the adsorption of benzene on the (1 1 1), (1 0 0) and (1 1 0) surfaces of nickel. Surf. Sci., 2001, 472: 133-153.
    [139] Mittendorfer F, Hafner J. Hydrogenation of benzene on Ni(111). A DFT study. J. Phys. Chem. B, 2002, 106: 13299-13305.
    [140] Saeys M, Reyniers M-F, Neurock M, et al. Ab initio reaction path analysis of benzene hydrogenation to cyclohexane on Pt(111). J. Phys. Chem. B, 2005, 109: 2064-2073.
    [141] Suna M, Nelsona A E, Adjayeb J. Correlating the electronic properties and HDN reactivities of organonitrogen compounds: an ab initio DFT study. J. Mol. Cat. A: Chemical, 2004, 222: 243-251.
    [142] Nelson D J, Li R, Brammer C. Correlation of relative rates of PdCl2 oxidation of functionalized acyclic alkenes versus alkene ionization potentials, HOMOs, and LUMOs. J. Am. Chem. Soc., 2001, 123: 1564-1568.
    [143] Nelson D J, Li R, Brammer C. Using correlations to compare additions to alkenes: Homogeneous hydrogenation by using Wilkinson's catalyst. J. Org. Chem., 2005, 70: 761-767.
    [144] Walters L A, McElvain S M. Piperidine derivatives. XIII. Phenyl and phenylalkyl substituted piperidinopropyl benzoates. J. Am. Chem. Soc., 1933, 55: 4625-4629.
    [145] Macchia M, Cervetto L, Carlo G, et al. New N-n-propyl-substituted 3-aryl- and 3-cyclohexylpiperidines as partial agonists at the D4 dopamine receptor. J. Med. Chem., 2003, 46: 161-168.
    [146] Lagu B, Tian D, Jeon Y, et al. De novo design of a novel oxazolidinone analogue as a potent and selectiveα1A adrenergic receptor antagonist with high oral bioavailability. J. Med. Chem., 2000, 43: 2775-2778.
    [147] L?pez S, Rodríguez V, Montenegro J, et al. Synthesis of N-heteroaryl retinals and their artificial bacteriorhodopsins. ChemBioChem, 2005, 6: 2078-2087.
    [148] Smith S C, Clarke E D, Ridley S M, et al. Herbicidal indolizine-5,8-diones: Photosystem I redox mediators. Pest Manag. Sci., 2005, 61: 16-24.
    [149] Hagishita S, Yamada M, Shirahase K, et al. Potent inhibitors of secretory phospholipase A2: synthesis and inhibitory activities of indolizine and indene derivatives. J. Med. Chem., 1996, 39: 3636-3658.
    [150] Bolle L D, Andrei G, Snoeck R, et al. Potent, selective and cell-mediated inhibition of human herpesvirus 6 at an early stage of viral replication by the non-nucleoside compound CMV423. Biochem. Pharmacol., 2004, 67: 325-336.
    [151] Medda S, Jaisankar P, Manna R K, et al. Phospholipid microspheres: a novel delivery mode for targeting antileishmanial agent in experimental leishmaniasis. J. Drug Targeting, 2003, 11: 123-128.
    [152] Gundersen L-L, Negussie A H, Ostbly O B. Antimycobacterial activity of 1-substituted indolizines. Arch. Pharm., 2003, 336: 191-195.
    [153] Poissonnet G, Theret-Bettiol M-H, Dodd R H. Preparation and 1,3-dipolar cycloaddition reactions of carboline azomethine ylides: a direct entry into C-1- and/or C-2-functionalized indolizino[8,7-b]indole derivatives. J. Org. Chem., 1996, 61: 2273-2282.
    [154] Teklu S, Gundersen L-L, Larsen T, et al. Indolizine 1-sulfonates as potent inhibitors of 15-lipoxygenase from soybeans. Bioorg. Med. Chem., 2005, 13: 3127–3139.
    [155] Gundersen L-L, Charnock C, Negussie A H, et al. Synthesis of indolizine derivatives with selective antibacterial activity against Mycobacterium tuberculosis. Eur. J. Pharm. Sci., 2007, 30: 26-35.
    [156] Gundersen L-L, Malterud K E, Negussie A H, et al. Indolizines as novel potent inhibitors of 15-lipoxygenase. Bioorg. Med. Chem., 2003, 11: 5409-5415.
    [157] Teklu S, Gundersen L-L, Rise F, et al. Electrochemical studies of biologically active indolizines. Tetrahedron, 2005, 61: 4643-4656.
    [158] Zhou J, Hu Y F, Hu H W. The first approach to the synthesis of 1-unsubstituted 2-arylindolizines by intramolecular 1, 5-dipolar cyclization of 2-(2-arylethenyl)pyridinium ylides in the presence of tetrakis(pyridine)cobalt(II) dichromate. Synthesis, 1999, 1: 166-170.
    [159] Weidner C H, Wadsworth D H, Bender S L, et al. Indolizines. 4. Dyes derived from oxoindolizinium ions and active methylene compounds. J. Org. Chem., 1989, 54: 3660-3664.
    [160] Mehta L K, Parrick J. The synthesis of three indolizine derivatives of interest as non-isomerizable analogs of tamoxifen. J. Heter. Chem., 1995, 32: 391-394.
    [161] Xia J-B, You S-L. Synthesis of 3-haloindolizines by copper (II) halide mediated direct functionalization of indolizines. Org. Lett., 2009, 11: 1187-1190.
    [162] Hagberg D P, Yum J-H, Lee H, et al. Molecular engineering of organic sensitizers for dye-sensitized solar cell applications. J. Am. Chem. Soc., 2008, 130: 6259-6266.
    [163] Yum J-H, Hagberg D P, Moon S-J, et al. A Light-resistant organic sensitizer for solar-cell applications. Angew. Chem. Int. Ed., 2009, 48: 1576-1580.
    [164] Lin J T, Chen P-C, Yen Y-S, et al. Organic dyes containing furan moiety for high-performance dye-sensitized solar cells. Org. Lett., 2009, 11: 97-100.
    [165] Lartia R, Allain C, Bordeau G, et al. Synthetic strategies to derivatizable triphenylamines displaying high two-photon absorption. J. Org. Chem., 2008, 73: 1732-1744
    [166] Liu Y-H, Chen C, Yang L-M. Diazabutadiene: a simple and efficient ligand for copper-catalyzed N-arylation of aromatic amines. Tetrahedron Lett., 2006, 47: 9275-9278.
    [167] Gajare A S, Toyota K, Yoshifuji M, et al. Application of a diphosphinidenecyclobutene ligand in the solvent-free copper-catalyzed amination reactions of aryl halides. Chem. Comm., 2004, 17: 1994-1995.
    [168] Patil N M, Kelkar A A, Nabi Z, et al. Novel cuprous iodide-tributylphosphine catalyst system for amination of aryl chlorides. Chem. Comm., 2003, 19: 2460-2461.
    [169] Kelkar A A, Patil N M, Chaudhari R V. Copper-catalyzed amination of aryl halides: single-step synthesis of triarylamines. Tetrahedron Lett., 2002, 43: 7143-7146.
    [170] Suzuki K, Hori Y, Kobayashi T. A new hybrid phosphine ligand for palladium-catalyzed amination of aryl halides. Adv. Synth. Catal., 2008, 350: 652-656.
    [171] Gao C-Y, Cao X, Yang L-M. Nickel-catalyzed cross-coupling of diarylamines with haloarenes. Org. Bio. Chem., 2009, 7: 3922-3925.
    [172] Xu H, Wolf C. Copper catalyzed coupling of aryl chlorides, bromides and iodides with amines and amides. Chem. Comm., 2009, 13: 1715-1717.
    [173] Chen C, Yang L-M. Arylation of diarylamines catalyzed by Ni(II)-PPh3 system. Org. Let., 2005, 7: 2209-2211.
    [174] Rataboul F, Zapf A, Jackstell R, et al. New ligands for a general palladium-catalyzed amination of aryl and heteroaryl chlorides. Chem. Eur. J., 2004, 10: 2983-2990.
    [175] Gujadhur R K, Bates C G, Venkataraman D. Formation of aryl-nitrogen, aryl-oxygen, and aryl-carbon bonds using well-defined copper(I)-based catalysts. Org. Lett., 2001, 3: 4315-4317.
    [176] Singh B K, Stevens C V, Acke D R J, et al. Copper-mediated N- and N-arylations with arylboronic acids in a continuous flow microreactor: a new avenue for efficient scalability. Tetrahedron Lett., 2009, 50: 15-18.
    [177] Sreedhar B, Venkanna G T, Kumar K B S, et al.Copper(I) oxide-catalyzed N-arylation of azoles and amines with arylboronic acid at room temperature under base-free conditions. Synthesis, 2008, 5: 795-799.
    [178] Lan J-B, Zhang G-L, Yu X-Q, et al. A simple copper salt catalyzed N-arylation of amines, amides, imides, and sulfonamides with arylboronic acids. Synlett, 2004, 6: 1095-1097.
    [179] Sherman E S, Chemler S R. Copper (II)-catalyzed aminooxygenation and carboamination of N-aryl-2-allylanilines. Adv. Synth. Catal., 2009, 351: 467-471.
    [180] Zhong W, Liu Z, Yu C, et al. Copper(II) acetate catalyzed cross-coupling of pentafluorophenylboronic acid with amines under an atmosphere of oxygen. Synlett, 2008, 18: 2888-2892.
    [181] Fang Y-Q, Lautens M. A highly selective tandem cross-coupling of gem-dihaloolefins for a modular, efficient synthesis of highly functionalized indoles. J.Org. Chem., 2008, 73: 538-549.
    [182] Graddon D P, Mockler G M. 5- and 6-Coordinate base adducts of bis(acetylacetonato) manganese (II). Austra. J. Chem., 1964, 17: 1119-1127.
    [183] Ishii F, Sugiura T, Kogusuri K, et al. Fischer indolization and its related compounds. XXIV. Fischer indolization of ethyl pyruvate 2-(2-methoxyphenyl)phenylhydrazone. Chem. Pharm. Bull., 1991, 39: 572-578.
    [184] Tundel R E, Anderson K W, Buchwald S L. Expedited palladium-catalyzed amination of aryl nonaflates through the use of microwave-irradiation and soluble organic amine bases. J.Org. Chem., 2006, 71: 430-433.
    [185] Maiti D, Buchwald S L. Orthogonal Cu- and Pd-based catalyst systems for the O- and N-arylation of aminophenols. J. Am. Chem. Soc., 2009, 131: 17423-17429.
    [186] Meadow J R, Reid E E. Introduction of Mannich groups into some aromatic phenolic groups. J. Am. Chem. Soc., 1954, 76: 3479-3481.
    [187] Clemo G R, Perkin W H, Robinson R. Strychnine and brucine. II. J. Chem. Soc. Trans., 1924, 125: 1751-804.
    [188] Piccard J, Brewster R Q. The three aminotriphenylamines. J. Am. Chem. Soc., 1921, 43: 2630-2631.
    [189] Lane E S, Williams C. Route to N-substituted-phenylenediamines. J. Chem. Soc., 1955, 1468-1470.
    [190] Forrest J. Ullmann biaryl synthesis. III. The influence of diluents on the reaction between iodobenzene and copper. J. Chem. Soc., 1960, 581-588.
    [191] Tyman J H P. Synthetic and Natural Phenols. Elsevier, New York, 1996.
    [192] Rappoport Z. The chemistry of phenols. Wiley-VCH, Weinheim, 2003.
    [193] Hartwig J F. Handbook of organopalladium chemistry for organic synthesis (Ed.: E.-I. Negishi). Wiley-Interscience, New York, 2002.
    [194] Balboni G, Trapella C, Sasaki Y, et al. Influence of the side chain next to C-terminal benzimidazole in opioid pseudopeptides containing the Dmt-Tic pharmacophore. J. Med. Chem., 2009, 52: 5556-5559.
    [195] Okumura H S, Philmus B, Portmann C, et al. Homotyrosine-containing cyanopeptolins 880 and 960 and anabaenopeptins 908 and 915 from Planktothrix agardhii CYA 126/8. J. Nat. Prod., 2009, 72: 172-176.
    [196] Palui G, Ray S, Banerjee A. Synthesis of multiple shaped gold nanoparticles using wet chemical method by different dendritic peptides at room temperature. J. Mater. Chem., 2009, 19: 3457-3468.
    [197] Van Rossom W, Ovaere M, Van Meervelt L, et al. Efficient fragment coupling approaches toward large oxacalix[n]arenes (n = 6, 8). Org. Lett., 2009, 11: 1681-1684.
    [198] Schmidt R J. Industrial catalytic processes - phenol production. Appl. Catal. A., 2005, 280: 89-103.
    [199] Bal R, Tada M, Sasak T, et al. Direct phenol synthesis by selective oxidation of benzene with molecular oxygen on an interstitial-N/Re cluster/zeolite catalyst. Angew. Chem. Int. Ed., 2006, 45: 448-452.
    [200] Fyfe C A. The chemistry of the hydroxyl group, Vol. 1 (Ed.: S. Patai). Wiley-Interscience, New York, 1971, pp. 83-127.
    [201] Hoarau C, Pettus T R R. Strategies for the preparation of differentially protected ortho-prenylated phenols. Synlett, 2003, 1: 127.
    [202] Hanson P, Jones J R, Taylor A B, et al. Sandmeyer reactions. Part 7.1 An investigation into the reduction steps of Sandmeyer hydroxylation and chlorination reactions. J. Chem. Soc. Perkin Trans. 2, 2002, 6: 1135-1150.
    [203] George T, Mabon R, Sweeny G, et al. Alcohols, ethers and phenols. J. Chem. Soc. Perkin Trans. 1, 2000, 16: 2529-2574.
    [204] Sweeney J B. Alcohols, ethers and phenols. Contemp. Org. Synth., 1997, 4: 435-453.
    [205] Fujimoto K, Tokuda Y, Maekawa H, et al. Selective and one-pot formation of phenols by anodic oxidation. Tetrahedron, 1996, 52: 3889-3896.
    [206] Anderson K W, Ikawa T, Tundel R E, et al. The selective reaction of aryl halides with KOH: Synthesis of phenols, aromatic ethers, and benzofurans. J. Am. Chem. Soc., 2006, 128: 10694-10695.
    [207] Chen G, Chan A S C, Kwong F Y. Palladium-catalyzed C-O bond formation: direct synthesis of phenols and aryl/alkyl ethers from activated aryl halides. Tetrahedron Lett., 2007, 48: 473-476.
    [208] Gallon B J, Kojima R W, Kaner R B, et al. Palladium nanoparticles supported on polyaniline nanofibers as a semi-heterogeneous catalyst in water. Angew. Chem. Int. Ed., 2007, 46: 7251-7254.
    [209] Schulz T, Torborg C, Schaffner B, et al. Practical imidazole-based phosphine ligands for selective palladium-catalyzed hydroxylation of aryl halides. Angew. Chem. Int. Ed., 2009, 48: 918-921.
    [210] Sergeev A G, Schulz T, Torborg C, et al. Palladium-catalyzed hydroxylation of aryl halides under ambient conditions. Angew. Chem. Int. Ed., 2009, 48: 7595-7599.
    [211] Tilli A, Xia N, Monnier F, et al. A Very Simple Copper-catalyzed synthesis of phenols employing hydroxide salts. Angew. Chem. Int. Ed., 2009, 48: 8725-8728.
    [212] Zhao D, Wu N, Zhan S, et al. Synthesis of phenol, aromatic ether, and benzofuran derivatives by copper-catalyzed hydroxylation of aryl halides. Angew. Chem. Int. Ed., 2009, 48: 8729-8732.
    [213] Rao H, Fu H, Jiang Y, et al. Easy copper-catalyzed synthesis of primary aromatic amines by couplings aromatic boronic acids with aqueous ammonia at room temperature. Angew. Chem. Int. Ed., 2009, 48: 1114-1116.
    [214] Prakash G K S, Panja C, Mathew T, et al. ipso-Nitration of arylboronic acids with chlorotrimethylsilane-nitrate salts. Org. Lett., 2004, 6: 2205-2207.
    [215] Tzschucke C C, Murphy J M, Hartwig J F. Arenes to anilines and aryl ethers by sequential iridium-catalyzed borylation and copper-catalyzed coupling. Org. Lett., 2007, 9: 761-764.
    [216] Seo S-Y, Jung J-W, Jung J-K, et al. Concise synthesis of rodgersinol and determination of the C-10 absolute configuration. J. Org. Chem., 2007, 72: 666-668.
    [217] McKinley N F, O’Shea D F. Efficient synthesis of aryl vinyl ethers exploiting 2,4,6-trivinylcyclotriboroxane as a vinylboronic acid equivalent. J. Org. Chem., 2004, 69: 5087-5092.
    [218] Quach T D, Batey R A. Copper (II)-catalyzed ether synthesis from aliphatic alcohols and potassium organotrifluoroborate salts. Org. Lett., 2003, 5: 1381-1384.
    [219] Decicco C P, Song Y, Evans D A. Intramolecular O-arylation of phenols with phenylboronic acids: application to the synthesis of macrocyclic metalloproteinase inhibitors. Org. Lett., 2001, 3: 1029-1032.
    [220] Fontani P, Carboni B, Vaultier M, et al. Synthesis of cyclopropylboronic acid esters by carbene transfer to 1-alkenylboronic acid esters. Synthesis, 1991, 8: 605-609.
    [221] Webb K S, Levy D. A facile oxidation of boronic acids and boronic esters. Tetrahedron Lett., 1995, 36: 5117-5118.
    [222] Simon J, Salzbrunn S, Prakash G K S, et al. Regioselective conversion of arylboronic acids to phenols and subsequent coupling to symmetrical diaryl ethers. J. Org. Chem., 2001, 66: 633-634.
    [223] Maleczka R E, Shi F, Holmes D, et al. C-H activation/borylation/oxidation: a one-pot unified route to meta-substituted phenols bearing ortho-/para-directing groups. J. Am. Chem. Soc., 2003, 125: 7792-7793.
    [224] Kianmehr E, Yahyaee M, Tabatabai K. A mild conversion of arylboronic acids and their pinacolyl boronate esters into phenols using hydroxylamine. Tetrahedron Lett., 2007, 48: 2713-2715.
    [225] Aqueous-Phase Organometallic Catalysis (Eds.: B. Cornils, W. A. Herrmann), Wiley-VCH, Weinheim, 2004.
    [226] Shaughnessy K H, DeVasher R B. Palladium-catalyzed cross-coupling in aqueous media: Recent progress and current applications. Curr. Org. Chem., 2005, 9: 585-604.
    [227] Leadbeater N E. Fast, easy, clean chemistry by using water as a solvent and microwave heating: the Suzuki coupling as an illustration. Chem. Commun., 2005, 23: 2881-2902.
    [228] Organic Synthesis in Water (Ed.: P. A. Grieco), Academic Press, Dordrecht, 1998.
    [229] Cammidge A N, Goddard V H M, Gopee H, et al. Aryl trihydroxyborates: easily isolated discrete species convenient for direct application in coupling reactions. Org. Lett., 2006, 8: 4071-4074.
    [230] Nishiura K, Urawa Y, Sodab S. N-arylation of benzimidazole with arylboronate, boroxine and boronic acids. Acceleration with an optimal amount of water. Adv. Synth. Catal., 2004, 346: 1679-1684.
    [231] Gao P, Feng X, Yang X, et al. Conjugated ladder-type heteroacenes bearing pyrrole and thiophene ring units: Facile synthesis and characterization. J. Org. Chem., 2008, 73: 9207-9213.
    [232] Schmidt F, Keller F, Vedrenne E, et al. Stereocontrolled synthesis ofβ-amino alcohols from lithiated aziridines and boronic esters. Angew. Chem. Int. Ed., 2009, 48: 1149-1152.
    [233] Molander G A, Ellis N. Organotrifluoroborates: protected boronic acids that expand the versatility of the Suzuki coupling reaction. Acc. Chem. Res., 2007, 40: 275-286.
    [234] Darses S, Genet J P. Potassium organotrifluoroborates: new perspectives in organic synthesis. Chem. Rev., 2008, 108: 288-325.
    [235] Yuena A K L, Hutton C A. Deprotection of pinacolyl boronate esters via hydrolysis of intermediate potassium trifluoroborates. Tetrahedron Lett., 2005, 46: 7899-7903.
    [236] Zaugg H E, Schaefer A D. Cation and solvent effects on the ultraviolet spectra of alkali salts of phenols and enols. J. Am. Chem. Soc., 1965, 87: 1857-1866.
    [237] Fleming I, Iqbal J. Phenylthioalkylation-desulfurization for the C-alkylation of phenols. Synthesis, 1982, 11: 937-939.
    [238] Loubinoux B, Coudert G, Guillaumet G. Selective demethylation of aryl methyl ethers. Synthesis, 1980, 8: 638-640.
    [239] Jr Rahaim R J, Jr Maleczka R E. Pd-catalyzed silicon hydride reductions of aromatic and aliphatic nitro groups. Org. Lett., 2005, 7: 5087-5090.
    [240] Arcadi A, Cerichelli G, Chiarini M, et al. Pd/C-catalyzed transfer reduction of aryl chlorides with sodium formate in water. Eur. J. Org. Chem., 2004, 16: 3404-3407.
    [241] Syper L. The Baeyer-Villiger oxidation of aromatic aldehydes and ketones with hydrogen peroxide catalyzed by selenium compounds. A convenient method for the preparation of phenols. Synthesis, 1989, 3: 167-172.
    [242] Johns I B, Dipietro H R. Coordination compounds of tris(2-hydroxyphenyl)-s-triazine and derivatives. J. Org. Chem., 1962, 27: 592-594.
    [243] Beringer M, Brierley A, Drexler M, et al. Diaryliodonium salts. II. The phenylation of organic and inorganic bases. J. Am. Chem. Soc., 1953, 75: 2708-2712.
    [244] Bergmann D, Berkovic S, Ikan R. A new method for the preparation of aromatic fluorine compounds. J. Am. Chem. Soc., 1956, 78: 6037-6039.
    [245] Serafin B, Makosza M. Arylboronic compounds. VIII. Reactions of hydroxy- and carboxyphenylboronic acids. Tetrahedron, 1963, 19: 821-826.
    [246] Bogdal D, Lukasiewicz M, Pielichowski J. Halogenation of carbazole and other aromatic compounds with hydrohalic acids and hydrogen peroxide under microwave irradiation. Green Chem., 2004, 6: 110-113.
    [247] Sasson Y, Razintsky M. Copper-catalyzed para-carboxylation of phenol by carbon tetrachloride in the presence of concentrated sodium hydroxide. Chem. Comm., 1985, 16: 1134-1135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700