用户名: 密码: 验证码:
若干离子液体的结构、合成和催化机理及其与溶剂相互作用的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
室温离子液体,在室温或更低温度下呈液态,是一类完全由阴、阳离子组成的化合物,近二十多年来,在化学和化工领域引起了很多人的关注。主要因为它们具有独特的物理化学性质,例如:低的熔点,几乎没有蒸汽压,强溶解能力,宽液程,良好的热稳定性和强离子传输能力。特别由于它们的不挥发性和优良的催化活性,离子液体作为溶剂和催化剂被普遍应用在多种领域,包括有机合成、分离和生物化学等。近年来,对离子液体的关注主要集中在应用和宏观性质上的研究,如:密度、粘度、导电性和溶解性等方面。与广泛的实验研究相比,对离子液体进行的理论研究相对滞后,而且在分子水平上的认知还很零散。为了设计更有效的离子液体,预测它们的物理化学性质,甚至在具体应用方面选择更适合的离子液体,分子水平上的理论研究显得非常重要。本论文中,我们通过进行密度泛函理论计算,开展了对多种离子液体的一系列理论研究,洞察合成反应机理,电子结构,催化活性以及离了液体与其它化合物之间的相互作用机理。本论文重要的有价值的结论总结如下:
     1.为了更好地理解甲醇与咪唑类离子液体[emim]+A-(A=Cl-,Br-,BF4-和PF6-)形成二元体系的性质,进行了密度泛函理论计算,详细地研究甲醇与几种(阳离子为1-乙基-3-甲基咪唑阳离子的)离子液体的阴离子A-、阳离子[emim]+以及离子对[emim]+A-之间的相互作用。结果发现:在这些体系中普遍存在氢键,它们对甲醇与咪唑类离子液体的互溶性起到重要的作用。甲醇分子分别与阴、阳离子相互作用的机制在本质上是不同的:前者主要是LPX-σ*O-H相互作用,而后者和起决定性作用的LPo-σ*C-H轨道重叠有关。基于当前的计算,对离子液体和醇二元混合体系的性质提供了合理的解释,并且揭示离子液体与醇之间相互作用的有用信息,希望此工作有助于设计更有效的离子液体,以便与醇形成优良的溶液体系。
     有关结果发表在Journal of Molecular Modeling,DOI:10.1007/s00894-010-0879-1。
     2.以N-甲基咪唑和氯乙烷之间发生的Menshutkin反应为例,利用密度泛函理论方法研究了咪唑盐卤化物的合成机理。计算结果表明:该反应通过典型的SN2机理进行,相应的势垒为119.1 kJ mol-1,比以前文献报道的五元环过渡态机理的势垒低98.5 kJ mo1-1:考虑溶剂化效应,反应势垒进一步降低到98.1 kJ mol-1.计算结果与实验事实(N-烷基咪唑卤化物盐的合成在微热条件下即可顺利完成)一致,为人们理解咪唑盐卤化物的合成机理提供了理论依据。
     有关结果发表在Journal of Molecular Modeling, DOI:10.1007/s00894-010-0916-0。
     3.以吡啶类离子液体:1-乙基-3-甲基吡啶的三氟乙酸盐([epy]+[CF3COO]-)为例,通过密度泛函理论计算,对其合成机理、电子结构以及催化活性进行了理论研究。发现吡啶盐的合成遵循SN2反应机理。电子结构的分析结果显示吡啶类离子液体中广泛存在多重氢键,特别是C*-H…O氢键可能对体系的稳定性起决定性的作用,其中C*在吡啶环氮原子的邻位。阴、阳离子之间主要存在LPo→σ*c*-H相互作用,此作用与C*-H…O氢键有关。同时,此工作清楚地给出[epy]+[CF3COO]-离子液体对Diels-Alder反应的催化机理,反应物为丙烯腈和2-甲基-1,3-丁二烯。阴、阳离子在催化过程中均起到重要的作用,通过自然键轨道和前线轨道理论对该结论进行了较为深入的理论分析。[epy]+阳离子作为路易斯酸,可以通过C(?)N···H氢键与反应物丙烯腈相互作用以提高C=C双键的极性。然而,CF3COO-阴离子可以和2-甲基-1,3-丁二烯的甲基氢原子形成C-H…O氢键,此氢键将减弱甲基的供电子能力,从而降低Diels-Alder反应的活化势垒。基于当前的计算结果,希望该工作能够为吡啶类离子液体的设计、开发和应用提供有价值的理论基础。
     相应的结果被The Journal of Physical Chemistry A接受。
     4.通过密度泛函理论计算,系统地研究了丙氨酸甲酯的硝酸盐([AME][NO3],一种氨基酸类离子液体(AAIL))催化的Diels-Alder反应,反应物为环戊二烯和丙烯酸甲酯。首先在气态和二氯甲烷溶液中,计算没有被催化的反应,为了比较起见,分别用一对、两对和三对[AME][NO3]离子对作催化剂模拟离子液体对Diels-Alder反应的催化作用。计算结果显示[AME][NO3]在催化该反应时起到路易斯酸的作用,[AME]+阳离子的NH3基团是催化活性中心,与丙烯酸甲酯的羰基形成有效N-H…O氢键,从而极化C=C双键。因此反应能垒明显地降低,非协同性提高。两对离子对参与的反应势垒比一对或三对离子对参与的势垒低,暗示两反应物和反应介质/催化剂[AME][NO3]的最佳摩尔比应该为:1:1:2。此研究结果对早期的实验发现给出合理的解释,而且为在氨基酸类离子液体体系中进行Diels-Alder反应的合理设计提供有用的参考。
     相应的结果提交在the Journal of Organic Chemistry。
In the past two decades, room temperature ionic liquids (RTILs), composed exclusively of organic cations and inorganic anions, have elicited substantial interest both in academia and in industry. This is mostly because of their unique physicochemical properties, such as low melting point, vanishing vapor pressure, powerful solvent capacity, large liquid range, excellent thermal stability, and high ionic conductivity. In particular, in light of their nonvolatile nature and great catalytic reactivity, RTILs have been very popular as solvents and catalysts in many fields of chemistry, including organic synthesis, separation, and biochemistry. At present, much interest has been focused on applications and the macroscopical properties, such as density, viscosity, conductivity and solubility. While compared with extensive experimental researches on RTILs, the theoretical studies are relatively laggard, and the knowledge at the molecular level is still fragmentary. To design more effective RTILs, predict their properties and even choose more suitable one for a specific application, theoretical studies at the molecular level seem to be extraordinarily necessary. In this dissertation, by performing density functional theory (DFT) calculations, we carried out a series of theoretical studies on kinds of RTILs to gain an insight into their general synthesis mechanisms, electronic structures, catalytic reactivity, and the detailed interaction mechanism between RTILs and other components. The important and valuable results in this dissertation can be summarized as follows:
     1. To better understand the property of the binary systems composing of imidazolium salt, [emim]+A-(A=Cl-, Br-, BF4-, and PF6-) and methanol, we have investigated in detail the interactions of methanol molecule with anions A-, cation [emim]+, and ion pair [emim]+A-of several ionic liquids (ILs) based on 1-ethyl-3-methylimidazolium cation by performing density functional theory calculations. It is found that H-bonds are universally involved in these systems, which may play an important role for the miscibility of methanol with imidazolium-based ILs. The interaction mechanisms of methanol molecule with anion and cation are found to be different in nature:the former mainly involves LPX-σO-H* interaction, while the latter relates with the decisive orbital overlap of the type of LPO-σO-H*. Based on the present calculations, we have provided some reasonable interpretations for properties of the binary mixtures of ILs and alcohol and revealed valuable information for the interaction details between ILs and alcohols, which is expected to be useful for the design of more efficient ILs to form superior solvent system with alcohol.
     The corresponding results have been online in Journal of Molecular Modeling, early view, DOI:10.1007/s00894-010-0879-1.
     2. The Menshutkin reaction between the N-methyl imidazole with chloroethane is reexamined to rationalize the experimental discovery by performing density functional theory calculations. The calculated results show that the reaction proceeds via a SN2 mechanism with a barrier of 119.1 kJ mol-1, which is much lower than that reported in previous literature according to a five-membered transition state mechanism. Moreover, it is found that the barrier is further reduced to 98.1 kJ mol-1 in toluene solution. The present result validates the experimental finding that the Menshutkin reaction for synthesizing N-alkyl imidazolium halide salts proceeds smoothly at lower heating temperature.
     The corresponding results have been online in Journal of Molecular Modeling, early view, DOI:10.1007/s00894-010-0916-0.
     3. By using density functional theory calculations, we have performed a study on the synthesis mechanism, electronic structures, and catalytic reactivity of a pyridinium-based ionic liquid,1-ethyl-pyridinium trifluoroacetate ([epy]+[CF3COO]-). It is found that the synthesis of pyridinium salt follows a SN2 mechanism. The electronic structural analyses show that multiple H-bonds are universally involved in the pyridinium-based ionic liquid, especially C* (on the ortho-position of nitrogen atom in pyridinium ring)-H…O H-bond, which may play a decisive role for the stability of the system. The mechanism of how the anion interacts with the cation mainly involes LPo→σ*C*-H interaction, which is associated with the C*-H…O H-bond. This present work have also given clearly the catalytic mechanism of [epy]+[CF3COO]-on the Diels-Alder (D-A) reaction of acrylonitrile and 2-methyl-1,3-butadiene. Both the cation and anion are shown to play important roles for catalizing the D-A reaction, which has been rationalized by the NBO and FMO analyses. [epy]+, as a Lewis acid, can interact with reactant acrylonitrile by C=N…H H-bond to increase the polarity of C=C double bond, while the CF3COO- anion links with the hydrogen atom of methyl group in 2-m ethyl-1,3-butadiene by C-H…O H-bond, which would weaken the electron-donating capability of methyl and then lower the energy barrier of the D-A reaction. Based on the present calculations, we hope this work could provide valuable theoretical basis for the design, development and application of pyridinium-based ionic liquids.
     The corresponding results have been accepted in The Journal of Physical Chemistry A.
     4. By performing density functional theory calculations, we systematically studied the Diels-Alder (D-A) reaction between cyclopentadiene and methacrylate catalyzed by alanine methyl ester nitrate ([AME][NO3]), an amino acid-based ionic liquid (AAIL). The uncatalyzed reaction was first calculated in both gas phase and dichloromethane, for comparison, and then the catalytic effect of [AME][NO3] IL on the D-A reaction was mimicked by using one, two, and up to three ion pairs as catalysts. The calculated results show that [AME][NO3] plays a role of Lewis acid to promote the reaction and the catalytic active center is the NH3 group in [AME]+ cation, which forms the effective N-H…O H-bonds with the carbonyl oxygen atom in methacrylate to effectively polarize the C=C double bond. As a result, the energy barrier of reaction is remarkably reduced, and the asynchronicity of reaction is increased. The calculated barrier for the reaction with the presence of two ion pairs is lower than those with the presences of one and three ion pairs, implying that the optimal molar ratio among two reactants and the reaction medium/catalyst [AME][NO3] should be 1:1:2. The present results rationalize the early experimental findings, and provide a useful reference for the rational design of usual D-A reactions in AAILs.
     The corresponding results have been submitted in The Journal of Organic Chemistry.
引文
[1]Walden, P. Molecular Weights and Electrical Conductivity of Several Fused Salts. Bull. Acad. Imper. Sci. (St. Petersburg) 1914,8,405-422.
    [2]Hurley, F. H.; Wier, T. P. Jr. The Electrodeposition of Aluminum from Nonaqueous Solutions at Room Temperature. J. Electrochem. Soc.1951,98,207-212.
    [3]Scheffler, T. B.; Hussey, C. L.; Seddon, K. R. Molybdenum chloro complexes in room-temperature chloroaluminate ionic liquids:stabilization of hexachloromolybdate(2-) and hexachloromolybdate(3-)Inorg. Chem.1983,22,2099.
    [4]Laher, T. M.; Hussey, C. L. opper(Ⅰ) and copper(Ⅱ) chloro complexes in the basic aluminum chloride-1-methyl-3-ethylimidazolium chloride ionic liquid Inorg.Chem.1983,22,3247.
    [5]Scheffler, T. B., Hussey, C. L.; Seddon, K. R. lectrochemical study of tungsten chloro complex chemistry in the basic aluminum chloride-1-methyl-3-ethylimidazolium chloride ionic liquid Inorg. Chem.1984,23,1926.
    [6]Appleby, D.; Hussey, C. L.; Seddon, K. R.; Turp, J. E. Nature,1986,323,614.
    [7]J. S. Wilkes, M. J. Zaworotko, J. Chem. Soc. Chem. Commun.1992,965.
    [8]C. E. Song, E. J. Roh, Chem. Commun.2000,837.
    [9]W. Chen, L. Xu, C. Chatterton, J.Xiao, Chem. Commun.1999,1247.
    [10]B. Ellis, W. Keim, P. Wasserscheid, Chem. Commun.1999,337.
    [11]L. Xu. W. Chen, J. Xiao. Organometallies,2000,19,1123.
    [12]H. A. Oye, M. Jagtogen, T. Oksefjell, J. S. Wilkes, Mater. Sci. Forum,1991,73-75,183.
    [13]J. S. Wilkes, J. A. Levisky, R. a. Wilson, C. L. Hussey, Inoiy. Chem,1982,21,1263.
    [14]R. T. Carlin, J. S. Wilkes in Chemstry of Nonaqueous Solutions,1994,277.
    [15]C. L. Hussey, Pure Appl. Chem.1988,60,1763.
    [16]Earle, M. J., Seddon, K. R. Pure Appl. Chem.2000,72,1391.
    [17]Tokuda, H.; Hayamizu, K.; Ishii,K.; Susan, M. A. B. H.; Watanabe, M. J. Phys.Chem. B. 2005,109,6103.
    [18]Elizabeth A. Turner, Cory C. P yr, J. Phys. Chem. A 2003,107,2277.
    [19]C. J. Adams, M. J. Earle, G. Roberts, K. R. Seddon, Chem. Commun.1998,19,2097.
    [20]J. Peng, Y. Q. Deng, Petrochemical Technology,2001,30,91.
    [21]P. A. Z. Suarez, J. E. L. Dullius, S. Einloft, R. F. De Souza, J. Dupont, Polyhedron 1996,15, 1217.
    [22]Howarth, K. Hanlon, D. Fayne, P. McConnac, Tetrahedron Lett.1997,38,3097
    [23]Carmichael, A. J., Earle, M. J., Holbrey, J. D., McConnac, P. B., Seddon, K. R. Org. Lett., 1999,1,997
    [24]Rivera-Rubero S, Baldelli S. J. Phys. Chem. B,2006,110,15499.
    [25]Su B M, Zhang SG,Zhang Z. J. Phys. Chem. B,2004,108,19510.
    [26]Deetlefs M, Hardacre C, Nieuwenhuyzen M, Sheppard O, Soper A K. J. Phys. Chem. B,2005, 109,1593.
    [27]Hardacre C, Holbrey J D, McMath S E J, Bowron D T, Soper A K. J. Chem Phys.2002,118, 273.
    [28]Katayanagi H, Hayashi S, Hamaguchi H, Nishikawa K. Chem. Phys. Lett.392,2004,460.
    [29]Katsyuba S A, Zvereva E E, Vidis A, J.Phys. Chem. A,2007,111,352.
    [30]Hu Z H, Margulis C J., PNAS.2006,103,831.
    [31]Hunt P. A, Gould I. R. J. Phys. Chem. A,2006,110,2269.
    [32]Raymo F M, Bartberger M D, Houk K N, Stoddart J F. J. Am. Chem. Soc.2001,123,9264.
    [33]Hanke C. G, Johansson A, Harper J. B, Lynden-Bell R M. Chem. Phys. Lett.2003,374,85
    [34]Urahata S M, Ribeiro C. C. M.,J. Chem. Phys.2003,120,1855.
    [35]Urahata S M, Ribeiro C C M.J. Chem. Phys.2005,122,
    [36]Andrade J De, Boes E S, Stassen H.,J. Phys. Chem. B,2002,106,3546.
    [37]Shim Y, Choi M Y, Kim H J., J. Chem. Phys.2005,122.
    [1]徐光宪,黎乐民,土德民.量子化学基本原理和从头计算法[M].北京:科学出版社,1985.
    [2]Hohenberg, P. and Kohn, W. Inhomogeneous Electron Gas Phys. Rev.1964,136,864-871.
    [3]Kohn, W. and Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects Phys. Rev.1965,140,1133-1138.
    [4]Cances, E. Mennunci, B. Tomasi, J. A new integral equation formalism for the polarizable continuum model:Theoretical background and applications to isotropic and anisotropic dielectrics J. Chem. Phys.1997,107,3032-3041.
    [5]Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev.1988,88,899-926.
    [6]Jensen, F. Introduction to Computational Chemistry; JOHN WILEY & SONS,1999.
    [7]Almldf, J.; Taylor, P. R. Atomic Natural Orbital (ANO) Basis Sets for Quantum Chemical
    Calculations Adv Quantum Chem.1991,22,301.
    [8]Reed, A.E.; Weinhold, F. Natural Bond Orbital Analysis of near-Hartree-Fock Water Dimmer. J. Chem. Phys.1983,78,4066-4073.
    [9]Reed, A. E.; Weinstock, R. B.; Weinhold, F. Natural Population Analysis. J.Chem. Phys.1985, 83,735-746.
    [10]Carpenter, J. E.; Weinhold, F. Analysis of the Geometry of the Hydroxymethyl Radical by the "Different Hybrids for Different Spins" Natural Bond Orbital Procedure.J. Mol. Struct. (Theochem) 1988,169,41-62.
    [1]Welton T. Chem. Rev 1999,99,2071
    [2]Brennecke, J. F.; Maginn E. J. AIChE J.2001,47,2384
    [3]Chiappe, C.; Capraro, D.; Conte, V.; Pieraccini D. Org. Lett.2001,3,1061
    [4]Stark, A.; MacLean, B.; Singer, R. D. J. Chem. Soc. Dalton Trans.1999,3,63
    [5]Chun, S.; Dzyuba, S. V.; Bartsch R. A. Anal. Chem.2001,73,3737
    [6]Fadeev, A. G.; Meagher M. M. Chem. Commun.2001,3,295
    [7]Schafer, T.; Rodrigues, C. M.; Afonso, A. M.; Crespo J. G Chem. Commun.2001, 78,1622
    [8]Bates, E. D.; Mayton, R. D.; Ntai, I.; Davis J. H. J. Am. Chem. Soc. Commun. 2002,124,926
    [9]Earle, M. J.; Seddon K. R. Pure Appl. Chem.2000,72,1391
    [10]Sun, H.; Zhang, D. J.; Ma, C.; Liu, C. B. Inter. J. Quantum Chem.2007,107, 1875
    [11]Sun, H.; Zhang D. J. J. Phys. Chem. A 2007,111,8036
    [12]Sun, H.; Zhang, D. J.; Wang, F.; Liu, C. B. J. Phys. Chem. A 2007,111,4535
    [13]Sun, H.; Zhang, D. J.; Liu, C. B.; Zhang, C. Q. J. Mol. Struct. (THEOCHEM) 2009,900,37
    [14]Sun, H.; Qiao, B. F.; Zhang, D. J.; Liu, C. B. J. Phys. Chem. A 2010,114,3990
    [15]Sun, H.; Zhang, D. J.; Zhang, C. Q.; Liu, C. B. Chirality (early review)
    [16]Sun, H.; Zhang, D. J. Chirality, proof
    [17]Zhu, X. Y.; Zhang, D. J.; Liu, C. B. J. Mol. Model.2010, Proof
    [18]Guo, J. X.; Zhang, D. J.; Duan, C. G.; Liu, C. B. Carbohyd. Res.2010, Proof
    [19]Taft, R. W.; Kamlet M. J. J. Am. Chem. Soc.1976,98,2886
    [20]Yokoyama, T.; Taft, R. W.; Kamlet, M. J. J. Am. Chem. Soc.1976,98,3233
    [21]Kamlet, M. J., Abboud, J. L., Taft, R. W. J. Am. Chem. Soc.1977,99,6027
    [22]Crowhurst, L.; Mawdsley, P. R., Perez-Arlandis, J. M.; Salter, P. A., Welton, T. Phys. Chem. Chem. Phys.2003,5,2790
    [23]Hunt, P. A.; Kirchner, B.; Welton, T. Chem. Eur. J.2006,12,6762
    [24]Hunt, P. A.; Gould, I. R. J. Phys. Chem. A 2006,110,2269
    [25]Wang, Y.; Li, H. R.; Wu, T.; Wang, C. M.; Han, S. J. Acta Phys. Chim. Sin.2005, 21,517
    [26]Clark, T.; Chandrasekhar, J.; Spitznagel, G W.; Schleyer, P. V. R. J. Comput. Chem.1983.4.294
    [27]Francl,M.M.;Pietro,W.J.;Hehre,W.J.;Binkley,J.S.;DeFrees,D.J.;Pople,J. A.;Gordon,M.S.J.Chem.Phys.1982,77,3654
    [28]Gordon,M.S.Chem.Phys.Lett 1980,76,163
    [29]Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;Scuseria,G.E.;Robb,M.A.; Cheeseman,J.R.;Montgomery,J.A.,Jr.;Vreven,T.;Kudin,K.N.;Burant,J.C.; Millam,J.M.;Iyengar,S.S.;Tomasi,J.;Barone,V.;Mennucci,B.;Cossi,M.; Scalmani,G.;Rega,N.;Petersson,G.A.;Nakatsuji,H.;Hada,M.;Ehara,M.;Toyota, K.;Fukuda,R.;Hasegawa,J.;Ishida,M.;Nakajima,T.;Honda,Y.;Kitao,O.;Nakai, H.;Klene,M.;Li,X.;Knox,J.E.;Hratchian,H.P.;Cross,J.B.;Bakken,V.;Adamo, C.;Jaramillo,J.;Gomperts,R.;Stratmann,R.E.;Yazyev,O.;Austin,A.J.;Cammi, R.;Pomelli,C.;Ochterski,J.W.:Ayala,P.Y.;Morokuma,K.;Voth,G.A.;Salvador, P.;Dannenberg,J.J.;Zakrzewski,V.G.;Dapprich,S.;Daniels,A.D.;Strain,M.C.; Farkas,O.;Malick,D.K.;Rabuck,A.D.;Raghavachari,K.;Foresman,J.B.;Ortiz,J. V.;Cui,Q.;Baboul,A.G.;Clifford,S.;Cioslowski,J.;Stefanow,B.B.;Liu,G.; Liashenko,A.;Piskorz,P.;Komaromi,I.;Martin,R.L.;Fox,D.J.;Keith,T.; AI-Laham,M.A.;Peng,C.Y.;Nanayakkara,A.;Challacombe,M.;Gill,P.M.W.; Johnson,B.;Chen,W.;Wong,M.W.;Gonzalez,C.;Pople,J.A.Gaussian 03, Revision D.01;Gaussian,Inc.:Wallingford CT,2004.
    [30]Fukui,K.Acc.Chem.Res.1981,14,363.
    [31]Trevor,M.L.J.Chem.Eng.Data.2003,48,1587
    [32]Hehre,w.J.;Ditchfield,R.;Pople,J.A.J.Chem.Phys.1972,56,2257
    [33]Tapia,O.J.Math.Chem.1992,10,139
    [34]Tomasi,J.;Persico,M.Chem.Rev.1994,94,2027
    [35]Simkin,B.Y.;Sheikhet,I.Quantum Chemical and Statistical Theory of Solutions—A Computational Approach;Ellis Hor-wood:London,1995
    [36]Cances,E.,Mennunci,B.,Tomasi J.Chem.Phys.1997,107,3032
    [37]Cossi,M.;Barone,V.;Cammi,R.;Tomasi J.Chem.Phys.Lett.1996,255,327
    [38]Barone,V.;Cossi,M.;Tomasi,J.J.Comput.Chem.1998,19,404
    [39]Nishida,T.;Tashiro,Y.;Yamamoto,J.Fluorine Chem.2003,120,135
    [40]Tang,W H.;Ong,T.T.;Ng,S.C.J.Sep.Sci.2007,30,1343-1349.
    [41].Wang,R.Q.;Ong,T.T.;Ng,S.C.J.Chromatogr.A 2008,1203,185-192.
    [42]Zhou,Z.M.;Li,X.;Chen,X.P.Anal.Chim.Acta.2010,678.208-214.
    [43]Pereiro,A.B.;Santamarta,F.J.Chem.Eng.Data,2006,137,952-954.
    [44]Tong, J.; Liu, Q. S. J. Chem. Eng. Data,2010,55,3693-3696.
    [45]Aparicio, S.; Alcalde, R.; Atilhan, M. J. Phys. Chem. B,2010,114,5795-5809.
    [46]Ranu, B. C.; Banerjee, S.; Das, A. Tetrahedron Lett.2006,47,881-884.
    [47]Sun, P.; Armstrong, D. W. Anal. Chim. Acta.2010,661,1-16.
    [48]Doherty, A. P.; Koshechko, V.; Titov, V.; Mishura, A.;J. Electroanal. Chem.2007, 602,91-95.
    [49]Song, C.; Ma, X. Appl. Catal. B:Environ.2003,41,207-238.
    [50]Yue, C. B.; Yi, T. F.; J. Ind. Engin. Chem.2009,15,653-656.
    [51]Wu, W.; Wu, G. App. catal. A:general,2007,2,189-193.
    [52]Xiao, Y.; Malhotra, S. V. J. Organomet. Chem.2005,15,3609-3613.
    [53]Xiao, Y.; Malhotra, S. V. Tetrahedron Lett.2004,45,8339-8342.
    [54]Rocaboy, C.; Hampel, F.; Gladysz, J. A. J. Org. Chem.2002,67,6863-6870.
    [55]Heintz, A; Lehmann, J. K.; Wertz, C. J. Chem. Eng. Data.2003,48,472-474.
    [56]Becke, A. D. J. Chem. Phys.1993,98,5648-5652.
    [57]Moller, C.; Plesset, M. S. Phys. Rev.1934,46,618-622.
    [58]Fletcher, G D.; Rendell, A. P.; Sherwood, P. Mol. Phys.1997,91,431-438.
    [59]Raghavachari, K.; Trucks, G W.; Pople, J. A.; Head-Gordon, M. Chem. Phys. Lett.1989,157,479-483.
    [60]Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer P. V. R. J. Comput. Chem.1983,4,294-301.
    [61]Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; DeFrees, D. J.; Pople, J. A.; Gordon, M. S. J. Chem. Phys.1982,77,3654-3655.
    [62]Gordon, M. S. Chem. Phys. Lett.1980,76,163-158.
    [63]Arfan, A.; Bazureau, J. P. Org. Process Res. Dev.2005,9,743-748.
    [64]Zhu, X. Y.; Zhang, D. J.; Liu, C. B. J. Mol. Model.2010, proof.
    [65]Wang, Y. H.; Li, R. Acta Phys. Chim. Sin.2005,21,517-522.
    [66]Gui, J. Z.; Cong, X. H. Catal. Commun.2004,5,473-477.
    [67]Duan, Z. Y.; Gu, Y. L. J. Mol. Catal. A:Chem.2006,250,163-168.
    [68]Hunt, P. A.; Kirchner, B.; Welton, T. Chem. Eur. J.2006,12,6762-6775.
    [1]. Tang, W. H.; Ong, T. T.; Ng, S. C. J. Sep. Sci.2007,30,1343-1349.
    [2]. Wang, R. Q.; Ong, T. T.; Ng, S. C. J. Chromatogr. A 2008,1203,185-192.
    [3]Zhou, Z. M.; Li, X.; Chen, X. P. Anal. Chim. Acta.2010,678.208-214.
    [4]Pereiro, A. B.; Santamarta, F. J. Chem. Eng. Data,2006,137,952-954.
    [5]Tong, J.; Liu, Q. S. J. Chem. Eng. Data,2010,55,3693-3696.
    [6]Aparicio, S.; Alcalde, R.; Atilhan, M. J. Phys. Chem. B,2010,114,5795-5809.
    [7]Ranu, B. C.; Banerjee, S.; Das, A. Tetrahedron Lett.2006,47,881-884.
    [8]Sun, P.; Armstrong, D. W. Anal. Chim. Acta.2010,661,1-16.
    [9]Doherty, A. P.; Koshechko, V.; Titov, V.; Mishura, A.; J. Electroanal. Chem.2007, 602,91-95.
    [10]Song, C.; Ma, X. Appl. Catal. B:Environ.2003,41,207-238.
    [11]Yue, C. B.; Yi, T. F.; J. Ind. Engin. Chem.2009,15,653-656.
    [12]Wu, W.; Wu, G. App. catal. A:general,2007,2,189-193.
    [13]Xiao, Y.; Malhotra, S. V. J. Organomet. Chem.2005,15,3609-3613.
    [14]Xiao, Y.; Malhotra, S. V. Tetrahedron Lett.2004,45,8339-8342.
    [15]Rocaboy, C.; Hampel, F.; Gladysz, J. A. J. Org. Chem.2002,67,6863-6870.
    [16]Heintz, A.; Lehmann, J. K.; Wertz, C. J. Chem. Eng. Data.2003,48,472-474.
    [17]Becke, A. D. J. Chem. Phys.1993,98,5648-5652.
    [18]Moller, C.; Plesset, M. S. Phys. Rev.1934,46,618-622.
    [19]Fletcher, G D.; Rendell, A. P.; Sherwood, P. Mol. Phys.1997,91,431-438.
    [20]Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. Chem. Phys. Lett.1989,157,479-483.
    [21]Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer P. V. R. J. Comput. Chem.1983,4,294-301.
    [22]Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; DeFrees, D. J.; Pople, J. A.; Gordon, M. S. J. Chem. Phys.1982,77,3654-3655.
    [23]Trevor, M. L. J. Chem. Eng. Data.2003,48,1587-1590.
    [24]Hehre, W. J.; Ditchfield R.; Pople, J. A. J. Chem. Phys.1972,56,2257-2261.
    [25]Fukui, K.; Fujimoto, H. World Scientific, Singapore,1997.
    [26]Hoffmann, R. Rev. Mod. Phys.1988,60,601-628.
    [27]Bandres, I.; Giner, B. J. Chem. Eng. Data,2009,54,236-240.
    [28]Brown, T. N.; Nelaine, M. D. J. Phys. Chem. B,2006,110,20546-20554.
    [29]Klici, J. J.; Guida, W. C. J. Phys. Chem. A,2002,106,1327-1335.
    [30]Klamt, A.; Beck, M. E.J. Phys. Chem. A,2003,107,9380-9386.
    [31]Andersson, K.; Malmqvist, P. A.; Roos, B. O. J. Chem. Phys.1992,96, 1218-1226.
    [32]Andersson, K.; Malmqvist, P. A.J. Phys. Chem.,1990,94,5483-5488.
    [33]Lee, J. M.; Ruckes, S. J. Phys. Chem. B 2008,112,1473-1476.
    1. Welton T. Chem Rev.1999,99,2071-2083.
    2. Brennecke JF, Maginn E J. AIChE J.2001,47,2384-2389.
    3. Sheldon R. Chem Commun 2001,23,2399-2407.
    4. Carmichael AJ, Holbrey JD, McCormac PB, Seddon KR. Org Lett 1999,1, 997-1000.
    5. Chiappe C, Capraro D, Conte V, Pieraccini D Org Lett 2001,3,1061-1063.
    6. Stark A, MacLean B, Singer RDJ Chem Soc Dalton Trans 1999,3,63-66.
    7. Chun S, Dzyuba SV, Bartsch RA Anal Chem 2001,73,3737-3743.
    8. Fadeev AG., Meagher MM Chem Commun 2001,3,295-296.
    9. Schafer T, Rodrigues CM, Afonso AM, Crespo JG Chem Commun 2001,78, 1622-1623.
    10. Bates ED, Mayton RD, Ntai I, Davis JH J Am Chem Soc Commun 2002,124, 926-927.
    11. Andreas H, Jochen KL, Christiane W. J Chem Eng Data 2003,48,472-474.
    12. Blanchard LA, Brennecke JF. Ind Eng Chem Res 2001,40,287-292.
    13. Blanchard LA, Brennecke JF. Ind Eng Chem Res 2001,40,2550-2550.
    14. Holbrey JD, Reichardt WM, Nieuwenhuyzen M, Sheppard O, Hardacre C, Rogers RD. Chem Commun 2003,20,476-477.
    15. MillerⅡ AL, Bowden NB. Chem Commun 2007,20,2051-2053.
    16. Jackson DS, Dupont J. Organometallics 2008,27,4439-4442.
    17. Shi F, Xiong H Chem Commun 2003,9,1054-1055.
    18. Berlyn RM, Sudhir NVKA, Ladewski RL, Brennecke JF. J Phys Chem B 2007, 111,131-138.
    19. Crosthwaite JM, Muldoon MJ, Aki SNVK, Maginn EJ, Brennecke JF. J Phys Chem B 2006,110,9354-9361.
    20. Crosthwaite JM, Aki SNVK Maginn EJ, Brennecke JF. J Phys Chem B 2004,108, 5113-5119.
    21. Harifi-Mood AR, Habibi-Yangjeh A, Gholami MR. J Phys Chem B 2006,110, 7073-7079.
    22. Marquis S, Ferrer B, Alvaro M, Garcia H. J Phys Chem A 2007,111,6034-6038.
    23. Chapeaux A, Simoni LD, Stadtherr MA, Brennecke JF J Chem Eng Data 2007,52, 2462-2467.
    24. Domaska U, Oek-Tryznowska Z, Krlikowski MJ. Chem Eng Data 2007,52, 1872-1880.
    25. Wells TP, Hallett JP, Williams CK, Welton T J Org Chem 2008,73,5585-5588.
    26. Hanke CG, Atamas NA, Lynden-Bell RM Green Chemistry 2002,4,107-111.
    27. Lopes JNC, Gomes MF J Phys Chem B 2006,110,16816-16818.
    28. Heintz A, Lehmann JK, Wertz C. J Chem Eng Data 2003,48,472-474.
    29. Becke AD. J Chem Phys 1993,98,5648-5652.
    30. Moller C, Plesset MS. Phys Rev 1934,46,618-622.
    31. Fletcher GD, Rendell AP, Sherwood P. Mol Phys 1997,91,431-438.
    32. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M. Chem Phys Lett 1989, 157,479-483.
    33. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR. J Comput Chem 1983, 4,294-301.
    34. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, DeFrees DJ, Pople JA, Gordon MS. J Chem Phys 1982,77,3654-3665.
    35. Gordon MS. Chem Phys Lett 1980,76,163-168.
    36. Boys SF, Bernardi F. Mol Phys 1970,19,553-566.
    37. Trevor ML. J Chem Eng Data 2003,48,1587-1590.
    38. Hehre WJ, Ditchfield R, Pople JA. J Chem Phys 1972,56,2257-2261.
    39. Fukui K, Fujimoto H. World Scientific, Singapore (1997)
    40. Hoffmann R Rev Mod Phys 1988,60,601-628.
    41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JAJr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision D.01, Gaussian Inc:Wallingford CT
    42. Bondi A. J Phys Chem 1964,68,441-451.
    43. Robin T, Olga K J Am Chem Soc 1982,104,5063-5070.
    44. Yong W, Haoran L. J Phys Chem B 2006,110,24646-24651.
    45. Andersson K, Malmqvist PA, Roos BO. J Chem Phys 1992,96,1218-1226.
    46. Andersson K, Malmqvist PA. J Phys Chem 1990,94,5483-5488.
    47. Zhang LZ, Han JZ. Fluid Phase Equilibria 2007,255,179-185.
    48. Makowska A, Dyoniziak E. J Phys Chem B 2010,114,2504-2508.
    49. Domanska U. Thermochim Acta 2006,448,19-30.
    50. Crosthwaite JM, Sudhir NVKA. J Phys Chem B 2004,108,5113-5119.
    51. Shiflett M B, Yokozeki A Ind Eng Chem Res 2008,47,926-934.
    52. Steiner T, Angew. Chem Int Ed 2002,41,48-76.
    53. Rozeboom MD, Tegmo-Larsson IM.J Org Chem 1981,46,2338-2345.
    54. Hunt PA, Gould IR. J Phys Chem A 2006,110,2269-2282.
    55. Dong K, Zhang SJ. J Phys Chem A 2006,110,9775-9782.
    56. Turner EA, Pye CC. J Phys Chem A 2003,107,2277-2288.
    57. Emilio JG, Luisa A. J Chem Eng Data 2006,51,1446-1452.
    58. Emilio JG, Begoa G. J Chem Eng Data 2007,52,1641-1648.
    [1]Kumar, A. Chem Rev.2001,101,1-19.
    [2]Ryu, D. H.; Zhou, G.; Corey, E. J. J. Am. Chem. Soc.2004,126,4800-4802.
    [3]Kumar, A.; Pawar, S. S. J. Mol. Catal. A:Chem.2004,208,33-37.
    [4]Aversa, M. C.; Barattucci, A.; Bonaccorsi, P.; Giannetto, P.;Panzalorto, M.; Rizzo, S. Tetrahedron:Asymmetry 1998,9,1577-1587.
    [5]Angueira, E.J.; White, M.G. J. Mol. Catal. A,2005,227,51.
    [6]Otto, S.; Bertoncin, F.; Engberts, J. B. F. N. J. Am. Chem. Soc.1996,118,7702.
    [7]Kiesman, W. F.; Petter, R. C. Tetrahedron:Asymmetry 2002,13,957.
    [8]Xiao, Y.; Malhotra, S. V. Tetrahedron Lett.2004,45,8339-8342.
    [9]T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. V. R. Schleyer (1983) J. Comput. Chem.4:294
    [10]M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, D. J. DeFrees, J. A. Pople, M. S. Gordon (1982) J. Chem. Phys.77:3654
    [11]M. S. Gordon (1980) Chem. Phys. Lett 76:163
    [12]M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Jr. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople (2004) Gaussian 03, Revision D.01; Gaussian, Inc.:Wallingford CT
    [13]K. Fukui (1981) Acc. Chem. Res.14:363.
    [14]Welton, T. Chem. Rev.1999,99,2071.
    [15]Brennecke,J.F.;Maginn,E.J.AIChE J.2001,47,2384.
    [16]SOng,C.E.Chem.Commun.2004,9,1033.
    [17]Ranke,S.;Stolte,R.Chem.Rev.2007,107,2183.
    [18]Stolte,S.;Matzke,M.Green Chem.2007,9,1170.
    [19]Torrecilla,J.S.;*DUFtD, J.J.Hazard.Mater.2009,164,182.
    [20]Hiroyuki Ohno,Kenta Fukumoto,Acc.Chem.Res.,2007,40(11),1122-1129
    [21]Liu,Q.;Wu,K.Chem.Eur.J.2009,15,9889.
    [22]Fukumoto,K.;Yoshizawa,M.J.Am.Chem.Soc.2005,127,2398.
    [23]Kagan,H.B.;Riant,O.Chem.Rev.1992,92,1007.
    [24]Tao,G. H.,He,L.Green Chem.,2006,8,639.
    [25]Becke,A.D.Phys.Rev.A.1988,38,3098.
    [26]Lee,C.;Yang,W.T.;Pair,R.G.Phys.Re.B 1988,37,785.
    [27]Perdew,J.P.;Wang,Y.Phys.Rev.B 1992,45,13244.
    [28]Becke,A.D.J.Chem.Phys.1993,98,5648.
    [29]Perdew,J.P.;Wang,Y.Phys.Rev.B 1992,45,13244.
    [30]Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;ScuUseria,G.E.;Robb,M.A. Cheeseman,J.R.;Montgomery,J.A.,Jr.;Vreven,T.;Kudin,K.N.;Burant,J.C.; Millam,J.M.;Iyengar,S.S.;Tomasi,J.;Barone,V.;Mennucci,B.;Cossi,M.; Scalmani,G.;Rega,N.;Petersson,G.A.;Nakatsuji,H.;Hada,M.;Ehara,M.;Toyota, K.;Fukuda,R.;Hasegawa,J.;Ishida,M.;Nakajima,T.;Honda,Y.;Kitao,O.;Nakai, H.;Klene,M.;Li,X.;Knox,J.E.;Hratchian,H.P.;Cross,J.B.;Bakken,V.;Adamo, C.;Jaramillo,J.;Gomperts,R.;Stratmann,R.E.;Yazyev,O.;Austin,A.J.;Cammi, R.;Pomelli,C.;Ochterski,J.W.;Ayala,P.Y.;Morokuma,K.;Voth,G.A.;Salvador, P.;Dannenberg,J.J.;Zakrzewski,V.G.;Dapprich,S.;Daniels,A.D.;Strain,M.C. Farkas,O.;Malick,D.K.;Rabuck,A.D.;Raghavachari,K.;Foresnan,J.B.;Ortiz,J. V.;Cui,Q.;Baboul,A.G.;Clifford,S.;Cioslowski,J.;Stefanow,B.B.;Liu,G.; Liashenko,A.;Piskorz,P.;Komaromi,I.;Martin,R.L.;Fox,D.J.;Keith,T. Al-Laham,M.A.;Peng,C.Y.;Nanayakkara,A.;Challacombe,M.;Gill,P.M.W.; Johnson,B.;Chen,W.;Wong,M.W.;Gonzalez,C.;Pople,J.A.Gaussian 03, Revision D.01;Gaussian,Inc.;Wallingford CT,2004.
    [31]Fukui, K. Ace. Chem. Res.1981,14,363.
    [32]Trevor, M. L. J. Chem. Eng. Data.2003,48,1587.
    [33]Hehre, W. J.; Ditchfield R.; Pople, J. A. J. Chem. Phys.1972,56,2257.
    [34]Takano, Y.; Houk, K. N. J. Chem. Theory Comput.2005,1,70.
    [35]Tapia, O. J. Math. Chem.1992,10,139.
    [36]Tomasi, J.; Persico, M. Chem. Rev.1994,94,2027.
    [37]Simkin, B. Y.; Sheikhet, I. Quantum Chemical and Statistical Theory of Solutions—A Computational Approach; Ellis Hor-wood:London,1995.
    [38]Cances, E.; Mennunci, B.; Tomasi, J.J. Chem. Phys.1997,107,3032.
    [39]Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Chem. Phys. Lett.1996,255,327.
    [40]Barone, V.; Cossi, M.; Tomasi, J. J. Comput. Chem.1998,19,404.
    [41]Xiao, Y.; Malhotra, S. V. Tetrahedron Lett.2004,45,8339.
    [42]Zheng, X.; Qian,Y. B.; Wang,Y M. Catal. Comm.2010,11,567.
    [43]Banuelos, P.; Garcia, J. M. J. Org. Chem.2010,75,1458.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700