用户名: 密码: 验证码:
日本血吸虫脱尾活童虫表膜结合肽的亲和筛选与功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血吸虫病是一种重要危害人类身体健康和经济发展的寄生虫病,是世界主要公共卫生问题之一。当前,用于血吸虫病防治的方法,尽管有抗病原药物-吡喹酮用于人、畜化疗以控制病情和减少传染源,有杀中间宿主的氯硝柳胺等遥药用于人畜活动频繁的易感地带灭螺灭蚴,有丰富的家畜管理和人群健教的经验,但很难控制其流行传播,这说明现行防治技术尚存在不足。例如,在防治中起关键作用的吡喹酮,不仅只能在一个用药时点发挥作用,而且有研究发现其抗虫效果在降低。对此,本研究认为在抗感染疫苗和抗虫新药尚未问世之前,深入探索提高毗喹酮生物利用度和增强抗虫效果的方法是解决现场防治技术问题的重要课题之一。众所周知,杀成虫的吡喹酮和抗童虫的青篙素类药物用于人和家畜体内后表现代谢快和分布面大的特点,从而使药物的生物利用度低。如何来解决这一问题,本研究依据血吸虫生物学特性(需通过表膜吸收和结合宿主有关分子作为生长繁殖的因子)提出了虫体表膜有可能存在与外源分子发生特异性结合的分子,如能通过筛选获得,就有可能用其作靶向药物杀虫(提高药物利用度,减少药物所致毒副反应)。在本文中开展研究解决的关键问题是从血吸虫活虫体表膜中能筛选和鉴定出具有特异结合能力的多肽分子,并阐明其性质和功能,以期为进一步的靶向药物制剂等方面研究奠定工作基础。
     第一章日本血吸虫脱尾活童虫表膜结合噬菌体短肽的筛选与鉴定
     目的:利用噬菌体展示肽对日本血吸虫尾蚴脱尾活童虫作体外差异亲和淘选,以期获得对虫体具有拮抗或/和靶向作用的特异性短肽。
     方法:体外差异淘选与S.j脱尾活童虫结合、与尾蚴不结合的特异性短肽:将噬菌体12肽库用尾蚴预吸附后,取未与尾蚴结合的噬菌体肽库扩增后与脱尾童虫孵育,经洗脱、再扩增后,获取的目标肽库再次逆向吸附——扩增——淘选——扩增;经过3轮差异淘选,随机挑取15个克隆抽提DNA测序;通过氨基酸翻译和生物信息学分析测序结果;利用噬菌体回收实验、Western-blot及免疫组织化学检测分析所得噬菌体克隆与S.j童虫及成虫体被结合状态。
     结果:经3轮体外差异淘选获得4种不同序列的特异性M13噬菌体短肽MppZL6、MppZL4、MppZL1和MppZLO,其中MppZL0无插入片段;经生物信息学分析,MppZL6、MppZL4及MppZL1短肽均由8-9个亲水的极性氨基酸残基及疏水的非极性氨基酸残基交错构成,含精氨酸残基,等电点分别为6.07,8.75,8.50;BLAST分析表明,MppZL1与家鼠载脂蛋白B有53%(7/13)的同一性,MppZL6与Sj CHGC07116蛋白有69%(9/13)同一性,MppZL4与阴道毛滴虫自交第三代的表面抗原BspA样蛋白有80%(8/10)同一性。噬菌体回收实验显示克隆MppZL4与脱尾童虫的结合力显著高于MppZL6, MppZL1; Western blot结果显示,只有与MppZL4结合的成虫膜蛋白中有一条特异性条带,其大小为45.0kDa;免疫组化染色结果表明:MppZL4可与S.j毛蚴脱尾童虫、肺期童虫、肝期童虫及24天成虫结合。
     结论:通过噬菌体展示肽对活虫体作体外差异亲和淘选获得的特异性M13噬菌体MppZL4,可在小鼠体内特异性地与S.j的童虫和成虫表膜结合。
     第二章MppZL4及人工合成短肽ZL4的功能检测
     目的:通过MppZL4及人工合成的ZL4在体内外对日本血吸虫(S.j)的杀伤实验,检测ZL4的生物学功能,并从细胞水平上初步探讨ZL4的作用机制。
     方法:洗脱回收率检测MppZL4对S.j的靶向性:于小鼠感染S.j3d、及10d后,分别尾静脉注射MppZL41012pfu,15min后剖杀小鼠,心脏灌注,取出肝肺,洗脱噬菌体测定丰度,设立空白对照及阴性对照组;于小鼠感染S.j24d后,尾静脉注射MppZL41012pfu,15min后剖杀小鼠,心脏灌注冲虫,并取出肝肺,洗脱噬菌体测定丰度,同时洗脱虫体噬菌体并计数。体外杀伤实验检测MppZL4对S.j脱尾童虫的杀伤作用:无菌条件下MppZL4处理S.j脱尾童虫,每24小时美蓝染色后观察一次,连续观察72h,统计虫体死亡率,设置阳性对照、阴性对照及空白对照组。小鼠感染S.j24d后,尾静脉注射MppZL41012pfu,15min后剖杀小鼠取出虫体,无菌条件下制备S.j细胞,作免疫细胞化学观察MppZL4在细胞上的定位;体外培养MppZL4处理的S.j细胞1d后,MTT试剂盒检测其抑制率,并利用公式计算IC50。人工合成罗丹明标记的ZL4短肽RhB-ZL4,同法体外检测其对S.j童虫的结合功能及杀伤功能,体内检测其对S.j成虫的结合功能。
     结果:洗脱回收率检测MppZL4噬菌体靶向性结果显示:在感染小鼠体内,第3d时,肺组织MppZL4丰度为0.869±0.018,较高,而肝组织MppZL4丰度7.211±4.818,偏低;第10d则肺组织MppZL4丰度为0.239±0.065,较低,而肝组织MppZL4噬菌体丰度15.833±8.224,偏高;第24d时,各组噬菌体洗脱数无明显差异,但是虫体MppZL4洗脱丰度17.256±9.588远高于M13KE洗脱丰度0.202±0.056。体外杀伤实验观察到MppZL4致死率高于东方田鼠血清阳性对照组(P=0.000):48h后,其死亡率已达到100%。免疫细胞化学检测结果显示,MppZL4主要沉积于S.j大圆细胞、三角形细胞及不规则细胞的细胞膜上。MTT检测细胞毒效应显示,MppZL4浓度为1010pfu时,即具有明显的细胞毒性(P=0.000),且随着MppZL4浓度的增高,毒性效应增强;IC50≈1021。 RhB-ZL4检测结果显示:RhB-ZL4体外与能与脱尾童虫体外特异性结合,其体外24hr及48hr致死率与MppZL4(?)(?)性对照组无显著性差异,72hr后死亡率为100%;体内能与S.j成虫特异性结合
     结论:MppZL4分子对血吸虫作用具有靶向性和一定的拮抗性及细胞毒性;RhB-ZL4可与日本血吸虫童虫及成虫特异性结合,对日本血吸虫童虫有一定的拮抗性。第三章ZLW/pEGFP-C2质粒的构建及其功能鉴定
     目的:观察日本血吸虫表膜特异结合肽合成基因构建的ZLW/pEGFP-C2质粒体外转染S.j脱尾童虫效率,了解其抗虫作用。
     方法:构建ZLW/pEGFP-C2质粒,运用二甲基亚砜(DMSO)作用下的高浓度质粒浸泡技术,将ZLW/pEGFP-C2对机械转化日本血吸虫童虫进行体外转染,以瞬时表达的EGFP为阳性标记,在倒置荧光镜下对虫体进行观察;转染后童虫培养48h,抽提虫体总RNA和全虫蛋白,分别用RT-PCR和Western blot检测ZLW基因和EGFP基因在童虫体内的表达;转染后虫体继续培养,于24、48、72及96h不同时点用美兰染色法鉴别虫体死活并计数;上述实验均设空质粒和正常童虫作平行对照。
     结果:成功构建ZLW/pEGFP-C2质粒,经ZLW/pEGFP-C2质粒转染的虫体在镜下观察显示有10%的转染率,其EGFP主要位于虫体皮层,以口、腹吸盘最为明显;RT-PCR扩增出259bp,片断大小与预期相符,经测序与ZLW序列一致;Western-blot证实EGFP基因在童虫虫体内有表达。抗虫效果显示,24及48h时,实验组、对照组死亡率无明显差异性(P24=0.600,P48=0.508);72h后,实验组死亡率显著高于对照组(P72=0.000);96h后实验组死亡率达到100%。
     结论:成功构建ZLW/pEGFP-C2质粒,DMSO作用下的高浓度质粒浸泡技术成功地将ZLW/pEGFP-C2质粒引入日本血吸虫童虫体内并获得表达;ZLW/pEGFP-C2质粒转染后有一定的抗童虫效果。
Section One:Differential Panning and Identify of peptides specifically binding to the tegument of live S.j schistosomula
     Objective:The specific peptide with targeting and/or antagonism to the Schistosoma japonicum was gained by the techniqe of differential panning with liver polypides in vitro from Ph.D.-12TM Phage Displayed Peptide Library.
     Method:The specific peptides binding to schistosomula but cercarie were isolated by the techniqe of differential panning in vitro:The12peptide library without bingding to the cercarie was incubated and amplified with the schistosomula after force-absorbed with the cercarie, and the gained peptide library was eluted and amplified. After3times reverse absorption-amplification-panning-amplification, the DNA of15random phage clones was extract for sequencing. The sequences were analyzed through amino acids-translation and bioinformatics-analysis. The gained phage clones binding to schistosomulum and adult were detected and analyzed by the recovery rate of phage, Western-blot and immunohistochemistry.
     Result:The four M13phage peptide clones with different sequences MppZL6, MppZL4, MppZL1and MppZLO, without the insertion element in MppZLO, were gained by3time's differential panning in vitro. Through bioinformatics-analysis, the peptide inserts from MppZL6, MppZL4and MppZL1, all containing arginine residue, were overlaped of8or9hydrophil polar amino acid residues and hydrophobe nonpolar amino acid residues, whose isoelectric point was6.07,8.75,8.50, respectively. BLAST analysis indicated that MppZL1showed53%(7/13) identities to apolipoprotein B of Mus musculus, MppZL6showed69%(9/13) identities to S.j CHGC07116protein and MppZL4showed80%(8/10) identities to surface antigen BspA-like influencing the functions of the hydrogenosome of T. v G3. The recovery rate of phage showed that the level of the phage clone MppZL4binding to schistosomulum was significantly higher than MppZL6and MppZL1. By Western blot, only the membrane protein of S.j adult binding to MppZL4clone displayed the specific band,45.0kDa. The results of immunohistochemistry suggested that ZL4could binding to Sj schistosomulum, lung-schistosomulum, hepatic-schistosomulum and adult worm.
     Conclusion:The specific M13phage peptide MppZL4, using the techniqe of differential panning with liver polypides in vitro from Ph.D.-12TM Phage Displayed Peptide Library, could specifically binded to the tegument of live Sj schistosomulum and adult worms in vitro of mouse.
     Section Two:Functional testing of the MppZL4and RhB-ZL4
     Objective:The biological functions of MppZL4and RhB-ZL4were detected by the killing-S.j-experiments in vivo and vitro, and the mechanism was preliminary study from the cellular level.
     Method:Elution rate test the targeting of MppZL4binding to S.j:The mice, infected with S.j3rd day and10th day, were injected with MppZL41012pfu through tail vein, respectively, and were killed after15min. The phage MppZL4were eluted and counted from the lung and liver organs of the infected mice. At the same time, the control group and blank group were established. The mice, infected with S.j24th day, were injected with MppZL41012pfu through tail vein and killed after15min. The phage MppZL4were eluted and counted from the lung, liver organs and the worms of the infected mice. MppZL4phage lethal effect in vitro:S.j schistosomula were treated with MppZL4in axenic condition and observated every24h for72h through methylene blue stain, while the worms' mortality was counted. The positive control, negative control and blank control group were established. The mice, infected with S.j24th day, were injected with MppZL41012pfu through tail vein and sacrificed after15min. The S.j cells were manufactured used the worms from the mice in sterile condition and detected MppZL4by immunocytochemistry. The S.j cells were treated by MppZL4for one day whose inhibition rate was studied by MTT kit through IC50. The Rhodamine-labeled peptide RhB-ZL4were synthetic and detected the binding of S.j schistosomula in vitro and adult in vivo and the killing function of S.j schistosomula in vitro by the same ways.
     Result:The results of elution rate showed, that the abundance of MppZL4in the lung tissue was0.869±0.018and the liver MppZL4abundance was7.211±4.818at the3rdday, whlie the abundance of MppZL4in the lung tissue was0.239±0.065lower than the3rd day and the liver MppZL4abundance was15.833±8.224at the10th day higher than the3rd day, but the abundance of phage eluted lung or liver tissue showed no significant difference among each group while the abundance of MppZL4eluted from worm was17.256±9.588and much higher than M13KE eluted from worm was0.202±0.056at the24th d. The death rate of MppZL4lethal effect in vitro is higher than fortis serum positive control group (P=0.000) and its mortality rate had reached100%after48hr. Immunocytochemical stain displaied that MppZL4phage mainly deposited the cell envelope of big round cells, triquetrous cells and irregular cells of Sj. MTT test illustrateed that MppZL41016pfu possessed significant cytotoxicity (P=0.000), and with the higher concentration of MppZL4, the cytotoxicity enhanced; IC50≈1021. The results showed:RhB-ZL4could specifically binded to the tegument of live S.j schistosomulum in vivo and adult worms in vitro of mouse. The death rate of MppZL4lethal effect in vitro showed no significant difference between the MppZL4positive control group and its mortality rate had reached100%after72h.
     Conclusion:The specific MppZL4possess targeting and cytotoxicity for S.j. RhB-ZL4could specifically binded to the tegument of live S.j schistosomulum in vivo and adult worms in vitro of mouse, and possessed the cytotoxicity for S.j schistosomulum, too
     Section Three:Construction and functional identification of ZLW/pEGFP-C2
     Objective:To research the efficiency of ZLW/pEGFP-C2plasmid transfection into Schistosoma japonicum (Sj) schistosomula and observe the survival of the worms in vitro.
     Method:After plasmids of ZLW/pEGFP-C2was constructed and transfected into Sj schistosomula, worms off the end of mechanical, using the immersion method containing0.75%DMSO and the high concentration of plasmid in vitro. The GFP as positive marker, the worm was observed under inverted fluorescence microscope; the presence of the transgenes ZLW and EGFP in Sj were confirmed by RT-PCR and western blot, respectively, with total RNA and proteins from transfect schistosomula and cultured for48hours. After transfect, the worms cultured24,48,72and96hours were respectively stained with methylene blue, observed determining and counted dead or live worm based on color availability. All experiments contained two parallel control groups of pEGFP-C2empty plasmid and TBS.
     Result:The plasmid of ZLW/pEGFP-C2was constructed successfully. The transfect efficiency showed that the transfect rate was about10%and the fluorescence of EGFP was mainly localized in tegument of the worms especially predominate around the oral sucker and ventral sucker on the worms. The expected size of259bp fragment was successfully amplified by RT-PCR and its result of sequencing was consistent with the ZLW sequence, and the EGFP gene expression in worms was confirmed with western blot analysis. The results of affecting the worms to survive showed that the mortalities between experimental group and control groups showed no significant difference at24and48hours (P24=0.600, P48=0.508), but the mortality rate of experimental group was significantly higher than control groups at72hours (P72=0.000) and was100%after96h.
     Conclusion:This study proved that ZLW/pEGFP-C2plasmid has been successfully introduced into the juvenile Schistosoma japonicum using the high concentration of plasmid immersion under0.75%DMSO in vitro and the survival of transfect parasites was enable certain effects.
引文
1. Coutinho HM, Acosta LP, McGarvey ST, Jarilla B, Jiz M, Pablo A, Su L, Manalo DL, Olveda RM, Kurtis JD, Friedman JF. Nutritional status improves after treatment of Schistosoma japonicum-infected children and adolescents. J Nutr, 2006,136:183-188
    2.郝阳,吴晓华,郑浩,王立英,郭家钢,夏刚,陈朝,周晓农.2007年全国血吸虫病疫情通报.中国血吸虫病防治杂志,2008,20(6):401-404
    3. Bergquist R, Al-Sherbiny M, Barakat R, et al. Blueprint for schistosomiasis vaccine development. Acta Trop 2002; 82:183-192
    4.黄少玉,林荣幸,张启明,等。广东省流动人口血吸虫病分布与潜在传播危险因素,中国人兽共患病学报,2009,25(02):194-197
    5.吴成果,周晓农,肖邦忠,等。三峡库区血吸虫病潜在流行因素与监测指标研究,现代预防医学,2009,36(04):747-749
    6.范宏萍,涂祖武,刘建兵,等。湖北省国家级血吸虫病监测点两年疫情比较,中国血吸虫病防治杂志,2009,21(01):56-59
    7.徐慧英,章世清,黄德强,等。2005-2007年望城县国家级血吸虫病监测点疫情监测,中国血吸虫病防治杂志,2009,21(01):60-61
    8.王琳,张联恒,蒋小兰,等。2005-2007年镇江市国家级血吸虫病监测点疫情监测,中国血吸虫病防治杂志,2009,21(01):67-68
    9.梁幼生,戴建荣,朱荫昌,等。血吸虫对吡喹酮抗药性的研究X日本血吸虫中国大陆株对吡喹酮敏感性的现场调查,中国血吸虫病防治杂志,2005,17(5):328-332
    10. Day TA, Botros S. Drμg resistance in schistosomes. In:Maμle AQ Marks NJ (Eds), Parasitic Flatworms:Molecular Biology, Biochemistry, Immunology and Physiology. CAB International Wallingford,2006:256-268
    11.贾冬舒,韩继福,马成林,等。吡喹酮在绒山羊体内药代动力学的研究,吉林农业大学学报,2001,23(2):84-88
    12.陈有根,余伯阳。蒿甲醚在模拟体内酸碱环境中的代谢动力学研究,色谱,20卷第1期2002,20(1):37-39
    13. Smith GP, Filamentous fusion phage:novel expression vectors that display cloned antigens on the virion surface, Science,1985; 228:1,315-1,317
    14. Scott JK, Smith GP. Searching for peptide ligands with an epitope library. Science, 1990; 249:386-390
    15. Rodi DJ, Makowski L, Kay BK. One from column A and two from column B:the benefits of phage display in molecular-recognition studies. Curr Opin Chem Biol 2001; 6:92-96
    16. Forrer P, Jung S, Pluckthun A. Beyond binding:using phage display to select for structure, folding and enzymatic activity in proteins. Curr Opin Struct Biol.1999; 9:514-520
    17. Manoutcharian K, Gevirkian G, Cano A, et al. Phage displayed biomolecules as preventive and therapeutic agents. Curr Pharm Biotech 2001; 2:217-223
    18. Chen J, Bai G, Yang Y, et al. Identifying glucagon-like peptide-1 mimetics using a novel functional reporter gene high-throughput screening assay. Peptides,2007, 28 (4):928-934
    19. Hardy B, Raiter A, Weiss C, et al. Angiogenesis induced by novel peptides selected from a phage display library by screening human vascular endothelial cells under different physiological conditions. Peptides,2007,28 (3):691-701
    20. White SJ, Nicklin SA, Buning H, et al. Targeted gene delivery to vascular tissue in vivo by tropism-modified adeno-associated virus vectors. Circulation,2004, 109 (4):513-519
    21. Arnon R, TarrabK-Hazdai R, StewardM, et al. A mimotope peptide based vaccine against Schistosoma mansoni:synthesis and characterization [J]. Immunology, 2000,101 (4):555-562
    22.王欣之,傅志强,黄劭鹏,等。噬菌体展示日本血吸虫Sj14单抗的模拟抗原表位及其免疫保护性研究。生物工程学报,2006,22(1):119-124
    23.王林纤,蔡春,易新元,等。日本血吸虫雌虫抗原模拟表位的筛选及免疫保护性,中国寄生虫病防治杂志,2004,17(2):110-113
    24.余传信,朱荫昌,殷旭仁,等。用噬菌体肽库筛选SjCTP I的模拟抗原表位。中国寄生虫学与寄生虫病杂志,2001,19(1):11-14
    25.朱晓华,姜昌富,张颖颖,等。日本血吸虫抗原模拟表位免疫学活性的初步研究,中国寄生虫病防治杂志,2004,17(1):46-48
    26. Ouyang L, Yi X, Zeng X, et al. Partial protection induced by phage library-selected peptides mimicking epitopes of Schistosoma japonicum. ChinMed J (Engl),2003,116 (1):138-141
    27.吴广陵,人体寄生虫学,人民卫生出版社,2005,第三版,344-345
    28. Beall MJ, Pearce EJ. Human transforming growth factor-beta activates a receptor serine/threonine kinase from the intravascular parasite Schistosoma mansoni. J Biol Chem,2001,276 (34):31,613-31,619
    29. Osman A, Niles EG, LoVerde PT. Characterization of the Ras homologue of Schistosoma mansoni. Molecular and Biochemical Parasitology,1999,100 (1): 27-41
    30. Kohn AB, Anderson PA, Roberts-Misterly JM, et al. Schistosome calcium channel beta subunits. Unusual modulatory effects and potential role in the action of the antischistosomal drug praziquantel. J Biol Chem,2001,276 (40):36,873-36,876
    31. Silva CL, Cunha VM, Mendonca-Silva DL, et al. Evidence for ryanodine receptors in Schistosoma mansoni. Bicchem Pharmacol,1998,56 (8):997-1003
    32. Brannstrom K, Sellin ME, Holmfeldt P, et al. The Schistosoma mansoni protein Sm16/SmSLP/SmSPO-1 assembles into a nine-subunit oligomer with potential To inhibit Toll-like receptor signaling. Infect Immun.2009; 77 (3):1,144-1,154
    33. Pearson MS, McManus DP, Smyth DJ, Jones MK, Sykes AM, Loukas A. Cloning and characterization of an orphan seven transmembrane receptor from Schistosoma mansoni. Parasitology.2007,134 (Pt.14):2,001-2,008
    34. YU Rong, CAI Li-ting, GONG Yan-fei, et al. Effect of Mouse Models of Repeated Infection Combined With Treatment Against Schistosoma Japonicum Challenge Infection, Practical Preventive Medicine,2007 (14):1,328-1,330
    35. Zeng T, Cai L, Zeng Q, Yang S, Yu R, Li Y, Fang H, Li B, Zhang S. Immunization of mice with cells from juvenile worms of Schistosoma japonicum provides immunoprotection against schistosomiasis. Sci China C Life Sci.2007,50(6): 822-830
    36. Liu F, Lu J, Hu W, et, al. New perspectives on host-parasite interplay by comparative transcriptomic and proteomic analyses of Schistosoma japonicum, PLoS Pathogens,2006,2 (4):e29
    37. He Y. X. Biology of Schistosoma japonicum from cercaria penetrating into host skin to producing egg, Chin Med.1993,106:576-577
    38. Howells RE, Gerken SE, Ramalho-Pinto FJ, et al. Schistosoma mansoni:tail loss in relation to permeability changes during cercaria-schistosomulum transformation. Parasitology.1975; 71 (1):9-18.
    39. Dias-Neto E, Nunes DN, Giordano RJ, et al. Next-generation phage display: integrating and comparing available molecular tools to enable cost-effective high-throughput analysis[J]. PLoS ONE,2009,4 (12):e8338. (http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.00083 38)
    40. Xu Y, Sun HC, Tang ZY, et al. Optimizing in-vivo phage display combined with laser capture microdissection and real-time PCR to the study of vascular heterogeneity in hepatocellular carcinoma [J]. Chin J Exp Surg,2007,24(7): 781-783. (in Chinese)
    41. van Wezenbeek P.M, Hulsebos T.J, Schoenmakers J.G, Nucleotide sequence of the filamentous bacteriophage M13 DNA genome:comparison with phage fd. Gene.1980.11:129-148.
    42. Mural R. J, Adams M. D, Myers E. W, et al. A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome. Science.2002; 296(5573):1,661-1,671
    43. Feng Liu, Jiong Lu, Wei Hu, et al. New perspectives on host-parasite interplay by comparative transcriptomic and proteomic analyses of Schistosoma japonicum,, PLoS Pathogens,2006,2(4):268-281
    44. Carlton J.M, Hirt R.P, Silva J.C, et al. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis, Science.2007; 315 (5809):207-212
    45. Mountford AP, Harrop R. Vaccination against scistosomiasis:The case for lung-stage antigens. Parasite Today,1998; 14(3):109-114
    46. Smithers SR, Terry RJ. The infection of laboratory hosts with cercariae of Schistosoma mansoni and the recovery of the adult worms. Parasitology,1965; 55: 695-700
    47. Van Wezenbeek P.M, Hulsebos T.J and Schoenmakers J.G. Nucleotide sequence of the filamentous bacteriophage M13 DNA genome:comparison with phage fd, Gene,198011 (1-2):129-148
    48.刘传爱,肖建华,梁瑜,等。日本血吸虫微管蛋白基因的分离和cDNA序列分析,实用预防医学,2005,12(1):20-22
    49. Wang D, Villasante A, Lewis S.A, et al. The mammalian beta-tubulin repertoire: hematopoietic expression of a novel, heterologous beta-tubulin isotype, J. Cell Biol,1986,103 (5):1,903-1,910
    50. Fernanda I. Staquicini, Richard L. Sidman, Wadih Arap and Renata Pasqualini. Phage display technology for stem cell delivery and systemic therapy. Advanced drug delivery,2010,62 (12):1213-1216
    51. Limin Yu, Peggy Shuang Yu, Elizabeth Yee Yen Mui, Jennifer C. McKelvie, Thi Phuong Tu Phama, Yan Wen Yap, Wan Qing Wong, Jiawen Wu, Weiqiao Deng, Brendan P. Orner, Phage display screening against a set of targets to establish peptide-based sugar mimetics and molecular docking to predict binding site. Bioorganic & Medicinal Chemistry,2009,17,4825-4832
    52. Sachdev S Sidhu, Shohei Koide. Phage display for engineering and analyzing protein interaction interfaces. Structural Biology,2007,17 (4):481-487
    53. Maliha Zahid, Brett E. Phillips, Sean M. Albers, Nick Giannoukakis, Simon C. Watkins, Paμl D. Robbins. Identification of a rhabdomyosarcoma targeting peptide by phage display with sequence similarities to the tumour lymphatic-homing peptide LyP-1. PLoS One,2010,5 (8):e12252 (http://onlinelibrary.wiley.com/doi/10.1002/ijc.24170/pdf)
    54. Matthias Paschke. Phage display systems and their applications. Applied Microbiology and Biotechnology,2006.70(1):2-11
    55. Eveland LK, Morse SI. Schistosoma mansoni:in vitro conversion of cercariae to schistosomula. Parasitology.1975; 71(2):327-335.
    56. Rodi DJ, Soares AX, Makowski L. Quantitative Assessment of Peptide Sequence Diversity in M13 Combinatorial Peptide Phage Display Libraries. J. Mol. Biol. 2002; 322,1,039-1,052
    57.蔡力汀,日本血吸虫童虫细胞诱导小鼠抗攻击感染的免疫学研究,2006,博士论文,86-87
    58. Rider JE, Sparks AB, Adey NB, Kay BK:Microbiological methods. Kay BK Winter J McCafferty J eds. Phage Display of Peptides and Proteins:A Laboratory Manual.1996, Academic Press, San Diego, pp 55-65
    59. HONG Yun, LI Jin, WANG He-mu, ZHAO Kai. Progress in real-time quantitative PCR technique. Inter J Epidemiol Infect Dis,2006,33(3):161-163. (in Chinese)
    60. WANG Ai-Min. Estimating copy number of transgenic gene by real2time fluorescent quantitative PCR (TaqMan). Guihaia,29 (3):408-412. (in Chinese)
    61. Dias-Neto E, Nunes D N., Giordano R J., Sun J, Botz G H., Yang K, Setubal J C., Pasqualini R, Arap W. Next-Generation Phage Display:Integrating and Comparing Available Molecular Tools to Enable Cost-Effective High-Throughput Analysis.2009, PLoS ONE.4, e8338.
    62. Patrick J. Skelly, Charles B. Shoemaker. Induction cues for tegument formation during the transformation of Schistosoma mansoni cercariae. International Journal for Parasitology,2000; 30:625-631
    63. O.H. Aina, T.C. Sroka, M.L. Chen, et al. Therapeutic cancer targeting peptides, Biopolymers,2002; 66:184-199
    1.张品枉,肖向红,柴龙会.膜片钳技术及其在抗菌肽作用机制研究中的应用.现代生物医学进展,2007,7(10):1585-1587
    2. Benedetta Bussolati, Cristina Grange, Lorenzo Tei, Maria Chiara Deregibus, Mauro Ercolani, Silvio Aime and Giovanni Camussi. Targeting of human renal tumor-derived endothelial cells with peptides obtained by phage display. J Mol Med,2007,85 (8):897-906
    3. Prashanth K. Jayanna, Deepa Bedi, James W. Gillespie, Patricia DeInnocentes, Tao Wang, Vladimir P. Torchilin, DScb, Richard C. Bird, Valery A. Petrenko. Landscape phage fusion protein-mediated targeting of nanomedicines enhances their prostate tumor cell association and cytotoxic efficiency. Nanomedicine, 2010,6 (4):538-546
    4. Susanne Aileen Funkea and Dieter Willbold. Mirror image phage display—a method to generate dpeptide ligands for use in diagnostic or therapeutical applications. Mol. BioSyst,2009,5 (8):783-786
    5. Umberto De Marchi, Nicola Sassi, Bernard Fioretti, Luigi Catacuzzeno, Grazia M. Cereghetti, Ildiko Szabo and Mario Zoratti. Intermediate conductance Ca2+-activated potassium channel (KCa3.1) in the inner mitochondrial membrane of human colon cancer cells. Cell Calcium,2009,45 (5):509-516
    6. Bing Du, Honghui Han, Ziqiang Wang, Lisha Kuang, Lei Wang, Liping Yu, Miao Wu, Zhongliang Zhou and Min Qian. Targeted Drug Delivery to Hepatocarcinoma In vivo by Phage-Displayed Specific Binding Peptide. Molecular Cancer Research. Mol Cancer,2010,8 (2):135-144
    7. Han J, Goldstein LA, Gastman BR, et al. Iterrelated roles for Mcl-1 and Bim in regulation of TRAIL-mediated mitochondrial apoptosis. J Biol Chem.2006, Feb 13
    8. Yang W, Meng L, Chen R, et al. Inhibition of proliferative and invasive capacities of breast cancer cells by arignine-glycine-aspaxtic acid peptide in vitro. Oncol Rep.2006 Jan; 15(1):113-117
    9. Ouyang Li, Yi Xinyuan, Zheng Xianfang, Wang Qinglin. Killing Effects of Serum from Microtus Fortis and Its Different Fractions in vitro to Schistosoma Japonicum Schistosomula, Chin J Schisto Control 2003,15(2):98-101.
    10. YU Rong, CAI Li-ting, GONG Yan-fei,et al. Effect of Mouse Models of Repeated Infection Combined With Treatment Against Schistosoma Japonicum Challenge Infection, Practical Preventive Medicine,2007 (14):1,328-1,330.
    11. ZENG TieBing, CAI LiTing, ZENG QingRen, et, al. Immunization of mice with cells from juvenile worms of Schistosoma japonicum provides immunoprotection against schistosomiasis, SCIENCE CHINA Life Sciences(English),2007,50 (6):319-324.
    12. THOMAS H. WELLER, SUSAN K. WHEELDON. THE CULTIVATION IN VITRO OF CELLS DERIVED FROM ADULT SCHISTOSOMA MANSONI. Am. J.trop. Med. Hyg.1988,31 (2):335-348
    13. Lee SM, Lee EJ, Hong HY, et al. Targeting bladder tumor cells in vivo and in the urine with a peptide identified by phage display. Mol Cancer Res 2007;5:11-9.
    14. Xiao SH, Keiser J, Utzinger J, et al. In vitro and in vivo activities of synthetic trioxolanes against major human schistosome species. Antimicrob Agents Chemother 2007;51:1440-5.
    15. Tran MH, Freitas TC, Cooper L, et al. Suppression of mRNAs encoding tegument tetraspanins from schistosoma mansoni results in impaired tegument turnover. PLoS Pathog 2010; 6:e1000840.
    16. Krautz-Peterson G, Radwanska M, Ndegwa D, Shoemaker CB, Skelly PJ. Optimizing gene suppression in schistosomes using RNA interference. Mol Biochem Parasitol 2007; 153:194-202.
    17. Yuan XS, ShenJL, Wang XL, et al. Schistosoma japonicum:a method for transformation by electroporation. Exp Parasitol 2005;111:244-9.
    18. Mueller J, Gaertner FC, Blechert B, Janssen KP, Essler M. Targeting of tumor blood vessels:a phage-displayed tumor-homing peptide specifically binds to matrix metalloproteinase-2-processed collagen IV and blocks angiogenesis in vivo. Mol Cancer Res 2009; 7:1078-85.
    19. Hong H-y, Lee HY, Kwak W, et al. Phage display selection of peptides that home to atherosclerotic plaques:IL-4 receptor as a candidate target in atherosclerosis. J Cell Mol Med 2008; 12:2003-14.
    20. Finger AN, Bisoff M, Wetterwald A, et al. Scavenger receptor block as strategy for the identification of bone marrow homing phages by panning in vivo random peptide phage displayed libraries. J Immunol Methods,2002; 264:173-186
    21. Smedsrod B, Pertoff H, Gustafson S, et al. Scavenger functions of the liver endothelial cell. Biochem J 1990; 266:313-327
    22. Mosmann T. Rapid colorimetric assay for cellular growth and survial:application to proliferation and cytotoxicity assay. Immuno 1M eth,1983,65 (1-2):55-63
    23. Carmichael J, Draff W G, Gazdar A F, et al. Evaluation of a tetrazolium based semiautomated colorimetric assay:assessment of chemo sensitivity testing. Cancer Res 1987,47:936
    1.梁幼生,戴建荣,朱荫昌,等。血吸虫对吡喹酮抗药性的研究X日本血吸虫中国大陆株对吡喹酮敏感性的现场调查,中国血吸虫病防治杂志,2005,17(5):328-332
    2. Ismail M, Botros S, Metwally A, et al. Resistance to praziquantel:direct evidence from Schistosoma mansoni isolated from Egyptian villagers [J]. Am J Trop Med Hyg,1999,60.
    3. Atzpodien J, ReitzM. GM-CSF plus antigenic peptide vaccination in locally advanced melanoma patients [J]. Cancer Biother Radiopharm,2007,22 (4):551-555
    4.余传信,殷旭仁,李健,等。重组日本血吸虫四跨膜蛋白第二亲水基团对小鼠免疫保护作用的研究,中国血吸虫病防治杂志,2009,21(1):6-10。
    5. Gnjatic S, Altorki NK, Tang DN, et al. NY-ESO-1 DNA vaccine induces T-cell responses that are suppressed by regulatory T cells [J]. Clin Cancer Res,2009,15 (6):2130-2139
    6.蔡胜蓝,向选东,汪世平,等。日本血吸虫编码基因pcDNA3/SjHGPRT核酸疫苗在免疫宿主体内分布的观察,中国血吸虫病防治杂志,2009,21(3):174-178
    7.随华,刘纯,张徽,等。表达人Fas配体的质粒治疗Graves病模型小鼠,重庆医科大学学报,2009,34(12):1,640-1,642
    8. Porras G, Bezard E. Preclinical development of gene therapy for Parkinson's disease. Experimental Neurology,2008,209 (1):72-81
    9. Ripathi N K, Sathyaseelan K, Jana A M, et al. HighYield Production of Heterologous Proteins with Escherichia coli [J].2009,59 (2):137-146
    10.沈阳,林矫矫,姚利晓,等。应用发酵罐高密度生产日本血吸虫重组蛋白Sj28GST工艺的研究,中国动物传染病学报,2009,04,
    11.魏琦,刘彦,陈欲晓,曾庆仁,等.日本血吸虫表膜结合多肽的亲和筛选与初步鉴定.中国寄生虫学与寄生虫病杂志,2010,(28):81-84
    12. Huston J S, Levinson D, Mudgett-Hunter M et al. Protein engineering of antibody binding sites:recovery of specific activity in an anti2digoxin single chain Fv anologue produced in Escherichia coli. Proc Natl Acad Sci USA,1988; 85:5,879-5,883
    13. Sharp P M, Li W H. The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications1. Nucleic Acids Res, 1987.15 (3):1,281-1,295
    14.陈佩惠,周述龙主编医学寄生虫体外培养科学出版社1995,第一版:278
    15. Alexander M, Max L. Molecular dynamics simulation of DPPC bilayer in DMSO [J]. Biophysical Journal,1999,76:2,472-2,478
    16. Mountford AP, Harrop R. Vaccination against scistosomiasis:The case for lung-stage antigens. Parasite Today,1998; 14(3):109-114
    17. Smithers SR, Terry RJ. The infection of laboratory hosts with cercariae of Schistosoma mansoni and the recovery of the adult worms. Parasitology,1965; 55: 695-700
    18. YU Rong, CAI Li-ting, GONG Yan-fei,et al. Effect of Mouse Models of Repeated Infection Combined With Treatment Against Schistosoma Japonicum Challenge Infection, Practical Preventive Medicine,2007 (14):1,328-1,330.
    19. GS Waldo, BM Standish, J Berendzen, et al. Rapid protein-folding assay using green fluorescent protein, Nature Biotechnol,1999,17(7):691-695
    20.刘传爱,肖建华,梁瑜,等。日本血吸虫微管蛋白基因的分离和cDNA序列分析,实用预防医学,2005,12(1):20-22
    21. Wang D, Villasante A, Lewis S.A, et al. The mammalian beta-tubulin repertoire: hematopoietic expression of a novel, heterologous beta-tubulin isotype, J. Cell Biol,1986,103 (5):1,903-1,910
    22. Brazdova Jagelska E, Brazda V, Pecinka P, et al. DNA topology influences p53 sequence-specific DNA binding through structural transitions within the target sites [J]. Biochem J,2008,412(1):57-63
    23. Mahendra G, Kumar S, Isayeva T, et al. Antiangiogenic cancer gene therapy by adeno-associated virus mediated stable expression of the soluble FMS-like tyrosine kinase-1 receptor[J].Cancer Gene Ther,2005,12(1):26-34
    24. HedmanM, Muona K, Hedman A, et al. Eight-year safety follow-up of coronary artery disease patients after local intracoronaryVEGF gene transfer [J]. Gene Ther,2009,16 (5):629-634
    25. Vinge LE, Raake PW, KochWJ. Gene therapy in heart failure [J]. Circ Res,2008, 102 (12):1,458-1,470
    26. Hayashi Y, Kawazoe Y, Sa T, et al. Adenoviral gene transfer of hepatocyte growth factor prevents death of injured adult motoneurons after peripheral nerve avulsion [J]. Brain Res,2006,1111 (1):187-195.
    27.徐延军,胡吟燕,翟所强,等。耳后入路圆窗膜显微注射小鼠耳蜗基因转染 新途径的研究。听力学及言语疾病杂志,2009,17(3):279-282
    28. Lai Y, Schneider D, Kidszun A, et al1. Vascular endot helial growth factor increases functional beta-cell mass by improvement of angiogenesis of isolated human and murine pancreaticislet s1 Transplantation,2005,79:1,530-1,536
    29. Dohi T, Salz W, Costa M, et al1 Inhibition of apoptosis by survivin improves transplantation of pancreatic islet s for t reatment of diabetes in micel EMBO Rep,2006,7:438-443
    30.李锋,卢永听,朱记法,等。人生长激素的体外重组及在原代鼠成肌细胞内的表达,临床心血管病杂志,2004,20(8):479-481
    31. Mc Pherson RJ, Juul SE. Recent trends in erythropoietin-mediated neuroprotection [J]. Int J Dev Neurosci,2008,26 (1):103-111
    32. Arthur J G, Anthony M. Characterizing biological products and assessing comparability following manufacturing changes [J].Nature Biotechnology,2004, 22(11):1,383-1,390
    33. Bussolati B, Grange C, Tei L, et al. Targeting of human renal tumor-derived endothelial cells with peptides ob-tained by phage display [J] J Mol Med,2007, 85 (8):897-906
    34. Gustavsson M, Lehtio J, Denman S, et al. Stable linker peptides for a cellulose binding domain lipase fusion protein expressed in Pichia Pastoris [J]. Protein Eng,2001,14(9):711-715
    35. Chiquito JC, Feng JA. LINKER:a program to generate linker sequences for fusion proteins [J]. Protein Eng,2000,13 (5):309-312
    36. Ryoichi A, Hiroshi U, Atsushi K, et al. Design of linkers which effectively separate domains of a bifunctional fusion protein[J]. Protein Eng,2001, 14(BSuppl):529-532
    37. Akashi H, Eyre-Walker A, Translational selection and molecular evolu2tionl Curr Opin Genet Dev,1998,8:688-693
    38. Duret L, Mouchiroud D. Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis1 Proc Natl Acad Sci USA,1999,96:4,482-4,487
    39.鲁飞,朱荫昌,戴洋,等。日本血吸虫TPI DNA疫苗基因密码子优化增强免疫保护作用的研究,中国寄生虫学与寄生虫病杂志,2009,27(3):189-194
    40. He Y. X. Biology of Schistosoma japonicum from cercaria penetrating into host skin to producing egg, Chin Med.1993,106:576-577
    41. Howells RE, Gerken SE, Ramalho-Pinto FJ, et al. Schistosoma mansoni:tail loss in relation to permeability changes during cercaria-schistosomulum transformation. Parasitology.1975; 71 (1):9-18.
    42. Eveland LK, Morse SI. Schistosoma mansoni:in vitro conversion of cercariae to schistosomula. Parasitology.1975; 71(2):327-335.
    43. Heyers O, Walduck AK, Brindley PJ, et al. Schistosoma mansoni miracidia transformed by particle bombardment infect Biomphalaria glabrata snails and develop into transgenic sporocysts. Exp Parasitol,2003,105:174-178
    44.袁小松,沈继龙,汪学龙,等。用电穿孔法将绿色荧光蛋白基因导入日本血吸虫童虫并表达,中国寄生虫学与寄生虫病杂志,2005,23(4):202-205
    45. Boyle JP, Yoshino TP, Gene manipulation in parasitic helminths. Int J Parasitol, 2003,33:1,259-1,268
    46. Wippersteg V, Ribeiro F, Liedtke S, et al. The uptake of Texas Red-BSA in the excretory system of schistosomes and its colocalisation with ER60 promoter2induced GFP in transiently transformed adult males. Int J Parasitol, 2003,33:1,139-1,143
    47. Boyle JP, Wu, XJ, Shoemaker CB, et al. Using RNA interference to manipulate endogenous gene expression in Schistosoma mansoni sporocysts. Mol Biochem Parasitol,2003,128:205-215
    48. Skelly PJ, Dadara A, Harn DA. Suppression of cathepsin B expression in Schistosoma mansoni by RNA interference. Int J Parasitol,2003,33:363-369
    49.袁小松,沈继龙,汪学龙,等。增强型绿色荧光蛋白基因在日本血吸虫成虫体内的瞬时表达,中国人兽共患病学报,2006,22(1):18-21
    50. Gurtovenko A A, Anwar J. Modulating the structure and p roperties of cell membranes:the molecular mechanism of action of dimethyl sulfoxide [J]. J.Phys. Chem B,2007,111:10,453-10,460
    51. Lundberg P, Langel U. A brief introduction to cell-penetrating peptides. J Mol Recognit.2003 Sep-Oct; 16 (5):227-233
    52. Cruet-Henequart S, Maubant S, Luis J, et. Alpha (v) integrins regulate cell proliferation through integrin-linked kinase (ILK) in ovarian cancer cells. Oncogene.2003 Mar 20; 22(11):1,688-1,702
    53. Bao W, Stromblad S. Integrin alphav-mediated inactivation of p53 controls a MEK 1-dependent melanoma cell survival pathway in three-dimensional collagen. J Cell Biol.2004. Nov 22; 167(4):745-756
    54. Chen J, Baskerville C, Han Q, et al. Alpha (v) integrin, p38 mitogen-activated protein kinase, and urokinase plasminogen activator are functionally linked in invasive breast cancer cells. J Biol Chem.2001 Dec 21; 276 (51):47901-5. Epub 2001 Oct 1
    55. Han J, Goldstein LA, Gastman BR, et al. Iterrelated roles for Mcl-1 and Bim in regulation of TRAIL-mediated mitochondrial apoptosis. J Biol Chem.2006, Feb 13
    56. Yang W, Meng L, Chen R, et al. Inhibition of proliferative and invasive capacities of breast cancer cells by arignine-glycine-aspaxtic acid peptide in vitro. Oncol Rep.2006 Jan; 15(1):113-117
    1. Fernanda I. Staquicini, Richard L. Sidman, Wadih Arap and Renata Pasqualini. Phage display technology for stem cell delivery and systemic therapy. Advanced drug delivery,2010,62 (12):1213-1216
    2. Smith GP. Filamentous fusion phage:novel expression vectors that display cloned antigens on the virion surface. Science,1985,228:1315-1317.
    3. Diamond S L.Methods for mapping protease specificity.Current Opinion in Chemical Biology.2007; 11(1):46-51.
    4. Chen J,Bai G,Yang Y,et al.Identifying glucagon-like peptide-1 mimetics using a novel functional reporter gene high-throughput screening assay.Peptides.2007;28(4):928-34.
    5. Hardy B,Raiter A,Weiss C,et al.Angiogenesis induced by novel peptides selected from a phage display library by screening human vascular endothelial cells under different physiological conditions.Peptides.2007;28(3):691-701.
    6. Limin Yu, Peggy Shuang Yu, Elizabeth Yee Yen Mui, Jennifer C. McKelvie, Thi Phuong Tu Phama, Yan Wen Yap, Wan Qing Wong, Jiawen Wu, Weiqiao Deng, Brendan P. Orner, Phage display screening against a set of targets to establish peptide-based sugar mimetics and molecular docking to predict binding site. Bioorganic & Medicinal Chemistry,2009,17,4825-4832
    7. Sachdev S Sidhu, Shohei Koide. Phage display for engineering and analyzing protein interaction interfaces. Structural Biology,2007,17 (4):481-487
    8. Maliha Zahid, Brett E. Phillips, Sean M. Albers, Nick Giannoukakis, Simon C. Watkins, Paμl D. Robbins. Identification of a rhabdomyosarcoma targeting peptide by phage display with sequence similarities to the tumour lymphatic-homing peptide LyP-1. PLoS One,2010,5 (8):e12252 (http://onlinelibrary.wiley.com/doi/10.1002/ijc.24170/pdf)
    9. Matthias Paschke. Phage display systems and their applications. Applied Microbiology and Biotechnology,2006.70(1):2-11
    10. scott JK. Discovering peptide ligands using epitope libraries. Trends Biochem Sci,1992,17(7):241-215.
    11. Paget T, Khan N, Temple G, et al. Use of phage antibodies to distinguish closely related species of protozoan parasites[J]. Dis Markers,2000[16]:83-90.
    12. Hoe LN, Wan KL, Nathan S. Construction and characterization of recombinant single-chain variable fragment antibodies against Tox-oplasma gondii MIC2 protein[J]. Parasitology,2005,131:759-768.
    13.姚龙泉,尹继刚,张西臣,李建华。微小隐孢子虫T7噬菌体展示文库的构建,中国人兽共患病学报,2006,22(1):26-27,42.
    14.孙毅,贾人初,刘金明*,苑纯秀,石耀军,陆珂,傅志强,孙焕,蔡幼民,林矫矫。日本血吸虫成虫噬菌体展示cDNA文库的构建。中国寄生虫学与寄生虫病杂志, 2007,25(5):406-410
    15.雷黎,赵志荣,朱绍春,刘淼,卞茂红,张林杰,沈际佳。人源性抗日本血吸虫噬菌体抗体库的构建及初步鉴定3中国人兽共患病学报,2007,23(4):386-389.
    16. ScottM G, Dale E Y, William D H. Antibody engineering by codon2based mutagenesis in a filamentous in a filamentous phage vector system [J]. J Immunol,1992,149:3903-3913.
    17. Dela Cruz VF, Lal AA, Mc Cutchan TF. Immunogenicity and epitope mapping of foreign sequences via genetically engineered filamentous phage.J Biol Chem, 1988,263:4318-4322.
    18. Willis A E, Perham R N, Wraith D. Immunologicalp roperties of foreign pep tides in multip le disp lay on a filamentous bacteriophage [J]. Gene,1993,128 (1): 792-83.
    19. B eghettoE, P ucciA, M inenkova, et a 1.1 dentificationo fa human immunodominant B-cell epitope within the GRA1 antigen of Toxoplasma gondiib yp haged isplayo fc DNA1 ibraries [J]. IntJ P arasitol,2001,31:1659-1668.
    20. Beghetto E, Spadoni A, BuffolanoW, et al. Moleculardi section of the human B-cell response against Toxoplasma gondii infection by lambda display of cDNA libraries[J]. Int J Parasitol,2003,133:163-173.
    21. Arnon R, TarrabK2Hazdai R, StewardM, et al. A mimotope pep tide-based vaccine against Schistosom a m ansoni:synthesis and characterization [J]. Immunology,2000,101 (4):555-562.
    22.宣燕,郑宏,梁超。应用噬菌体随机肽库研究细粒棘球蚴抗原模拟表位,中国寄生虫学与寄生虫病杂志2010年10月第28卷第5期,352-354
    23.何艳燕,张述义,朱民,钱旻,谭红岩。从噬菌体肽库中筛选弓形虫抗原模拟表位初探,中国寄生虫学与寄生虫病杂志2007年12月第25卷第6期,515-517
    24. Arnon R, TarrabK-Hazdai R, StewardM, et al. A mimotope peptide based vaccine against Schistosoma mansoni:synthesis and characterization [J]. Immunology, 2000,101 (4):555-562
    25.王欣之,傅志强,黄劭鹏,等。噬菌体展示日本血吸虫Sj14单抗的模拟抗原表位及其免疫保护性研究。生物工程学报,2006,22(1):119-124
    26.王林纤,蔡春,易新元,等。日本血吸虫雌虫抗原模拟表位的筛选及免疫保护性,中国寄生虫病防治杂志,2004,17(2):110-113
    27.余传信,朱荫昌,殷旭仁,等。用噬菌体肽库筛选S/CTP I的模拟抗原表位。中国寄生虫学与寄生虫病杂志,2001,19(1):11-14
    28.朱晓华,姜昌富,张颖颖,等。日本血吸虫抗原模拟表位免疫学活性的初步研究,中国寄生虫病防治杂志,2004,17(1):46-48
    29. Ouyang L, Yi X, Zeng X, et al. Partial p rotection induced by phage library-selected peptides mimicking epitopes of Schistosoma japonicum. ChinMed J (Engl),2003,116(1):138-141
    30. Fu Y, Shearing LN, Haynes S, et al. Isolation from phage display libraries of single chain variable fragment antibodies that recognize conformational epitopes in the malaria vaccine candidate apical membrane antigen-1[J]. J Biol Chem, 1997,272:25678-25684.
    31. Dybwad A, Bogen B, Natvig JB, et al. Peptide phage libraries can be an efficient tool for identifying antibody ligands for poly clonal antisera[J]. Clin Exp Immunol,1995,102:438-442.
    32. Adda CG, Tilley L, Anders RF, et al. Isolation of peptides that mimic epitopes on a malarial antigen from random peptide libraries displayed on phage [J]. Infect Immunol,1999,67:4679-4688.
    33. Monette M, Opellas SJ, Greenwood J, et al. Structure of a Malaria parasite93 antigenic determinant displayed on filamentous bacteriophage determined by NMRspectroscopy:mplications for the structure of continuous peptide epitopes of proteins[J]. Protein Sci,2001,10(6):1150-1159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700