用户名: 密码: 验证码:
基于包结络合作用的超分子水凝胶和大分子自组装的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我们课题组在20世纪90年代研究了基于氢键相互作用的相容体系和络合体系。研究发现,随着氢键作用密度的增加,体系可实现“不相容—相容—络合”转变。随后,我们课题组提出并发展了氢键诱导的“非共价键接胶束”(NCCM)的概念,取得丰硕的成果。最近,我们又将超分子化学中的主—客体间的分子识别相互作用引入到大分子自组装的领域中,不仅拓展了NCCM的研究范围,更深化了我们对非共价键连接的理解。本论文的研究工作是在课题组已有的工作基础上开展起来的。主要是利用环糊精与客体分子的包结络合作用,在实现准聚轮烷(PPR)水凝胶的光可逆、粘土杂化水凝胶和不同链长的偶氮苯季铵盐诱导聚丙烯酸PAA的组装等方面展开研究。本论文分为以下几部分:
     1.基于竞争主客体相互作用的光敏准聚轮烷水凝胶的研究
     目前,对α-环糊精(α-CD)和聚乙二醇(PEG)形成的PPR水凝胶的研究很活跃,但是很少涉及其环境响应性的问题。我们提出了一个便捷的光响应性超分子策略来实现PPR水凝胶的解离以及再次形成。我们首先合成了一种含偶氮苯的水溶性光敏竞争客体分子:Azo-Cl-N+,进一步地,基于三种竞争主客体相互作用,我们成功地制备了光敏准聚轮烷水凝胶。我们的研究表明,这三种主客体相互作用的强弱顺序如下:trans-Azo-C1-N+/a-CD> PEG/a-CD> cis-Azo-C1-N+/α-CD。PEG10K和α-CD在水中可以形成PPR水凝胶。在该水凝胶中加入竞争的客体分子trans-Azo-C 1-N+,由于它是更强的客体分子,可以取代PEG,与α-CD形成包结络合物,从而使得水凝胶变成了溶液。对该溶液进行紫外光照射后,trans-Azo-C1-N+异构成cis-Azo-C1-N+,失去了与α-CD的络合能力,α-CD又重新回到PEG链上,使得PPR水凝胶再次生成。对该水凝胶进行可见光照射后,水凝胶又变成了溶液。如此光可控的凝胶—溶胶以及溶胶—凝胶转变可以循环往复。因此,在本论文中,我们不仅证明了广泛研究的PEG/a-CD PPR水凝胶具有超分子活性,而且实现了这一超分子材料的可逆转变。
     2.粘土上的准聚轮烷及其水凝胶的研究
     PPR水凝胶的力学性能很差,但是它具有剪切变稀的特性,可以应用于生物医药材料。而粘土在创造新的优异的聚合物水凝胶方面已显示出优越性。如果将纳米结构的粘土引入到PPR水凝胶中会是非常有价值的课题。因为可以期望粘土的引入不仅能降低PPR水凝胶的有机固含量,还可以提高其力学性能。然而,事实上,这是很难实现的,因为PEG链和粘土片层之间很强的相互作用将使得PEG被紧紧地吸附在粘土的表面,从而无法穿入环糊精的空腔。在本论文中,我们提出一个非常简便的方法,将粘土有效地引入到PPR水凝胶中。
     我们对PEG进行化学修饰,即在末端修饰上阳离子,这样PEG链便以类似于刷子的构象植入粘土的表面。这种刷子的构象使得α-CD能够串在PEG链上,从而形成杂化的准聚轮烷水凝胶。这种杂化水凝胶的弹性模量比没有修饰的PPR水凝胶高出一个数量级。另外,这种杂化水凝胶还具有超分子活性:基于上一章的竞争主客体相互作用,在紫外可见光照下,可以实现“凝胶—溶胶”转变。
     3.基于包结络合作用的以粘土为超级交联剂的杂化超分子凝胶
     我们合成了一种偶氮苯的季铵盐衍生物Azo-C4-N+,以及带有可聚合双键的环糊精单体GMA-CD,利用两者之间的包结络合作用得到组装体N+-(Azo-CD)-GMA,然后通过静电作用,与粘土片层上的Na+进行阳离子交换,得到负载了可聚合双键的粘土纳米片层的超级交联剂C-GMA,接着加入共单体PEG大分子单体,通过调节粘土的修饰率,采用自由基共聚合的方法,制备了粘土杂化的超分子水凝胶。
     4.不同链长的偶氮苯衍生物诱导聚丙烯酸的自组装
     我们合成了不同链长的偶氮苯季铵盐Azo-R-N+:Azo-C1-N+,Azo-C4-N+, Azo-C10-N+,并研究了偶氮苯季铵盐诱导的PAA的组装行为、偶氮苯季铵盐/α-CD诱导的PAA的组装行为及其pH响应和光响应。初步研究表明:(1)PAA/Azo-C4-N+可以组装成为棒状结构,而PAA/Azo-C1-N+和PAA/Azo-C10-N+可以组装成为球状结构;(2)PAA/Azo-C1-N+/α-CD可以组装成为囊泡,PAA/Azo-C4-N+/α-CD可以组装成为实心小球,PAA/Azo-C10-N+/α-CD可以组装成为长棒;(3)PAA/Azo-R-N+具有pH响应,随着pH的升高,PAA/Azo-C4-N+能够从棒状转变成球;(4)PAA/Azo-R-N+/α-CD具有pH响应,随着pH的升高,PAA/Azo-C4-N+/α-CD能够从聚集的小球转变成分散的球,最终球状结构遭到破坏;(5)PAA/Azo-R-N+/α-CD具有光响应,经过紫外光照后,PAA/Azo-C4-N+/α-CD由球变成棒,类似于PAA/Azo-C4-N+的聚集形态。
Our research group studied the interpolymer complexation and miscibility enhancement by hydrogen bonding in the 1990s. It was found that immiscibility-miscibility-complexation transitions occur upon progressive increase in the density of hydrogen bonding. Later on, we proposed and developed a new concept of "Non-Covalent Connected Micelles" (NCCMs). Recently, we constructed a new kind of NCCMs using host-guest recognition, which is widely used in supramolecular chemistry, as the driving force for macromolecular self-assembly. Based on the previous research work in our group, the present thesis is mainly focusing on realizing photoresponsibility of pseudopolyrotaxane (PPR) hydrogel, preparation of hydrogel hybridized with clay, and self-assembly of poly(acrylic acid) (PAA) induced by azobenzene pyridinium with different alkyl chains, using inclusion complexation between cyclodextrin (CD) and guest molecules as the driving force. The content of this thesis is as follows:
     1. Photoreversible pseudopolyrotaxane hydrogels based on competitions of host-guest interactions
     Photoreversible pseudopolyrotaxane (PPR) hydrogels were simply achieved via competitions of three host-guest interactions. Our studies proved that the strength of the interactions is in the sequence of turans-Azo-C1-N+/α-CD> PEG/a-CD> cis-Azo-C1-N+/a-CD. PEG10K andα-CD form PPR hydrogel in water. The hydrogel can be transfered into sol by simply adding competitive guest trans-Azo-C1-N+, which replaces PEG units forming complexes with a-CD. After UV irradiation, PPR hydrogel regenerates because Azo-C1-N+ in cis form looses its ability to complex with a-CD and then the latter is threaded by PEG chain again. Following irradiation of the regenerated hydrogel by visible light converts it to sol again. The photocontrollable processes of gel-to-sol and sol-to-gel can be repeated cyclically. Thus the widely investigated PEG/a-CD PPR hydrogel is proved'active'in supramolecular chemistry, and the reversible nature of the supramolecular materials is fully materialized.
     2. Pseudopolyrotaxane(PPR) on clay nanoplatelets:demonstration and forming hydrogels wherefrom
     Clay is efficient in fabricating new polymeric hydrogels with outstanding properties. However, up to now, no reports on introducing clay nanostructures into supramolecular hydrogel, e.g. pseudopolyrotaxane (PPR) hydrogels, appeared. The PPR hydrogels, though usually are mechanically weak, are promising as biomedical materials because of their shear-thinning properties. Introducing clay nanostructures into PPR hydrogels are very attractive as it is reasonable to expect to improve the mechanical properties as well as to reduce the organic contents. However, in practice this target is difficult to reach, as PEG chains possess strong interactions with clay nano-platelets so may tightly adhere to the platelet surfaces, which makes the PEG chains threading into CD cavities impossible.
     Herein, we report a very simple way of modifying PEG chain by capping with a pyridinium group (PEG-N+), which can anchor to clay surface via electrostatic interaction and thus make the chains to form brushes. Such chains are then able to thread into CDs and thus form hybrid PPR hydrogel. These hydrogels with homogeneously dispersed clay nanoplatelets display dynamic modulus one order of magnitude higher than the native hydrogel of PEG and a-CD. Furthermore, the resultant PPR hydrogel can perform photo-switchable sol-gel transitions fully based on the above discussed competitive host-guest interaction.
     3. Hybrid supramolecular hydrogel using clay nanosheet as supra-cross-linkers via inclusion complexation
     A derivative of azobenzene Azo-C4-N+ andβ-cyclodextrin monomer GMA-CD was firstly synthesized and inclusion complex N+-(Azo-CD)-GMA formed between them. This inclusion complex was ion exchanged with Na+of clay to obtain double bond functionalized clay (C-GMA) as "supramolecular-cross-linker" (SCL). Adding a co-monomer and performing the polymerization will lead to the formation of hybrid supramolecular hydrogel.
     4. Self assembly of poly(acrylic acid) (PAA) induced by azobenzene pyridinium with different alkyl chains
     Azobenzene pyridinium with different alkyl chains Azo-R-N+, named Azo-C1-N+, Azo-C4-N+ and Azo-C10-N+were synthesized. The self assembly of poly(acrylic acid) (PAA) induced by these azobenzene pyridinium and azobenzene/a-CD, and their pH sensitivity and light responsibility were studied. The results are as follows:
     (1) PAA/Azo-C4-N+ can self assemble into rods while PAA/Azo-C1-N+and PAA/Azo-C10-N+ self assemble into spheres;
     (2) PAA/Azo-Cl-N+/a-CD can self assemble into vesicles, while PAA/Azo-C4-N+/a-CD gives spheres and PAA/Azo-C 10-N+/a-CD gives rods;
     (3) PAA/Azo-R-N+ is pH sensitive. The morphology of PAA/Azo-C4-N+ can transfer from rods to spheres with increasing pH.
     (4) PAA/Azo-R-N+/a-CD is pH sensitive as well. The morphology of PAA/Azo-C4-N+/a-CD can transfer from aggregated spheres to separated spheres, and finally disappeared while the pH was increased.
     (5) PAA/Azo-R-N+/a-CD is light responsive. After UV irradiation, the morphology of PAA/Azo-C4-N+/a-CD can transfer from spheres to rods, similar to that of PAA/Azo-C4-N+
引文
[1]刘育,尤长城,张衡益,超分子化学:合成受体的分子识别与组装.天津:南开大学出版社,2001.
    [2]Lehn J.-M. Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules, and Molecular Devices(Nobel Lecture). Angew. Chem. Int. Ed., 1989,27(1):89-112.
    [3]Whitesides G. M., Mathias J. P., Seto C. T. Molecular Self-Assembly and Nanochemistry-a Chemical Strategy for the Synthesis of Nanostructures. Science, 1991,254(5036):1312-1319.
    [4]Whitesides G. M., Grzybowski B. Self-Assembly at all Scales. Science,2002, 295(5564):2418-2421.
    [5]Drexler, K. E. Molecular engineering: an Approach to the Development of General Capabilities for Molecular Manipulation. Proc. Nati. Acad. Sci. USA,1981,78(9): 5275-5278.
    [6]江明,A.艾森伯格,刘国军,张希,大分子自组装.北京:科学出版社,2006.
    [7]Robb I. D. Specialist Surfactants. London:Blackie Academic and Professional, 1997.
    [8]Evans D. F., Wennerstrom H. the Colloidal Domain:Where Physics, Chemistry, Biology, and Technology Meet. New York:Wiley-VCH,1998.
    [9]Holmberg K., Jonsson B., Kronberg B., Lindman B. Surfactants and Polymers in Aqueous Solution. West Sussex:Wiley,2003.
    [10]Halperin A., Tirrell M., Lodge T. P. Tethered Chains in Polymer Microstructures. Adv. Polym. Sci.,1992,100:31-71.
    [11]Zhang L. F., Eisenberg A. Multiple Morphologies and Characteristic of Crew-Cut Micelle-Like Aggregates of Polystyrene-b-Poly(acrylic acid) Diblock Copolymers in Aqueous Solutions. Science,1995,268(5218):1728-1730.
    [12]Zhang L. F., Eisenberg A. Morphogenic Effect of Added Ions on Crew-Cut Aggregates of Polystyrene-b-Poly(acrylic acid) Block Copolymers in Solutions. Macromolecules,1996,29(27):8805-8815.
    [13]Zhang L. F., Eisenberg A. Multiple Morphologies and Characteristics of "Crewcut" Micelle-Like Aggregates of Polystyrene-b-Poly(acrylic acid) Diblock Copolymers in Aqueous solutions. J. Am. Chem. Soc.,1996,118(13):3168-3181.
    [14]Yu K. Zhang L. F., Eisenberg A. Novel Morphologies of "Crew-Cut" Aggregates of Amphiphilic Diblock Copolymers in Dilute Solution. Langmuir,1996,12(25): 5980-5984.
    [15]Decher G., Hong J-D. Buildup of Ultrathin Multilayer Films by a Self-Assembly Process. I. Consecutive Adsorption of Anionic and Cationic Bipolar Amphiphiles on Charged Surfaces. Makromol Chem., Macromol Symp.,1991,46:321-327.
    [16]Decher G. Fuzzy Nanoassemblies:toward Layered Polymeric Multicomposites. Science,1997,277(5330):1232-1237.
    [17]Zhang X., Shen J. C. Self-Assembled Ultrathin Films:from Layered Nanoarchitectures to Functional Assemblies. Adv. Mater.,1999,11(13):1139.
    [18]Sukhorukov G. B., Donath E., Davis S., et al. Stepwise Polyelectrolyte Assembly on Particle Surfaces:a Novel Approach to Colloid Design. Polym. Adv. Tech., 1998,9(10-11):759-767.
    [19]Donath E., Sukhorukov G. B., Caruso F., et al. Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes. Angew. Chem. Int. Ed.,1998, 37(16):2202-2205.
    [20]Sukhorukov G. B., Donath E., Lichtenfeld H., et al. Layer-by-Layer Self Assembly of Polyelectrolytes on Colloidal Particles. Colloids Surf. A.,1998, 137(1-3):253-266.
    [21]Caruso F., Caruso R. A., Mohwald H. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science,1998,282(5391):1111-1114.
    [22]Ma Z. W., Mao Z. W., Gao C. Y. Surface Modification and Property Analysis of Biomedical Polymers Used for Tissue Engineering. Colloids Surf. B,2007,60(2): 137-157.
    [23]Zezin, A. B., Rogacheva V. B., Novoskoltseva O. A., Kabanov V. A. Self-assembly in Ternary System:Cross-linked Polyelectrolyte, Linear Polyelectrolyte and Surfactant. Macromol. Symp.,2004,211(1):157-174.
    [24]Kasaikin V. A., Zakharova J. A., Litmanovich E. A., Ivleva E. M., Zazin A. B., Kabanov V. A. Aggregation of Ionic Amphiphils in Dilute Solutions Controlled by Oppositely Charged Polyelectrlyte Templates. Macromol. Symp.,2003,195(1): 269-274.
    [25]Bronich T. K., Keifer P. A., Shlyakhtenko L. S., Kabanov A. V. Polymer Micelle with Cross-Linked Ionic Core. J. Am. Chem. Soc.,2005,127(23):8236-8237.
    [26]Harada A., Kataoka K. Chain Length Recognition:Core-Shell Supramolecular Assembly from Oppositely Charged Block Copolymer. Science,1999,283(5398): 65-67.
    [27]Jiang M., Li M., Xiang M. L., Zhou H., Interpolymer Complexation and Miscibility Enhancement by Hydrogen Bonding. Adv. Polym. Sci.,1999,146: 121-196.
    [28]Jiang M., Duan H. W., Chen D. Y. Macromolecular Assembly:from Irregular Aggregates to Regular Nanostructures. Macromol. Symp.,2003,195(1): 165-170.
    [29]Chen D. Y., Jiang M. Strategies for Constructing Polymeric Micelles and Hollow Spheres in Solution via Specific Intermolecular Interactions. Acc. Chem. Res., 2005,38(6):494-502.
    [30]Liu S. Y, Zhang G. Z., Jiang M. Soluble Graft-Like Complexes Based on Poly(4-vinyl pyridine) and Carboxy-Terminated Polystyrene Oligomers due to Hydrogen Bonding. Polymer,1999,40(19):5449-5453.
    [31]Guo M.Y., Jiang M. Non-Covalently Connected Micelles (NCCMs):the Origins and Development of a New Concept. Soft Matter,2009,5(3):495-500.
    [32]Wang M., Zhang G., Chen D., Jiang M., Liu S. Noncovalently Connected Polymeric Micelles Based on a Homopolymer Pair in Solutions. Macromolecules, 2001,34(20):7172-7178.
    [33]Jiang M., Duan H. W., Chen D. Y. Macromolecular Assembly:from Irregular Aggregates to Regular Nanostructures. Macromol. Symp.,2003,195:165-170.
    [34]Zhao H. Y., Gong J., Jiang M., An Y. L. a New Approach to Self Assembly of Polymer Blends in Solution. Polymer,1999,40(16):4521-4525.
    [35]Yuan X. F., Jiang M., Zhao H. Y., Wang M., Zhao Y., Wu C. Noncovalently Connected Polymeric Micelles in Aqueous Medium. Langmuir,2001,17(20): 6122-6126.
    [36]Wang M., Jiang M., Ning F. L., Chen D. Y., Liu S. Y, Duan H. W. Block-Copolymer-Free Strategy for Preparing Micelles and Hollow Spheres: Self-assembly of Poly(4-vinylpyridine) and Modified Polystyrene. Macromolecules,2002,35(15):5980-5989.
    [37]Zhang Y W., Jiang M., Zhao J. X., Wang Z. X., Dou H. J., Chen D. Y. pH-responsive Core-shell Particles and Hollow Spheres Attained by Macromolecular Self-assembly. Langmuir,2005,21(4):1531-1538.
    [38]Duan H. W., Chen D. Y., Jiang M., Gan W. J., Li S. J., Wang M., Gong J. Self-Assembly of Unlike Homopolymers into Hollow Spheres in Nonselective Solvent. J. Am. Chem. Soc.,2001,123(48):12097-12098.
    [39]Duan H. W., Kuang M., Wang J., Chen D. Y., Jiang M. Self-Assembly of Rigid and Coil Polymers into Hollow Spheres in their Common Solvent. J. Phys. Chem. B.,2004,108(2):550-555.
    [40]Kuang M., Duan H. W., Wang J., Chen D. Y., Jiang M. a Novel Approach to Polymeric Hollow Nanospheres with Stabilized Structure. Chem. Commun., 2003, (4):496-497.
    [41]Xie D., Jiang M. Hydrogen-Bonded Dendronized Polymers and their Self-Assembly in Solution. Chem. Eur. J.,2007,13(12):3346-3353.
    [42]Zhang Y. W., Jiang M., Zhao J. X., Ren X. W., Chen D. Y., Zhang G. Z. a Novel Route to Thermosensitive Polymeric Core-Shell Aggregates and Hollow Spheres in Aqueous Media. Adv. Funct. Mater.,2005,15(4):695-699.
    [43]张幼维,江明.获得环境响应聚合物胶束和空心球的途径.高分子学报,2005,(5):650-654.
    [44]任现文,江明.原位聚合法制备温敏性聚合物核壳胶束的响应温度调控及其负载行为.高等学校化学学报.2006,27(11):2204-2208.
    [45]张幼维,赵炯心,江明,汪佳烨.制备核-壳结构聚合物纳米微球和空心球的原位聚合方法的普适性研究.高等学样化学学报2006,2007(9):1762-1766.
    [46]Cordier P., Tournilhac F., Soulie-Ziakovic C., Leibler L. Self-Healing and Thermoreversible Rubber from Supramolecular Assembly. Nature,2008, 451(7181):977-980.
    [47]Kurth D. G., Higuchi M. Transition Metal Ions:Weak Links for Strong Polymers. Soft. Matter.,2006,2(11):915-927.
    [48]Jiang M., Zhou C., Zhang Z. Compatibilization in Ionomer Blends.2. Coordinate Complexation and Proton Transfer. Polym. Bull.,1993,30(4):455-460.
    [49]Lee H., Kepley L. J., Hong H. G.., Akhter S., Mallouk T. E. Adsorption of Ordered Zirconium Phosphonate Multilayer Films on Silicon and Gold Surfaces. J. Phys. Chem.,1988,92(9):2597-2601.
    [50]Mallouk T. E., Gavin J. A. Molecular Recognition in Lamellar Solids and Thin Films. Acc. Chem. Res.,1998,31(5):209-217.
    [51]Guang C., Hong H. G, Mallouk T. E. Layered Metal Phosphates and Phosphonates-from Crystals to Monolayers. Acc. Chem. Res.,1992,25(9): 420-427.
    [52]Schubert U. S., Heller M. Metallo-supramolecular Initiators for the Preparation of Novel Functional Architectures. Chem. A-Eur. J.,2001,7(24):5252-5259.
    [53]Gohy J. F., Lohmeijer, B. G. G., Varshney S. K., Decamps B., Leroy E., Boileau S., Schubert U. S. Stimuli-Responsive Aqueous Micelles from an ABC Metallo-Supramolecular Triblock Copolymer. Macromolecules,2002,35(26): 9748-9755.
    [54]Hoogenboom R., Schubert U. S. The Use of (Metallo-)Supramolecular Initiators for Living/controlled Polymerization Techniques. Chem. Soc. Rev.,2006,35(7): 622-629.
    [55]Moughton A. O., O'Reilly R. K. Noncovalently Connected Micelles, Nanoparticles, and Metal-Functionalized Nanocages Using Supramolecular Self-Assembly. J. Am. Chem. Soc.,2008,130(27):8714-8725.
    [56]Moughton A. O., O'Reilly R. K., Using Metallo-Supramolecular Block Copolymers for the Synthesis of Higher Order Nanostructured Assemblies. Macromol. Rapid. Commun.,2010,31(1):37-52.
    [57]Moughton A. O., Stubenrauch K., O'Reilly R. K., Hollow Nanostructures from Self-assembled Supramolecular Metallo-triblock Copolymers. Soft. Matter., 2009,5(12):2361-2370.
    [58]Harada A. Cyclodextrin-Based Molecular Machines. Acc. Chem. Res.,2001, 34(6):456-464.
    [59]http://www.lsbu.ac.uk/water/cyclodextrin.html
    [60]Szejtli J. Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev.,1998,98(5):1743-1753.
    [61]童林荟.环糊精化学—基础与应用.北京:科学出版社,2001:10-11.
    [62]Saenger W. Cyclodextrin Inclusion-compounds in Research and Industry. Angew. Chem. Int. Ed,1980,19(5):344-362.
    [63]Nelson G., Patonay G., Warner I. M. Fluorescence Lifetime Study of Cyclodextrin Complexes of Substituted Naphthalenes. Appl. Spectroscopy,1987, 41(7):1235-1238.
    [64]Palepu R. Reinsorough V. C. Beta-Cyclodextrin Inclusion of Adamantane Derivatives in Solution. Aust. J. Chem.,1990,43(12):2119-2123.
    [65]Isnin R., Salam C., Kaifer A. E. Bimodal Cyclodextrin Complexation of Ferrocene Derivatives Containing N-alkyl Chains of Varying Length. J. Org. Chem.,1991,56(1):35-41.
    [66]Harada A., Takahashi S. Preparation and Properties of Inclusion-compounds of Cyclodextrins with Organotransition Metal-complexes. J. Macromol. Sci-Chem., 1989,26(2-3):373-380.
    [67]Ueno A., Suzuki I., Osa T. Host-Guest Sensory Systems for Detecting Organic Compounds by Pyrene Excimer Fluorescence. Anal. Chem.,1990,62(22):2461-2466.
    [68]Delapena A. M., Ndou T., Zung J. B., et al. Stoichiometry and Formation-Constants of Pyrene Inclusion Complexes with Beta-Cyclodextrin and Gamma-Cyclodextrin. J. Phys. Chem.,1991,95(8):3330-3334.
    [69]Vogtle F., Muller W. M. Complexes of γ-Cyclodextrin with Crown Ethers, Cryptands, Coronates, and Cryptates. Angew. Chem. Int. Ed.,1979,18(8): 623-624.
    [70]Saenger W. Cyclodextrin Inclusion Compounds in Research and Industry. Angew. Chem. Int. Ed.,1980,19(5):344-362.
    [71]Harada A., Li J., Kamachi M. Preparation and Properties of Inclusion Complexes of Poly(ethylene glycol) with Alpha-cyclodextrin. Macromolecules,1993,26(21): 5698-5703.
    [72]Kawaguchi Y., Nishiyama T., Okada M., Harada A., et al. Complex Formation of Poly(epsilon-caprolactone) with Cyclodextrins. Macromolecules,2000,33(12): 4472-4477.
    [73]Harada A., Okada M., Li J. Preparation and Characterization of Inclusion Complexes of Poly(propylene glycol) with Cyclodextrins. Macromolecules,1995, 28(24):8406-8411.
    [74]Harada A., Okada M. Complex Formation between Hydrophobic Polymers and Methylated Cyclodextrins. Oligo(ethylene) and Poly(propylene). Polym. J.,1999, 31(11):1095-1098.
    [75]Harada A., Li J., Kamachi M. Complex-Formation between Poly(methyl Vinyl ether) and Gamma-Cyclodextrin. Chem. Lett.,1993,2:237-240.
    [76]Okumura H., Okada M., Kawaguchi Y., et al. Complex Formation between Poly(dimethylsiloxane) and Cyclodextrins:New Pseudo-polyrotaxanes Containing Inorganic Polymers. Macromolecules,2000,33(12):4297-4298.
    [77]Harada A., Suzuki S., Okada M., et al. Preparation and Characterization of Inclusion Complexes of Polyisobutylene with Cyclodextrins. Macromolecules, 1996,29(17):5611-5614.
    [78]Udachin K. A., Wilson L. D., Ripmeester J. A. Solid Polyrotaxanes of Polyethlene Glycol and Cyclodextrins:the Single Crystal X-Ray Structure of PEG-β-Cyclodextrin. J. Am. Chem. Soc.,2000,122(49):12375-12376.
    [79]Chen G. S., Jiang M. Cyclodextrin-Based Inclusion Complexation Bridging Supramolecular Chemistry and Macromolecular Self-Assembly. Chem. Soc. Rev.,DOI:10.1039/c0cs00153h.
    [80]Wang J., Jiang M. Polymeric Self-assembly into Micelles and Hollow Spheres with Multiscale Cavities Driven by Inclusion Complexation. J. Am. Chem. Soc., 2006,128(11):3703-3708.
    [81]Wang Z. P., Feng Z. Q., Gao C. Y. Stepwise Assembly of the Same Polyelectrolytes Using Host-Guest Interaction to Obtain Microcapsules with Multiresponsive Properties. Chem. Mater.,2008,20(13):4194-4199.
    [82]Uekama K., Hirayama F., Irie T. Cyclodextrin Drug Carrier Systems. Chem. Rev, 1998,98(5):2045-2076.
    [83]Zhang L., Wu Y. W., Brunsveld L. a Synthetic Supramolecular Construct Modulating Protein Assembly in Cells. Angew. Chem. Int. Ed.,2007,46(11): 1798-1802.
    [84]Uhlenheuer D. A., Wasserberg D., Nguyen H., Zhang L., Blum C., Subramaniam V., Brunsveld L. Modulation of Protein Dimerization by a Supramolecular Host-Guest System. Chem. A-Eur. J.,2009,15(35):8779-8790.
    [85]Ogino H. Relatively High-yield Syntheses of Rotaxanes-syntheses and Properties Of Compounds Consisting of Cyclodextrins Threaded by Alpha, Omega-Diaminoalkanes Coordinated to Cobalt(iii) Complexes. J. Am. Chem. Soc.,1981,103(5):1303-1304.
    [86]Harada A., Kamachi M. Complex-Formation between Poly(ethylene glycol) and Alpha-Cyclodextrin. Macromolecules,1990,23(10):2821-2823.
    [87]Harada A., Li J., Kamachi M. the Molecular Necklace-a Rotaxane Containing many Threaded Alpha-cyclodextrins. Nature,1992,356(6367):325-327.
    [88]Harada A., Li J., Kamachi M. Synthesis of a Tubular Polymer from Threaded Cyclodextrins. Nature,1993,364(6437):516-518.
    [89]Harada A., Li J., Kamachi M. Double-stranded Inclusion Complexes of Cyclodextrin Threaded on Poly(ethylene glycol). Nature,1994,370(6485): 126-128.
    [90]Harada A., Li J., Suzuki S., et al. Complex-formation between Polyisobutylene and Cyclodextrins-Inversion of Chain-Length Selectivity between Beta-Cyclodextrin and Gamma-Cyclodextrin. Macromolecules,1993,26(19): 5267-5268.
    [91]Okada M., Kamachi M., Harada A. Preparation and Characterization of Inclusion Complexes between Methylated Cyclodextrins and Poly(tetrahydrofuran). Macromolecules,1999,32(21):7202-7207.
    [92]Kamitori S., Matsuzaka O., Harada A., et al. a Novel Pseudo-Polyrotaxane Structure Composed of Cyclodextrins and a Straight-Chain Polymer:Crystal Structures of Inclusion Complexes of Beta-Cyclodextrin with Poly(trimethylene oxide) and Poly(propylene glycol). Macromolecules,2000,33(5):1500-1502.
    [93]Okada M., Harada A. Preparation of Beta-Cyclodextrin Polyrotaxane: Photodimerization of Pseudo-polyrotaxane with 2-Anthryl and Triphenylmethyl Groups at the Ends of Poly(propylene glycol). Org. Lett.,2004,6(3):361-364.
    [94]Okada M., Takashima Y., Harada A. One-Pot Synthesis of Gamma-cyclodextrin Polyrotaxane:Trap of Gamma-Cyclodextrin by Photodimerization of Anthracene-Capped Pseudo-Polyrotaxane. Macromolecules,2004,37(19): 7075-7077.
    [95]Nepogodiev S. A., Stoddar J. F. Cyclodextrin-Based Catenanes and Rotaxanes. Chem. Rev.,1998,98(5):1959-1976.
    [96]Li J., Harada A., Kamachi M. Sol-gel Transition during Inclusion Complex-Formation between Alpha-Cyclodextrin and High-Molecular-Weight Poly(ethylene glycol)s in Aqueous-Solution. Polym. J.,1994,26(9):1019-1026.
    [97]Li J., Loh X. J., Cyclodextrin-Based Supramolecular Architectures:Syntheses, Structures, and Applications for Drug and Gene Delivery. Adv. Drug Del. Rev., 2008,60(9):1000-1017.
    [98]Li J., Ni X. P., Leong K. W. Injectable Drug-Delivery Systems Based on Supramolecular Hydrogels Formed by Poly(ethylene oxide) and Alpha-Cyclodextrin. J. Biomed. Mater. Res. Part A.,2003,65A(2):196-202.
    [99]He L. H., Huang J., Chen Y. M. et al. Inclusion Complexation between Comblike PEO Grafted Polymers and Alpha-Cyclodextrin. Macromolecules,2005,38(8): 3351-3355.
    [100]He L. H., Huang J., Chen Y. M. et al. Inclusion Interaction of Highly Densely PEO Grafted Polymer Brush and Alpha-Cyclodextrin. Macromolecules,2005, 35(9):3845-3851.
    [101]Zhu X. Y., Chen L., Yan D. Y. et al. Supramolecular Self-Assembly of Inclusion Complexes of a Multiarm Hyperbranched Polyether with Cyclodextrins. Langmuir,2004,20(2):484-490.
    [102]Dai, XH; Dong, CM; Fa, HB, et al. Supramolecular Polypseudorotaxanes Composed of Star-Shaped Porphyrin-Cored Poly(epsilon-caprolactone) and Alpha-Cyclodextrin. Biomacromolecules,2006,7(12):3527-3533.
    [103]Huang, J; Li, ZY; Xu, XW, et al. Preparation of Novel Poly(ethyleneoxide-co-glycidol)-Graft-Poly(epsilon-caprolactone) Copolymers and Inclusion Complexation of the Grafted Chains with Alpha-Cyclodextrin. J. Polym. Sci. Part A,2006,44(11):3684-3691.
    [104]Zhao S. P., Zhang L. M., Ma D. Supramolecular Hydrogels Induced Rapidly by Inclusion Complexation of Poly(epsilon-caprolactone)-Poly(ethylene glycol)-Poly(epsilon-caprolactone) Block Copolymers with Alpha-Cyclodextrin In Aqueous Solutions. J. Phys. Chem. B,2006,110(25):12225-12229.
    [105]Harada A., Li J., Kamachi M. Preparation and Properties of Inclusion Complexes of Poly(ethylene glycol) with Alpha-Cyclodextrin. Macromolecules, 1993,26(21):5698-5703.
    [106]Harada A., Li J., Nakamitsu T., et al. Preparation and Characterization of Polyrotaxanes Containing many Threaded Alpha-cyclodextrins. J. Org. Chem., 1993,58(26):7524-7528.
    [107]Zhao S. P., Lee J. Supramolecular Hydrogels Instantaneously Formed by Inclusion Complexation between Amphiphilic Oligomers and Alpha-Cyclodextrins. Macromol. Res.,2009,17(3):156-162.
    [108]Li J., Li X., Zhou Z. H., et al. Formation of Supramolecular Hydrogels Induced by Inclusion Complexation between Pluronics and Alpha-cyclodextrin. Macromolecules,2001,34 (21):7236-7237.
    [109]Ni X. P., Cheng A., Li J. Supramolecular Hydrogels Based on Self-assembly between PEO-PPO-PEO Triblock Copolymers and Alpha-Cyclodextrin. J. Biomed. Mater. Res. Part A.,2009,88A(4):1031-1036.
    [110]Sabadini E., Cosgrove T. Inclusion Complex Formed between Star-Poly(ethylene glycol) and Cyclodextrins. Langmuir,2003,19(23): 9680-9683.
    [111]Huh K. M., Ooya T., Yui N., Lee W. K., et al. Supramolecular-Structured Hydrogels Showing a Reversible Phase Transition by Inclusion Complexation between Poly(ethylene glycol) Grafted Dextran and Alpha-Cyclodextrin. Macromolecules,2001,34(25):8657-8662.
    [112]Choi H. S., Kontani K., Huh K. M., et al. Rapid Induction of Thermoreversible Hydrogel Formation Based on Poly(propylene glycol)-Grafted Dextran Inclusion Complexes. Macromol. Biosci.,2002,2(6):298-303.
    [113]Huh K. M., Cho Y. W., Chung H., et al. Supramolecular Hydrogel Formation Based on Inclusion Complexation between Poly(ethylene glycol)-Modified Chitosan and Alpha-Cyclodextrin. Macromol. Biosci.,2004,4(2):92-99.
    [114]Nakama T., Ooya T., Yui N. Temperature- and pH-Controlled Hydrogelation of Poly(ethylene glycol)-Grafted Hyaluronic Acid by Inclusion Complexation with Alpha-Cyclodextrin. Polym. J.,2004,36(4):338-344.
    [115]Choi H. S., Yamamoto K., Ooya T., et al. Synthesis of Poly(epsilon-lysine)-Grafted Dextrans and their pH- and Thermosensitive Hydrogelation with Cyclodextrins. Chem. Phys. Chem.,2005,6(6):1081-1086.
    [116]Sabadini E., Cosgrove T., Taweepreda W. Complexation between Alpha-Cyclodextrin and Poly(ethylene oxide) Physically Adsorbed on the Surface of Colloidal Silica. Langmuir,2003,19(11):4812-4816.
    [117]Guo M. Y., Jiang M., Pispas S., et al. Supramolecular Hydrogels Made of End-Functionalized Low-Molecular-Weight PEG and Alpha-Cyclodextrin and their Hybridization with SiO2 Nanoparticles through Host-Guest Interaction. Macromolecules,2008,41(24):9744-9749.
    [118]Wang Z. M., Chen Y. M. Supramolecular Hydrogels Hybridized with Single-walled Carbon Nanotubes. Macromolecules,2007,40(9):3402-3407.
    [119]Zu S. Z., Han B. H. Aqueous Dispersion of Graphene Sheets Stabilized by Pluronic Copolymers:Formation of Supramolecular Hydrogel. J. Phys. Chem. C.,2009,113(31):13651-13657.
    [120]Ma D., Zhang L. M. Fabrication and Modulation of Magnetically Supramolecular Hydrogels. J. Phys. Chem B.,2008,112(20):6315-6321.
    [121]Ma D., Xie X., Zhang L. M. a Novel Route to In-Situ Incorporation of Silver Nanoparticles into Supramolecular Hydrogel Networks. J. Polym. Sci. Part B-Polym. Phys.,2009,47(7):740-749.
    [122]Jing B., Chen X., Wang X. D., et al. Sol-gel-sol Transition of Gold Nanoparticle-Based Supramolecular Hydrogels Induced by Cyclodextrin Inclusion. Chem. Phys. Chem.,2008,9(2):249-252.
    [123]Dong H. Q., Li Y. Y., Cai S. J., Zhuo R., Zhang X., Liu L. a Facile One-Pot Construction of Supramolecular Polymer Micelles from a-Cyclodextrin and Poly(ε-caprolactone). Angew. Chem. Int. Ed.,2008,47(30):5573-5576.
    [124]Shuai X., Merdan T., Unger F., Kissel T. Supramolecular Gene Delivery Vectors Showing Enhanced Transgene Expression and Good Biocompatibility. Bioconjugate Chem.,2005,16(2):322-329.
    [125]黄进.主客体作用诱导嵌段共聚物的组装.博士后出站报告.北京:中国科学院化学研究所,2005年8月.
    [126]Huang J., Ren L. X., Chen Y. M. pH-Temperature-Sensitive Supramolecular Micelles Based on Cyclodextrin Polyrotaxane. Polym. Int.,2008,57(5): 714-721.
    [127]Huang J., Ren L. X., Zhu H., Chen Y M. Hydrophilic Block Copolymer Aggregation in Solution Induced by Selective Threading of Cyclodextrins. Macromol. Chem. Phys.,2006,207(19):1764-1772.
    [128]Liu J., Sondjaja H. R., Tam K. C. Alpha-Cyclodextrin-Induced Self-Assembly of a Double-Hydrophilic Block Copolymer in Aqueous Solution. Langmuir, 2007,23(9):5106-5109.
    [129]Ren L. X., Ke F., Chen Y. M., Liang D. H., Huang J. Supramolecular ABA Triblock Copolymer with Polyrotaxane as B Block and its Hierarchical Self-Assembly. Macromolecules,2008,41(14):5295-5300.
    [130]Chui H. S., Yui N. Design of Rapidly Assembling Supramolecular Systems Responsive to Synchronized Stimuli. Prog. Polym. Sci.,2006,31(2):121-144.
    [131]Lee S. C., Choi H. S., Ooya T., Yui N. Block-Selective Polypseudorotaxane Formation in PEI-b-PEG-b-PEI Copolymers via pH Variation. Macromolecules, 2004,37(20):7464-7468.
    [132]Kidowaki M., Zhao C. M., Kataoka T., et al. Thermoreversible Sol-gel Transition of an Aqueous Solution of Polyrotaxane Composed of Highly Methylated Alpha-cyclodextrin and Polyethylene Glycol. Chem. Commun., 2006,39:4102-4103.
    [133]Karino T., Okumura Y, Zhao C. M., et al. Sol-Gel Transition of Hydrophobically Modified Polyrotaxane. Macromolecules,2006,39(26): 9435-9440.
    [134]Kataoka T., Kidowaki M., Zhao C. M., et al. Local and Network Structure of Thermoreversible Polyrotaxane Hydrogels Based on Poly(ethylene glycol) and Methylated alpha-cyclodextrins. J. Phys. Chem. B.,2006,110(48): 24377-24383.
    [135]Wei H. L., Yu H. Q., Zhang A. Y., et al. Synthesis and Characterization of Thermosensitive and Supramolecular Structured Hydrogels. Macromolecules, 2005,38(21):8833-8839.
    [136]Wintgens V., Charles M., Allouache F. Triggering the Thermosensitive Properties of Hydrophobically Modified Poly(N-isopropylacrylamide) by Complexation with Cyclodextrin Polymers. Macromol. Chem. Phys.,2005, 206(18):1853-1861.
    [137]Ritter H., Sadowski O., Tepper E. Influence of Cyclodextrin Molecules on the Synthesis and the Thermoresponsive Solution Behavior of N-Isopropylacrylamide Copolymers with Adamantyl Groups in the Side-Chains. Angew. Chem. Int. Ed,2003,42(27):3171-3173.
    [138]Schmitz S., Ritter H. Unusual Solubility Properties of Polymethacrylamides as a Result of Supramolecular Interactions with Cyclodextrin. Angew. Chem. Int. Ed,2005,44(35):5658-5661.
    [139]Tomatsu I., Hashidzume A., Harada A. Redox-Responsive Hydrogel System Using the Molecular Recognition of Beta-Cyclodextrin. Macromol. Rapid. Commun.,2006,27(4):238-241.
    [140]Tomatsu I., Hashidzume A., Harada A. Photoresponsive Hydrogel System Using Molecular Recognition of a-Cyclodextrin. Macromolecules,2005,38(12):5223-5227.
    [141]Tomatsu I., Hashidzume A., Harada A. Contrast Viscosity Changes upon Photoirradiation for Mixtures of Poly(acrylic acid)-Based Alpha-Cyclodextrin and Azobenzene Polymers. J. Am. Chem. Soc.,2006,128 (7):2226-2227.
    [142]Pouliquen G., Amiel C., Tribet C. Photoresponsive Viscosity and Host-guest Association in Aqueous Mixtures of Poly-Cyclodextrin with Azobenzene-Modified Poly(acrylic)acid. J. Phys. Chem. B.,2007,111(20): 5587-5595.
    [143]Liu X. K., Jiang M. Optical Switching of Self-Assembly:Micellization and Micelle-Hollow-Sphere Transition of Hydrogen-Bonded Polymers. Angew. Chem. Int. Ed,2006,45(23):3846-3850.
    [144]Zou J., Tao F. G, Jiang M. Optical Switching of Self-Assembly and Disassembly of Noncovalently Connected Amphiphiles. Langmuir,2007, 23(26):12791-12794.
    [145]Funasaki N., Ishikawa S., Neya S. Advances in Physical Chemistry and Pharmaceutical Applications of Cyclodextrins. Pure Appl. Chem.,2008,80(7): 1511-1524.
    [146]Taura D., Taniguchi Y, Hashidzume A., Harada A. Macromolecular Recognition of Cyclodextrin:Inversion of Selectivity of Beta-Cyclodextrin toward Adamantyl Groups Induced by Macromolecular Chains. Macromol. Rapid Commun.,2009,30(20):1741-1744.
    [147]Zou J., Guan B., Liao X. J., Jiang M., Tao F. G. Dual Reversible Self-Assembly of PNIPAM-Based Amphiphiles Formed by Inclusion Complexation. Macromolecules,2009,42(19):7465-7473.
    [148]Kuad P., Miyawaki A., Takashima Y., Yamaguchi H., Harada A. External Stimulus-Responsive Supramolecular Structures Formed by a Stilbene Cyclodextrin Dimer. J. Am. Chem. Soc.,2007,129(42):12630-12631.
    [149]Ueno A., Kuwabara T., Nakamura A., et al. a Modified Cyclodextrin as a Guest Responsive Color-Change Indicator. Nature,1992,356(6365):136-137.
    [150]Ikeda H., Nakamura M., Ueno A., et al. Fluorescent Cyclodextrins for Molecule Sensing: Fluorescent Properties, NMR Characterization, and Inclusion Phenomena of N-Dansylleucine-Modified Cyclodextrins. J. Am. Chem. Soc. 1996,118(45):10980-10988.
    [151]Ueno A., Takahashi M., Nagano Y, et al. Guest-Responsive Excimer Fluorescence of Beta-Cyclodextrin Bearing a Pendant Group with two Pyrene Moieties. Macromol. Rapid. Commun.,1998,19(6):315-317.
    [152]Yoshida A., Ueno A. Gamma-Cyclodextrin Derivatives Bearing Thymolphthalein Dyes in their Secondary Hydroxyl Side as Guest-Responsive Color Change Indicators. Macromol. Rapid. Commun.,2002,23(2):122-125.
    [153]Ueno A., Chen Q., Suzuki I., et al. Detection of Organic-Compounds by Guest-Responsive Circular-Dichroism Variations of Ferrocene-Appended Cyclodextrins. Anal. Chem.,1992,64(15):1650-1655.
    [154]Hossain M. A., Mihara H., Ueno A. Fluorescence Resonance Energy Transfer in a Novel Cyclodextrin-Peptide Conjugate for Detecting Steroid Molecules. Bioorg. Med. Chem. Lett.,2003,13 (24):4305-4308.
    [155]Nakamura M., Ikeda A., Ueno A., et al. Dansyl-Modified beta-Cyclodextrin with a Monensin Residue as a Hydrophobic, Metal-Responsive Cap. J. Chem. Soc. Chem. Commun.,1995, (7):721-722.
    [156]Ueno A., Ikeda A., Ikeda H., et al. Fluorescent Cyclodextrins Responsive to Molecules and Metal Ions. Fluorescence Properties and Inclusion Phenomena of N-Alpha-Dansyl-L-Lysine-Beta-Cyclodextrin and Monensin-Incorporated N-Alpha-Dansyl-L-Lysine-Beta-Cyclodextrin. J. Org. Chem.,1999,64(2): 382-387.
    [157]Deng W., Yamaguchi H., Takashima Y., Harada A. Construction of Chemical-Responsive Supramolecular Hydrogels from Guest-Modified Cyclodextrins. Chem. Asian J.,2008,3(4):687-695.
    [158]DeRossi D., Kajiwara K., Osada Y, Yamauch A. Polymer Gels-Fundamentals and Biomedical Applicatons. New York: Plenum Press,1991.
    [159]Flory P. J. Principles of Polymer Chemistry. Cornell:Cornell University Press, 1953.
    [160]Tanaka Y., Gong J. P., Osada Y. Novel Hydrogels with Excellent Mechanical Performance. Prog. Polym. Sci.,2005,30 (1):1-9.
    [161]Sutar P. B., Mishra R. K., Pal K., et al. Development of pH Sensitive Polyacrylamide Grafted Pectin Hydrogel for Controlled Drug Delivery System. J. Mater. Sci.-Mater Med.,2008,19(6):2247-2253.
    [162]Dulong V., Mocanu G., Le Cerf D. a Novel Amphiphilic pH-Sensitive Hydrogel Based on Pullulan. Colloid Polym. Sci.,2007,285(10):1085-1091.
    [163]Xu X. D., Zhang X. Z., Wang B., et al. Fabrication of a Novel Temperature Sensitive Poly (N-isopropyl-3-butenamide) Hydrogel. Colloids Surf. B.,2007, 59(2):158-163.
    [164]Zhao Y., Su H. J., Fang L., et al. Superabsorbent Hydrogels from Poly(aspartic acid) with Salt-, Temperature- and pH-Responsiveness Properties. Polymer, 2005,46(14):5368-5376.
    [165]Shang J., Shao Z. Z., Chen X. Electrical Behavior of a Natural Polyelectrolyte Hydrogel:Chitosan/carboxymethylcellulose Hydrogel. Biomacromolecules, 2008,9(4):1208-1213.
    [166]Shang J., Chen X., Shao Z. Z. The Electric-Field-Sensitive Hydrogels. Prog. Chem,2007,19:1393-1399.
    [167]Hoare T. R., Kohane D. S. Hydrogels in Drug Delivery:Progress and Challenges. Polymer,2008,49(8):1993-2007.
    [168]Oh J. K., Drumright R., Siegwart D. J., et al. the Development of Microgels/nanogels for Drug Delivery Applications. Prog. Polym. Sci.,2008, 33(4):448-477.
    [169]Bekiari V., Sotiropoulou M., Bokias G., et al. Use of Poly(N,N-dimethylacrylamide-co-sodium Acrylate) Hydrogel to Extract Cationic Dyes and Metals from Water. Colloids Surf. A,2008,312(2-3): 214-218.
    [170]Sadeghi M., Hosseinzadeh H. Synthesis and Superswelling Behavior of Carboxymethylcellulose-Poly(Sodium Acrylate-co-acrylamide) Hydrogel. J. Appl. Polym. Sci.,2008,108(2):1142-1151.
    [171]Liu M. Z., Liang R., Zhan F., et al. Synthesis of a Slow-release and Superabsorbent Nitrogen Fertilizer and its Properties. Polym. Adv. Technol., 2006,17(6):430-438.
    [172]Zarzycki J. Critical Stress Intensity Factors of Wet Gels. J Non-Cryst Solids, 1988,100(1-3):359-363.
    [173]Tanaka Y., Fukao K., Miyamoto Y. Fracture Energy of Gels. Eur. Phys. J. E, 2000,3(4):395-401.
    [174]Bonn D., Kellay H., Prochnow M., Ben-Djemiaa K., Meunier J. Delayed Fracture of an Inhomogeneous Soft Solid. Science,1998,280(5361):265-267.
    [175]Lake G. J., Thomas A. G. the Strength of Highly Elastic Materials. Proc. R. Soc. London,1967,300(1460):108-119.
    [176]Haraguchi K., Takehisa T. Nanocomposite Hydrogels:a Unique Organic-Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/de-swelling Properties. Adv. Mater.,2002,14(16):1120-1124.
    [177]Haraguchi K. Nanocomposite Hydrogels. Curr. Opin. Solid State Mater. Sci., 2007,11(3-4):47-54.
    [178]Haraguchi K., Farnworth R., Ohbayashi A., et al. Compositional Effects on Mechanical Properties of Nanocomposite Hydrogels Composed of Poly(N,N-dimethylacrylamide) and Clay. Macromolecules,2003,36(15): 5732-5741.
    [179]Haraguchi K., Li H. J., Matsuda K., et al. Mechanism of Forming Organic/Inorganic Network Structures during in-situ Free-radical Polymerization in PNIPA-Clay Nanocomposite Hydrogels. Macromolecules, 2005,38(8):3482-3490.
    [180]Haraguchi K., Li H. J. Control of the Coil-to-Globule Transition and Ultrahigh Mechanical Properties of PNIPA in Nanocomposite Hydrogels. Angew. Chem. Int. Ed.,2005,44(40):6500-6504.
    [181]Haraguchi K. Synthesis and Properties of Soft Nanocomposite Materials with Novel Organic/inorganic Network Structures. Polym. J.,2011,43(3):223-241.
    [182]Gong J. P., Katsuyama Y, Kurokawa T., et al. Double-Network Hydrogels with Extremely High Mechanical Strength. Adv. Mater.,2003,15(14):1155-1158.
    [183]Na Y. H., Kurokawa T., Katsuyama, Tsukeshiba H., Gong J. P, Osada Y, et al. Structural Characteristics of Gels with Extremely High Mechanical Strength. Macromolecules,2004,37(14):5370-5374.
    [184]Nakayama A., Kakugo A., Gong J. P., Osada Y, Takai M., Erata T., Kawano S. High Mechanical Strength Double Network Hydrogel with Bacterial Cellulose. Adv. Funct Mater.,2004,14(11):1124-1128.
    [185]Webber R. E., Creton C., Brown H. R., et al. Large Strain Hysteresis and Mullins Effect of Tough Double-Network Hydrogels. Macromolecules,2007, 40(8):2919-2927.
    [186]Okumura Y, Ito K. the Polyrotaxane Gels:a Topological Gel by Figure-of Eight Cross-Links. Adv. Mater.,2001,13(7):485-487.
    [1]Lehn J.-M. Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture). Angew. Chem. Int. Ed., 1989,27(1):89-112.
    [2]Lehn J.-M. in Supramolecular Science:Where it is and Where it is Going (Eds.:R. Ungaro, E. Dalcasnale), Kluwe Acad Pub.,1999, pp.287.
    [3]Lehn J.-M. Toward Self-Organization and Complex Matter. Science,2002, 295(5564):2400-2403.
    [4]Lehn J.-M. from Supramolecular Chemistry towards Constitutional Dynamic Chemistry and Adaptive Chemistry. Chem. Soc. Rev.,2007,36(2):151-160.
    [5]Cordier P., Tournilhac F., Soulie-Ziakovic C., Leibler L., Self-healing and Thermoreversible Rubber from Supramolecular Assembly. Nature,2008, 451(7181):977-980.
    [6]Ge Z. S., Xu J., Hu J. M., Zhang Y. F., Liu S. Y. Synthesis and Supramolecular Self-assembly of Stimuli-Responsive Water-Soluble Janus-Type Heteroarm Star Copolymers. Soft Matter,2009,5(20):3932-3939.
    [7]Klaikherd A., Nagamani C., Thayumanavan S. Multi-Stimuli Sensitive Amphiphilic Block Copolymer Assemblies. J. Am. Chem. Soc.,2009,131(13): 4830-4838.
    [8]Qian J., Wu F. P. Vesicles Prepared from Supramolecular Block Copolymers. Macromolecules,2008,41(22):8921-8926.
    [9]Liu S. Y., Jiang M., Liang H. Y., Wu C. Intermacromolecular Complexes due to Specific Interactions.13. Formation of Micelle-Like Structure from Hydrogen-Bonding Graft-Like Complexes in Selective Solvents. Polymer,2000, 41(24):8697-8702.
    [10]Gohy J. F., Varshney S. K., Jerome R. Water-Soluble Complexes Formed by Poly(2-vinylpyridinium)-Block-Poly(ethylene oxide) and Poly(sodium methacrylate)-Block-Poly(ethylene oxide) Copolymers. Macromolecules,2001, 34(10):3361-3366.
    [11]Pouliquen G., Amiel C.,Tribet C. Photoresponsive Viscosity and Host-Guest Association in Aqueous Mixtures of Poly-Cyclodextrin with Azobenzene-Modified Poly(acrylic)acid. J. Phys. Chem. B,2007,111(20): 5587-5595.
    [12]Tomatsu I., Hashidzume A., Harada A. Photoresponsive Hydrogel System Using Molecular Recognition of Alpha-Cyclodextrin. Macromolecules,2005,38(12): 5223-5227.
    [13]Zou J., Guan B., Liao X. J., Jiang M., Tao F. G. Dual Reversible Self-Assembly of PNIPAM-Based Amphiphiles Formed by Inclusion Complexation. Macromolecules,2009,42(19):7465-7473.
    [14]Chen X., Hong L., You X., Wang Y. L., Zou G, Su W., Zhang Q. J. Photo-Controlled Molecular Recognition of Alpha-Cyclodextrin with Azobenzene Containing Polydiacetylene Vesicles. Chem. Commun.,2009, (11): 1356-1358.
    [15]Harada A., Kamachi M. Complex-Formation between Poly(ethylene glycol) and Alpha-Cyclodextrin. Macromolecules,1990,23(10):2821-2823.
    [16]Harada A., Li J., Kamachi M. the Molecular Necklace-a Rotaxane Containing many Threaded Alpha-cyclodextrins. Nature,1992,356(6367):325-327.
    [17]Harada A., Li J., Kamachi M. Double-stranded Inclusion Complexes of Cyclodextrin Threaded on Poly(ethylene glycol). Nature,1994,370(6485): 126-128.
    [18]Li J., Harada A., Kamachi M. Sol-gel Transition during Inclusion Complex-Formation between Alpha-Cyclodextrin and High-Molecular-Weight Poly(ethylene glycol)s in Aqueous-Solution. Polym. J.,1994,26(9):1019-1026.
    [19]Araki J., Ito K. Recent Advances in the Preparation of Cyclodextrin-Based Polyrotaxanes and their Applications to Soft Materials. Soft Matter,2007,3(12): 1456-1473.
    [20]黄进,任丽霞,范红蕾,陈永明.环糊精包合作用诱导聚合物自组装的研究进展.中国科学B辑,2009,39(4):301-314.
    [21]郭明雨,江明.基于环糊精包结络合作用的大分子自组装.化学进展,2007,19(4):557-566.
    [22]Li J. Cyclodextrin Inclusion Polymers Forming Hydrogels. Adv. Polym. Sci., 2009,222:79-112.
    [23]Kataoka T., Kidowaki M., Zhao C., Minamikawa H., Shimizu T., Ito K. Local and Network Structure of Thermoreversible Polyrotaxane Hydrogels Based on Poly(ethylene glycol) and Methylated alpha-Cyclodextrins. J. Phys. Chem. B., 2006,110(48):24377-24383.
    [24]Li J., Ni X. P., Leong K. W. Injectable Drug-Delivery Systems Based on Supramolecular Hydrogels Formed by Poly(ethylene oxide) and Alpha-Cyclodextrin. J. Biomed. Mater. Res. Part A.,2003,65A(2):196-202.
    [25]Ni X. P., Cheng A., Li J. Supramolecular Hydrogels Based on Self-assembly between PEO-PPO-PEO Triblock Copolymers and Alpha-Cyclodextrin. J. Biomed. Mater. Res. Part A.,2009,88A(4):1031-1036.
    [26]Ikeda T., Horiuchi S., Karanjit D. B., Kurihara S., Tazuke S. Photochemically Induced Isothermal Phase-transition in Polymer Liquid-Crystals with Mesogenic Phenyl Benzoate Side-chains.1. Calorimetric Studies and Order Parameters. Macromolecules,1990,23(1):36-42.
    [27]Irie M., Hirano Y., Hashimoto S., Hayashi K. Phtoresponsive Polymers.2. Reversible Solution Viscosity Change of Polyamides Having Azobenzene Residues in the Main Chain. Macromolecules,1981,14(2):262-267.
    [28]Moniruzzaman M., Talbot J. D. R., Sabey C. J., Fernando G. F. the Use of'H NMR and UV-Vis Measurements for Quantitative Determination of Trans/Cis Isomerization of a Photo-Responsive Monomer and its Copolymer. J. Appl. Polym. Sci.,2006,100(2):1103-1112.
    [29]Wang Y. P., Ma N., Wang Z. Q., Zhang X. Photocontrolled Reversible Supramolecular Assemblies of an Azobenzene-Containing Surfactant with Alpha-Cyclodextrin. Angew. Chem. Int. Ed.,2007,46(16):2823-2826.
    [30]Tomatsu I., Hashidzume A., Harada A. Contrast Viscosity Changes upon Photoirradiation for Mixtures of Poly(acrylic acid)-Based Alpha-Cyclodextrin and Azobenzene Polymers. J. Am. Chem. Soc.,2006,128(7):2226-2227.
    [31]Yang L., Takisawa N., Kaikawa T., Shirahama K. Interaction of Photosurfactants, [[[4'-[(4-alkylphenyl)azo]phenyl]oxy]ethyl]trimethylammomium Bromides, with Alpha- and Beta-cyclodextrins as Measured by Induced Circular Dichroism and a Surfactant-Selective Electrode. Langmuir,1996,12(5):1154-1158.
    [32]Liu Y., Zhao Y. L., Zhang H. Y, Fan Z., Wen G. D., Ding F. Spectrophotometric Study of Inclusion Complexation of Aliphatic Alcohols by Beta-Cyclodextrins with Azobenzene Tether. J. Phys. Chem. B,2004,108(26):8836-8843.
    [1]Haraguchi K. Synthesis and Properties of Soft Nanocomposite Materials with Novel Organic/inorganic Network Structures. Polym. J.,2011,43(3):223-241.
    [2]Wang Q., Mynar J. L., Yoshida M., Lee E., Lee M., Okuro K., Kinbara K., Aida T. High-Water-Content Mouldable Hydrogels by Mixing Clay and a Dendritic Molecular Binder. Nature,2010,463(7279):339-343.
    [3]Gong J. P., Katsuyama Y., Kurokawa T., Osada Y. Double-Network Hydrogels with Extremely High Mechanical Strength. Adv. Mater.,2003,15(14):1155-1158.
    [4]Okumura Y, Ito K. the Polyrotaxane Gels:a Topological Gel by Figure-of Eight Cross-Links. Adv. Mater.,2001,13(7):485-487.
    [5]Tanaka Y, Gong J. P., Osada Y. Novel Hydrogels with Excellent Mechanical Performance. Prog. Polym. Sci.,2005,30 (1):1-9.
    [6]Haraguchi K., Takehisa T., Nanocomposite Hydrogels:a Unique Organic-Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/De-swelling Properties. Adv. Mater.,2002,14(16):1120-1124.
    [7]Haraguchi K. Nanocomposite Hydrogels, Curr. Opin. Solid State Mater. Sci.,2007, 11(3-4):47-54.
    [8]Haraguchi K., Takehisa T., Simon F. Effects of Clay Content on the Properties of Nanocomposite Hydrogels Composed of Poly(N-isopropylacrlamide) and Clay. Macromolecules,2002,35(27):10162-10171.
    [9]Haraguchi K., Farnworth R., Ohbayashi A., et al. Compositional Effects on Mechanical Properties of Nanocomposite Hydrogels Composed of Poly(N,N-dimethylacrylamide) and Clay. Macromolecules,2003,36(15): 5732-5741.
    [10]Haraguchi K., Li, H. J. Okumura, N. Hydrogels with Hydrophobic Surfaces: Abnormally High Contact Angles for Water on PNIPA Nanocomposite Hydrogels. Macromolecules,2007,40(7):2299-2302.
    [11]Haraguchi K., Li H. J. Control of the Coil-to-globule Transition and Ultrahigh Mechanical Properties of PNIPA in Nanocomposite Hydrogels. Angew. Chem. Int. Ed.,2005,44(40):6500-6504.
    [12]Haraguchi K., Ebato M., Takehisa T. Polymer-Clay Nanocomposites Exhibiting Abnormal Necking Phenomena Accompanied by Extremely Large Reversible Elongations and Excellent Transparency. Adv. Mater.,2006,18(17):2250-2254.
    [13]Alexandre M., Dubois P. Polymer-Layered Silicate Nanocomposites:Preparation, Properties and Uses of a New Class of Materials. Mater. Sci. Eng.,2000,28(1-2): 1-63.
    [14]陈光明,马永梅,漆宗能.甲苯-2,4-二异氰酸酯修饰蒙脱土及聚苯乙烯/蒙脱土纳米复合材料的制备与表征.高分子学报,(5):599-603.
    [15]Harada A., Kamachi M. Complex-Formation between Poly(ethylene glycol) and Alpha-Cyclodextrin. Macromolecules,1990,23(10):2821-2823.
    [16]Harada A., Li J., Kamachi M. the Molecular Necklace-a Rotaxane Containing many Threaded Alpha-cyclodextrins. Nature,1992,356(6367):325-327.
    [17]Li J., Harada A., Kamachi M. Sol-gel Transition during Inclusion Complex-Formation between Alpha-Cyclodextrin and High-Molecular-Weight Polyethylene glycol)s in Aqueous-Solution. Polym. J.,1994,26(9):1019-1026.
    [18]Harada A., Li J., Kamachi M. Double-stranded Inclusion Complexes of Cyclodextrin Threaded on Poly(ethylene glycol). Nature,1994,370(6485): 126-128.
    [19]Araki J., Ito K. Recent Advances in the Preparation of Cyclodextrin-Based Polyrotaxanes and their Applications to Soft Materials. Soft Matter,2007,3(12): 1456-1473.
    [20]郭明雨,江明.基于环糊精包结络合作用的大分子自组装.化学进展,2007,19(4):557-566.
    [21]Li J. Cyclodextrin Inclusion Polymers Forming Hydrogels. Adv. Polym. Sci., 2009,222:79-112.
    [22]Li J., Ni X. P., Leong K. W. Injectable Drug-Delivery Systems Based on Supramolecular Hydrogels Formed by Poly(ethylene oxide) and Alpha-Cyclodextrin. J. Biomed. Mater:Res.,2003,65A(2):196-202.
    [23]Ni X. P., Cheng A., Li J. Supramolecular Hydrogels Based on Self-Assembly between PEO-PPO-PEO Triblock Copolymers and Alpha-Cyclodextrin. J. Biomed. Mater. Res.,2009,88A(4):1031-1036.
    [24]Liao X. J., Chen G. S., Liu X. X., Chen W. X., Chen F. E., Jiang M. Photoresponsive Pseudopolyrotaxane Hydrogels Based on Competitions of Host-Guest Interactions. Angew. Chem. Int. Ed.,2010,49(26):4409-4413.
    [25]Xi Y. F., Ding Z., He H. P., Frost R. L. Infrared Spectroscopy of Organoclays Synthesized with the Surfactant Octadecyltrimethylammonium Bromide. Spectrochim. Acta. Part A.,2005,61(3):515-525.
    [26]Herrera N. N., Letoffe J. M., Reymond J. P., Bourgeat-Lami E. Silylation of Laponite Clay Particles with Monofunctional and Trifunctional Vinyl Alkoxysilanes. J. Mater. Chem.,2005,15(8):863-871.
    [27]Borsacchi S., Geppi M., Ricci L., Ruggeri G., Veracini C. A. Interactions at the Surface of Organophilic-Modified Laponites:a Multinuclear Solid-State NMR Study. Langmuir,2007,23(7):3953-3960.
    [28]Loizou E., Butler P., Porcar L., Schmidt G. Dynamic Responses in Nanocomposite Hydrogels. Macromolecules,2006,39(4):1614-1619.
    [29]Loyens W., Jannasch P., Maurer F. H. J. Poly(ethylene oxide)/Laponite Nanocomposites via Melt-compounding: Effect of Clay Modification and Matrix Molar Mass. Polymer,2005,46(3):915-928.
    [30]Du H., Chandaroy P., Hui S.W. Grafted Poly-(ethylene glycol) on Lipid Surfaces Inhibits Protein Adsorption and Cell Adhesion. Biochim. Biophys. Acta,1997, 1326(2):236-248.
    [31]Elli S., Eusebio L., Gronchi P., Ganazzoli F., Goisis M. Modeling the Adsorption Behavior of Linear End-Functionalized Poly(ethylene glycol) on an Ionic Substrate by a Coarse-Grained Monte Carlo Approach. Langmuir,2010,26(20): 15814-15823.
    [32]De P. G. Gennes in Physical Basis of Cell-Cell Adhesion (Ed.:P. Bongrand), CRC Press, Florida,1988, p.39-60.
    [33]Dutta A. K., Belfort G. Adsorbed Gels versus Brushes:Viscoelastic differences. Langmuir,2007,23(6):3088-3094.
    [34]Haraguchi K., Li H. J., Matsuda K., Takehisa T., Elliot E. Mechanism of Forming Organic/Inorganic Network Structures during In-Situ Free-Radical Polymerization in PNIPA-Clay Nanocomposite Hydrogels. Macromolecules,2005,38(8): 3482-3490.
    [35]Aamer K. A., Sardinha H., Bhatia S. R., Tew G. N. Rheological Studies of PLLA-PEO-PLLA Triblock Copolymer Hydrogels. Biomaterials,2004,25(6): 1087-1093.
    [36]Hutmacher D. W. Scaffold Design and Fabrication Technologies for Engineering Tissues-State of the Art and Future perspectives. J. Biomater. Sci. Polym. Ed., 2001,12(1):107-124.
    [37]Wang Z. M., Chen Y. M. Supramolecular Hydrogels Hybridized with Single-Walled Carbon Nanotubes. Macromolecules,2007,40(9):3402-3407.
    [38]Zu S. Z., Han B. H. Aqueous Dispersion of Graphene Sheets Stabilized by Pluronic Copolymers:Formation of Supramolecular Hydrogel. J. Phys. Chem. C, 2009,113(31):13651-13657.
    [39]Li J., Li X., Zhou Z., Ni X., Leong K. W. Formation of Supramolecular Hydrogels Induced by Inclusion Complexation between Pluronics and Alpha-Cyclodextrin. Macromolecules,2001,34(21):7236-7237.
    [1]Hirokawa Y., Tanaka T. Volume Phase Transition in a Nonionic Gel. J. Chem. Phys.,1984,81(12):6379-6380.
    [2]Matsuo E. S., Tanaka T. Kinetics of Discontinuous Volume Phase-Transition of Gels. J. Chem. Phys.,1988,89(3):1695-1703.
    [3]Wen J. Y., Wilkes G. L. Organic/inorganic Hybrid Network Materials by the Sol-Gel Approach. Chem. Mater.,1996,8(8):1667-1681.
    [4]Okada A., Usuki A. Twenty Years of Polymer-Clay Nanocomposites. Macromol. Mater. Eng.,2006,291(12):1449-1476.
    [5]Zhao X., Ding X., Deng Z., Zheng Z., Peng Y., Tian C., Long X. a Kind of Smart Gold Nanoparticle-Hydrogel Composite with Tunable Thermo-Switchable Electrical Properties. New J. Chem.,2006,30(6):915-920.
    [6]Kroll E., Winnik F. M., Ziolo R. F. in Situ Preparation of Nanocrystalline gamma-Fe2O3 in Iron(II) Cross-Linked Alginate Gels. Chem. Mater.,1996,8(8): 1594-1596.
    [7]Li J., Hong X., Liu Y. et al. Highly Photo luminescent CdTe/Poly(N-isopropylacrylamide) Temperature-Sensitive Gels. Adv. Mater, 2005,17(2):163-166.
    [8]Gong Y. J., Gao M. Y., Wang D. Y. et al. Incorporating Fluorescent CdTe Nanocrystals into a Hydrogel via Hydrogen Bonding:toward Fluorescent Microspheres with Temperature-Responsive Properties. Chem. Mater.,2005, 17(10):2648-2653.
    [9]Kuang M., Wang D. Y, Bao H. B. et al. Fabrication of Multicolor-Encoded Microspheres by Tagging Semiconductor Nanocrystals to Hydrogel Spheres. Adv. Mater.,2005,17(3):267-270.
    [10]Hasegawa U., Nomura S. I. M., Kaul S. C. et al. Nanogel-Quantum Dot Hybrid Nanoparticles for Live Cell Imaging. Biochem. Biophys. Res. Commun.,2005, 331(4):917-921.
    [11]Alexandre M., Dubois P. Polymer-Layered Silicate Nanocomposites:Preparation, Properties and Uses of a New Class of Materials. Mater. Sci. Eng.,2000,28(1-2): 1-63.
    [12]Starodoubtsev S. G., Lavrentyeva E. K., Khokhlov A. R. et al. Mechanism of Smectic Arrangement of Montmorillonite and Bentonite Clay Platelets Incorporated in Gels of Poly(acrylamide) Induced by the Interaction with Cationic Surfactants. Langmuir,2006,22(1):369-374.
    [13]Haraguchi K., Takehisa T. Nanocomposite hydrogels: a Unique Organic-Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/De-swelling Properties. Adv. Mater.,2002,14(16):1120-1124.
    [14]Haraguchi K. Nanocomposite Hydrogels, Curr. Opin. Solid State Mater. Sci., 2007,11(3-4):47-54.
    [15]Haraguchi K., Takehisa T., Simon F. Effects of Clay Content on the Properties of Nanocomposite Hydrogels Composed of Poly(N-isopropylacrlamide) and Clay. Macromolecules,2002,35:10162-10171.
    [16]Haraguchi K., Li H. J., Matsuda K. et al. Mechanism of Forming Organic/Inorganic Network Structures during In-Situ Free-Radical Polymerization in PNIPA-Clay Nanocomposite Hydrogels, Macromolecules, 2005,38(8):3482-3490.
    [17]Haraguchi K., Li H. J. Control of the Coil-to-Globule Transition and Ultrahigh Mechanical Properties of PNIPA in Nanocomposite Hydrogels. Angew. Chem. Int. Ed.,2005,44(40):6500-6504.
    [18]Guo M., Jiang M., Pispas S. et al. Supramolecular Hydrogels Made of End-Functionalized Low-Molecular-Weight PEG and a-Cyclodextrin and Their Hybridization with SiO2 Nanoparticles through Host-Guest Interaction Macromolecules,2008,41(24):9744-9749.
    [19]Guo M., Jiang M. Supramolecular Hydrogels with CdS Quantum Dots Incorporated by Host-Guest Interactions. Macromol. Rapid Commun.,2010, 31(19):1736-1739.
    [20]Liu J. H., Chen G. S., Guo M. Y., Jiang M. Dual Stimuli-Responsive Supramolecular Hydrogel Based on Hybrid Inclusion Complex (HIC). Macromolecules,2010,43(19):8086-8093.
    [21]Ohashi H., Hiraoka Y., Yamaguchi T. an Autonomous Phase Transition-Complexation/Decomplexation Polymer System with a Molecular Recognition Property. Macromolecules,2006,39(7):2614-2620.
    [22]Liu Y. Y., Fan X. D., Gao L. Synthesis and Characterization of beta-Cyclodextrin Based Functional Monomers and its Copolymers with N-isopropylacrylamide. Macromol. Biaosci.,2003,3(12):715-719.
    [23]Dodziuk H. Cyclodextrins and Their Complexes. Weinheim:WILEY-VCH Verlag GmbH & Co. KGaA,2006.
    [24]Liu Y., Zhao Y. L., Zhang H. Y, Fan Z., Wen G. D., Ding F. Spectrophotometric Study of Inclusion Complexation of Aliphatic Alcohols by beta-Cyclodextrins with Azobenzene tether. J. Phys. Chem. B.,2004,108(26):8836-8843.
    [25]Schneider H. J., Hacket F., R''udiger V., Ikeda H. NMR Studies of Cyclodextrins and Cyclodextrin Complexes. Chem. Rev.,1998,98(5):1755-1785.
    [26]Liu Y, Zhao Y. L., Chen Y, Guo D. S. Assembly Behavior of Inclusion Complexes of beta-Cyclodextrin with 4-Hydroxyazobenzene and 4-Aminoazobenzene. Org. Biomol. Chem.,2005,3(4):584-591.
    [27]Xi Y F., Ding Z., He H. P., Frost R. L. Infrared Spectroscopy of Organoclays Synthesized with the Surfactant Octadecyltrimethylammonium Bromide. Spectrochim. Acta. Part A.,2005,61(3):515-525.
    [28]Herrera N. N., Letoffe J. M., Reymond J. P., Bourgeat-Lami E. Silylation of Laponite Clay Particles with Monofunctional and Trifunctional Vinyl Alkoxysilanes. J. Mater. Chem.,2005,15(8):863-871.
    [29]Borsacchi S., Geppi M., Ricci L., Ruggeri G., Veracini C. A. Interactions at the Surface of Organophilic-Modified Laponites:a Multinuclear Solid-State NMR Study. Langmuir,2007,23(7):3953-3960.
    [1]Whitesides G. M., Mathias J. P., Seto C. T. Molecular Self-Assembly and Nanochemistry-a Chemical Strategy for the Synthesis of Nanostructures. Science, 1991,254(5036):1312-1319.
    [2]Whitesides G. M., Grzybowski B. Self-assembly at All Scales. Science,2002, 295(5564):2418-2421.
    [3]Fendler J. H. Self-Assembled Nanostructured Materials. Chem. Mater.,1996,8(8): 1616-1624.
    [4]Alper J. Chemists Took to Follow Biology Lead. Science,2002,296(5575): 1969-1969.
    [5]Mucic R. C., Storhoff J. J., Mirkin C. A., Letsinger R. L. DNA-Directed Synthesis of Binary Nanoparticles Network Materials. J. Am. Chem. Soc.,1998,120(48): 12674-12675.
    [6]江明,A.艾森伯格,刘国军,张希,大分子自组装.北京:科学出版社,2006.
    [7]Robb I. D. Specialist Surfactants. London:Blackie Academic and Professional, 1997.
    [8]Evans D. F., Wennerstrom H. The Colloidal Domain:Where Physics, Chemistry, Biology, and Technology Meet. New York: Wiley-VCH,1998.
    [9]Holmberg K., Jonsson B., Kronberg B., Lindman B. Surfactants and Polymers in Aqueous Solution. West Sussex:Wiley,2003.
    [10]Halperin A., Tirrell M., Lodge T. P. Tethered Chains in Polymer Microstructures. Adv. Polym. Sci.,1992,100:31-71.
    [11]Zhang L. F., Eisenberg A. Multiple Morphologies and Characteristic of Crew-Cut Micelle-Like Aggregates of Polystyrene-b-Poly(acrylic acid) Diblock Copolymers in Aqueous Solutions. Science,1995,268(5218):1728-1730.
    [12]Zhang L. F., Eisenberg A. Morphogenic Effect of Added Ions on Crew-Cut Aggregates of Polystyrene-b-Poly(acrylic acid) Block Copolymers in Solutions. Macromolecules,1996,29(27):8805-8815.
    [13]Zhang L. F., Eisenberg A. Multiple Morphologies and Characteristics of "Crewcut" Micelle-Like Aggregates of Polystyrene-b-Poly(acrylic acid) Diblock Copolymers in Aqueous solutions. J. Am. Chem. Soc.,1996,118(13):3168-3181.
    [14]Yu K. Zhang L. F., Eisenberg A. Novel Morphologies of "Crew-Cut" Aggregates of Amphiphilic Diblock Copolymers in Dilute Solution. Langmuir,1996,12(25): 5980-5984.
    [15]Riegel I. C., Eisenberg A., Petzhold C. L., Samios D. Novel Bowl-Shaped Morphology of Crew-Cut Aggregates from Amphiphilic Block Copolymers of Styrene and 5-(N,N-Diethylamino)Isoprene. Langmuir,2002,18(8):3358-3363.
    [16]Shen H. W., Eisenberg A. Control of Architecture in Block-Copolymer Vesicles. Angew. Chem. Int. Ed.,2000,39(18):3310-3312.
    [17]Zhang L. F., Bartels C., Yu Y. S., Shen H. W., Eisenberg A. Mesosized Crystal-Like Structure of Hexagonally Packed Hollow Hoops by Solution Self-assembly of Diblock Copolymers. Phys. Rev. Lett.,1997,79(25): 5034-5037.
    [18]Bronich T. K., Kabanov A. V., Kabanov V. A., Yu K., Eisenberg A. Soluble Complexes from Poly(ethylene oxide)-Block-Polymethacrylate Anions and N-alkylpyridinium Cations. Macromolecules,1997,30(12):3519-3525.
    [19]Kabanov A. V., Bronich T. K., Kabanov V. A., Yu K., Eisenberg A. Spontaneous Formation of Vesicles from Complexes of Block Ionomers and Surfactants. J. Am. Chem. Soc.,1998,120(38):9941-9942.
    [20]Bronich T. K., Popov A. M., Eisenber A., Kabanov V. A., Kabanov A. V. Effects of Block Length and Structure of Surfactant on Self-assembly and Solution Behavior of Block Ionomer Complexes. Langmuir,2000,16(2):481-489.
    [21]Peng H. S., Chen D. Y, Jiang M. Self-Assembly of Formic Acid/Polystyrene-Block-Poly(4-vinylpyridine) Complexes into Vesicles in a Low-Polar Organic Solvent Chloroform. Langmuir,2003,19(26):10989-10992.
    [22]Wang Y. P., Han P., Xu H. P. et al. Photocontrolled Self-Assembly and Disassembly of Block Ionomer Complex Vesicles:a Facile Approach toward Supramolecular Polymer Nanocontainers. Langmuir,2010,26(2):709-715.
    [23]Ding J. H., Wang L., Yu H. J. et al. Controllable Formation of Nanorods through Electrostatic-Assisted Assembly of Star Poly(methacrylic acid) Induced by Surfactants. J. Phys. Chem. C,2009,113(9):3471-3477.
    [24]Peng H., Lu Y. Supramolecular Assemblies with Tunable Morphologies from Homopolymeric and Small Organic Molecular Building Blocks. Langmuir,2006, 22(13):5525-5527.
    [25]Blanazs A., Armes S. P., Ryan A. J. Self-Assembled Block Copolymer Aggregates:From Micelles to Vesicles and their Biological Applications. Macromol. Rapid Commun.,2009,30(4-5):267-277.
    [26]Wu C., Niu A. Z., Leung L. M. et al. Preparation of Narrowly Distributed Stable and Soluble Polyacetylene Block Copolymer Nanoparticles. J. Am. Chem. Soc. 1999,121 (9):1954-1955.
    [27]Chen D. Y., Peng H. S., Jiang M. a Novel One-Step Approach to Core-Stabilized Nanoparticles at High Solid Contents. Macromolecules,2003,36(8):2576-2578.
    [28]Yao X. M., Chen D. Y, Jiang M. Micellization of PS-b-P4VP/formic Acid in Chloroform without or with the Premixing of the Copolymer with Decanoic Acid. Macromolecules,2004,37(11):4211-4217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700