用户名: 密码: 验证码:
氟化丙烯酸酯共聚物表面结构的形成与构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分子材料表面的性能取决于其表面结构,目前对材料表面的形成过程及其对表面结构的影响研究很少。材料表面结构的设计很大程度上依赖于经验。因此,研究聚合物表面结构的形成对高分子表面形成理论模型的建立,表面结构的设计与控制以及聚合物在应用中表面与界面性能的控制都具有重要的意义。含氟聚合物材料具有极低的表面能、良好的拒水拒油和自清洁性、优异的耐热性能和化学稳定性等,在织物整理、功能涂层、航空航天、生物医用以及微电子等领域已得到广泛的应用。目前,含氟聚合物要获得优异表面性能往往需要耗费大量昂贵的含氟单体,而且含氟聚合物在使用环境中表面容易发生重构,从而丧失了优异的表面性能。因此人们希望在满足性能要求的同时,尽量减少氟单体的用量。以较少含氟量构造具有优异表面性能的稳定疏水表面一直是当今一个巨大的挑战。
     本论文以甲基丙烯酸甲酯(MMA)与甲基丙烯酸-2-全氟辛基乙酯(FMA)的共聚物为研究对象,首次利用最新的、能原位测定的、具有单/准分子层灵敏度的和频振动光谱(SFG)研究共聚物表面最外层结构的形成,并结合接触角测试、X-射线光电子能谱(XPS)、原子力显微镜(AFM)、X-射线衍射(XRD)等其他手段,系统地研究了聚合物链结构、成膜方式、溶剂等因素对聚合物溶液固化时表面结构形成的影响因素,探讨了高分子表面结构形成的机理,并在此基础上以较少含氟量构造稳定的低表面能疏水表面。
     成膜方式对氟化丙烯酸酯无规共聚物和二嵌段共聚物(PMMA-b-PFMA)表面结构的形成影响是截然不同的。以环已酮为溶剂时,对于无规共聚物,发现在低含氟量时(小于8 mol%),旋涂膜含氟组分的表面离析比浇铸膜容易;而较高氟含量时,结果刚好相反。两种膜的氟元素表面富集随本体中氟含量变化呈典型的“8”字形。低氟含量聚合物表面结构的形成受到构象熵主导。高氟含量时,全氟烷基在聚合物/空气界面的迁移受到焓控制。对于嵌段共聚物,浇铸膜表面的含氟组分富集量要远大于旋涂膜。氟化嵌段共聚物在溶液中聚集形成以PFMA为核、PMMA为冠的胶束。旋涂成膜时以PMMA为冠的胶束暴露在表面,疏水疏油性降低。而浇铸成时,含氟组分有足够时间从胶束聚集体中解缠,离析到表面,形成有序堆积的结构。
     具有推拉结构的末端只带有少数几个FMA的聚甲基丙烯酸酯嵌段共聚物能够构建稳定的低表面能表面。末端只带3~4个FMA单元(0.38 mol%,FMA)的嵌段共聚物,其表面具备与PFMA均聚物同样良好的疏水疏油效果,且含氟组分在表面高度离析,形成排列有序紧密堆积的结构,具备良好的抗极性环境表面重构能力。含氟段的增长其表面性能下降,含氟组分反而向更深内部聚集,全氟烷基在表面的排列有序性下降,以致表面层反而出现了PMMA链段。合适的PFMA段长度是含氟嵌段聚合物优异表面性能的关键。同时还发现了非氟化段PMMA越长越有利于含氟组分的表面离析和富集。
     研究发现长链的非氟化中间段PMMA(n=355)有利于三嵌段共聚物(PFMA-b-PMMA-b-PFMA)中含氟组分在表面的离析和富集,并且全氟烷基侧链能自组装形成丰富的有序结构-单层、双层和六角堆积结构,共聚物本体中形成层状聚集为主的结构,具备更好的环境稳定性。而短链PMMA(n=91)的氟化三嵌段共聚物全氟烷基却只能形成六角堆积结构,本体中自组装形成圆柱状结构。
     合适的溶剂更能促进全氟烷基侧链表面离析,形成更加紧密有序堆积的自组装结构,聚合物表面具备更好的抗表面重构能力。嵌段聚合物PMMA_(857)-b-PFMA_(3.3)在三氟甲苯中以单聚体形式存在,在浇铸固化成膜后表面的环境稳定性要好于环已酮和甲苯为溶剂。而嵌段聚合物在甲苯等中以胶束聚集体形式存在,在表面形成过程中,含氟组分不能向表面充分离析甚至在近表面形成胶束状聚集体,并且全氟烷基在表面排列堆积有序性下降。此外,尽管热处理能使近表层的含氟组分离析增强,但是其表面的全氟烷基有序结构的破坏却使其表面稳定性大大降低。
     本论文研究结果表明,以具有特定分子链结构的末端只带有少数几个FMA单元的氟化嵌段共聚物,经合适的溶液固化成膜后,其含氟组分向表面高度离析,且全氟烷基在表面自组装形成有序堆积结构,能够构建低表面能的稳定疏水表面。
The ultimate performance of materials in many traditional and modern applications depends not only on their bulk properties,but also relies heavily on their surface microstructure and interfacial behavior.Up to the present time,there existed few researches in the fields of formation mechanism of polymer surface structure.Progress in polymer surface and interface science and engineering will have been attributed to the ability of controlling and tailoring surface structure.Now days,fluorinated materials are widely used because of their low surface energy,chemical inertness,thermal stability,and low friction coefficient.Applications enclose low dielectric constant polymers in electronic industry,friction modifiers in lubrication oils, antifouling coating,optical fiber claddings and membranes.Since the costly fluorinated monomers were in used and the excellent surface performance of copolymer was lost when exposing in polar environment induced by surface reconstruction,it is challenging to fabricate fluorine-containing polymer surface with low-energy properties and superior long-lasting barrier properties and lower fluorine content,
     In this paper,the copolymers composed of methyl methacrylate(MMA) and 2-perfluorooctylethyl methacrylate(FMA) with various chain structures were synthesized by ATRP or free radical polymerization.The effects of chain structure,film formation methods and solvents on the polymer surface formation by solution solidness were investigated in detail using contact angle measurement,X-ray photoelectron spectroscopy(XPS),sum frequency generation spectra(SFG),atomic force microscopy(AFM) and X-ray diffraction.
     The difference of film-forming techniques on surface structure and performance of fluorinated methacrylate block copolymer and random copolymer were completely different.It was found that the enrichment of fluorinated moieties at spin-coated film surface was higher than that of cast film for low fluorine content random copolymer,but there was reverse results for high fluorine content copolymer.It surprisingly exhibited the figure like "8" that the tendency of surface segregation of fluorine at cast and spin-coated films surface with increasing of fluorine content.When the fluorinated monomer content in the copolymer was low,the perfluoroalkyl group was unable to migrate to the solution/air interface and became buried in the random-coil chain conformation as a result of entropic forces dominating the interfacial structure.When the films were prepared by spin-coating,the copolymer chains in solution were likely extended due to the centrifugal force,and the entropy effect of the polymer chains was thus weakened,resulting in the segregation of the fluorinated moieties on the film surface. However,perfluoroalkyl groups could not segregate at the surface of films prepared by casting and were thus buried in the random-coil chains.For the copolymers with high FMA contents, the migration of perfluoroalkyl groups at the solution/air interface or polymer/air interface was controlled by enthalpic forces.However,the cast film surface of diblock copolymer (PMMA-b-PFMA) has more fluorinated moieties than that of spin-coated film.The micelles was exposed at the surface during spin-coated which result in the decreasing of water and oil-repellence due to fluorinated diblock copolymer forms a micelle composed of the PMMA corona and the PFMA core in cyclohexanone or toluene.With comparing,the fluorinated moieties have enough time to be disentangled from micelles and could completely segregate at the outermost surface by using solution cast.
     The end-capped poly(methyl methacrylate) with several FMA units possessed a special push-me/pull-you architecture could be used for fabricating stable low free energy surface.The films of the end-capped PMMA with only about 3 or 4 FMA units(0.38mol%,FMA) have the same water and oil-repellence with PFMA homocopolymer,and exhibited better stability and resistance to polar environments for the perfluorinated moieties which can self-assemble to form an ordered and close-packed structure at surface.With increasing of FMA block lengths,water and oil repellency decreased,the ratio of F/C increased with increasing film depth,and the degree of ordered packing of the perfluoroalkyl side chains at the surface decreased.The PMMA segments preliminarily occupied the film surface even when FMA units were 10.It was attributed to the PFMA block length affecting molecular aggregation structure of the copolymer in the solution and the interracial structure at the air/liquid interface,which affects surface structure formation during solution solidification in turn.The results suggest that the proper PFMA block length play an important role in structure formation on the solid surface.At the same time,the longer PMMA block enhanced both the enrichment of fluorinated moieties and the order of packing orientation of the perfluoroalkyl side chains on the surface.
     It seems that the longer PMMA block(n=355) in triblock fluorinated copolymer (PFMA-b-PMMA-b-PFMA) was in favor of the fluorinated moieties segregating to outer surface and the perfluoralkyl side chain self-assemble into double-layer packing,single-layer packing and hexagonal packing structure,and the bulk formed lameUar structure.Accordingly, this film exhibited better stability and resistance to polar environments.As for triblock copolymer with shorter PMMA block(n=91),the perfluoralkyl side chain only self-assemble into hexagonal packing structure and the bulk formed cylinder structure.
     The proper solvent can promote the segregation of the perfluoroalykl side chain of fluorinated block copolymer at surface,forming a relatively perfect close-packed and well-ordered structure of the perfluoroalkyl side chains at the surface.The films own excellent stability and resistance to polar environments.Films of PMMA_(857)-b-PFMA_(3.3) with about four 2-perfluorooctylethyl methacrylate units casted with benzotrifluoride solution exhibited excellent resistance to polar environments compared with those cast by cyclohexanone and toluene solutions.When the film was cast with benzotrifluoride solution,in which only unimers existed.The perfluoroalkyl side chains can segregate easily on the surface and self-assemble into an ordered structure.While the perfluoroalkyl side chains could not be easily disentangled and they could not completely segregate at the outermost surface and form a well-ordered packing structure,casting with cyclohexanone and toluene solution,in which micelle existed. After annealing the extent of segregation of fluorinated moieties increased,but the ordered structure of the perfluoroalkyl side chains at the PMMA857-b-PFMA3.3 film surface was destroyed which result in the decreasing in the surface stability of the films.
引文
[1] Chen Y, Ying L, Yu W, Kang E T, Neoh K G. Poly(vinylidene fluoride) with Grafted Poly(ethylene glycol) Side Chains via the RAFT-Mediated Process and Pore Size Control of the Copolymer Membranes [J]. Macromolecules 2003,36(25): 9451-9457.
    
    [2] Dargaville T R, George G A, Hill D J T, Whittaker A K. An Investigation of the Nitroxide-Mediated Preirradiation Grafting of Styrene onto PFA [J]. Macromolecules 2004,37(2): 360-366.
    [3] Takezawa Y, Tanno S, Taketani N, Ohara S, Asano H. Plastic optical fibers with Fluoroalkyl methacrylate copolymer as their core [J]. J. Appl. Polym. Sci. 1991,42(12): 3195-3203.
    
    [4] Gaynor J, Schueneman G, Schuman P, Harmon J P. Effects of fluorinated substituents on the refractive index and optical radiation resistance of methacrylates [J]. J. Appl. Polym. Sci. 1993, 50: 1645-1653.
    [5] Boutevin B, Rousseau A, Bosc D. Accessible new acrylic monomers and polymers as highly transparent organic materials [J]. J. Polym. Sci., Part A: Polym. Chem. Sci. 1992, 30: 1279-1286.
    
    [6] Volkov V V, Fadeev A G, Plate N A, Amaya N, Murata Y, Takanara A, Kajiyama T. Effect of thermal molecular motion on Pervaporation behavior of comb-shaped polymers with fluorocarbon side groups [J]. Polym. Bull. 1994, 32:193-200.
    
    [7] Hopken J, Moller M. Low-surface-energy polystyrene [J]. Macromolecules 1992,25(5): 1461-1467.
    [8] Schneider J, Erdelen C, Ringsdorf H, Rabolt J F. Structural studies of polymers with hydrophilic spacer groups. 2. Infrared spectroscopy of Langmuir-Blodgett multilayers of polymers with fluorocarbon side chains at ambient and elevated temperatures [J]. Macromolecules 1989, 22(8): 3475-3480.
    
    [9] Bottino F A, Di Pasquale G, Pollicino A, Pilati F, Toselli M, Tonelli C. XPS Study on Surface Segregation in Poly(ethylene-iso/terephthalate)-Perfluoropolyether Block Copolymers [J]. Macromolecules 1998, 31(22): 7814-7819.
    
    [10] Genzer J, Sivaniah E, Kramer E J, Wang J, Korner H, Xiang M, Char K, Ober C K, DeKoven B M, Bubeck R A, Chaudhury M K, Sambasivan S, Fischer D A. The Orientation of Semifluorinated Alkanes Attached to Polymers at the Surface of Polymer Films [J]. Macromolecules 2000, 33: 1882-1887.
    [11] Genzer J, Efimenko K. Creating Long-Lived Superhydrophobic Polymer Surfaces Through Mechanically Assembled Monolayers [J]. Science 2000, 290:2130-2133.
    
    [12] Luning J, Stohr J, Song K Y, Hawker C J, Iodice P, Nguyen C V, Yoon D Y. Correlation of Surface and Bulk Order in Low Surface Energy Polymers[J]. Macromolecules 2001, 34:1128-1130.
    [13] Bedford R G, Dunlap R D. Solubilities and Volume Changes Attending Mixing for the System: Perfluoro-n-hexane-n-Hexane [J]. J. Am. Chem. Soc, 1958, 80:282-285.
    
    [14] Langmuir I. The constitution and fundamental properties of solids and liguids. Part I. solids [J]. J. Am. Chem. Soc., 1916,38:2221-2295.
    
    [15] Mach P, Huang C C, Nguyen H T. Dramatic effect of single-atom replacement on the surface tension of liquid-crystal compounds [J]. Phys. Rev.lett., 1998, 80:732-735.
    
    [16] Schrader M, Loeb G. Modern approach to wettability: theory and applications. New York: Plenum Press; 1992.
    
    [17] Adamson AW, Gast AP. Physical chemistry of surfaces, 6th ed. New York: Wiley; 1997.
    [18] Lenk T J, Hallmark V M, Hoffmann C L, Rabolt J F. Structural Investigation of Molecular Organization in Self-Assembled Monolayers of a Semifluorinated Amidethiol [J]. Langmuir 1994, 10: 4610-4617.
    [19] DeSimone J M, Guan Zihibin, Elsbernd C S. Synthesis of Fluoropolymers in Supercritical Carbon Dioxide [J]. Science 1992, 257:945-947.
    
    [20] Thomas R R, Anton D R, Graham W F, Darmon M J, Stika K M. Films Containing Reactive Mixtures of Perfluoroalkylethyl Methacrylate Copolymers and Fluorinated Isocyanates: Synthesis and Surface Properties [J]. Macromolecules 1998, 31:4595-4604.
    
    [21] Krupers M, Slangen P J, Moller M. Synthesis and Properties of Polymers Based on Oligo(hexafluoropropene oxide) Containing Methacrylates and Copolymers with Methyl Methacrylate [J]. Macromolecules 1998, 31: 2552-2558.
    
    [22] O'Rourke Muisener P A V, Jalbert C A, Yuan C, Baetzold J, Mason R, Wong D, Kim Y J, Koberstein J T, Gunesin B. Measurement and Modeling of End Group Concentration Depth Profiles for ω-Fluorosilane Polystyrene and Its Blends [J]. Macromolecules 2003, 36: 2956-2966.
    
    [23] O'Rourke-Muisener P A, Koberstein J T, Kumar S. Optimal Chain Architectures for the Molecular Design of Functional Polymer Surfaces [J]. Macromolecules 2003, 36: 771-781.
    
    [24] Koberstein J T. Molecular design of functional polymer surfaces [J]. J. Polym. Sci., Part B: Polym Phys. 2004, 42: 2942-2956.
    
    [25] Zisman W A. Contact Angle, Wettability, and Adhesion, Advances in Chemistry Series 43, Am. Chem. Soc: Washington DC, 1964.
    
    [26] Tuminello W H, Gregory T D. Thermodynamics of poly(tetrafluoroethylene) solubility [J]. Macromolecules 1994, 27: 669-676.
    
    [27] Scheirs J. Modern Fluoropolymers, Wiley, New York 1997.
    
    [28] Bartoszek E J, Perillon J. Paper 9,2nd Int. Conf. on Fluorine in Coatings, Salford, England, September 28-30, 1994.
    
    [29] Field D E, Griffith J R. Fluorinated polyether network polymers. US Patent 4 132 681, 1979.
    [30] Temtchenko T, Marchetti R, Maccone P, Radice S. Paper 20, Fluorine in Coatings II, Munich, February 24-26, 1997.
    
    [31] Sung C Y, Ratner B D. Surface and Bulk Structure of Segmented Poly(ether urethanes) with Perfluoro Chain Extenders. 3. Effects of Annealing, Casting Solvent, and Casting Conditions [J]. Macromolecules 1988, 21:2401-2404.
    
    [32] Gan D J, Cao W J, Wang Z J. Synthesis and surface properties of a fluorinated polyether [J]. J. Fluorine. Chem. 2002,116:59-63.
    
    [33] Hunt M O, Belu Jr A M, Linton R W, DeSimone J M. End-Functionalized Polymers. 1. Synthesis and Characterization of Perfluoroalkyl-Terminated Polymers via Chorosilane Derivatives [J]. Macromolecules 1993,26:4854-4859.
    
    [34] Mason R, Jalbert C A, O'Rourke Muisener P A V, Koberstein J T, Elman J F, Long T E, Gunesin B Z. Surface energy and surface composition of end-fluorinated polystyrene [J]. Advances in Colloid and Interface Science. 2001, 94:1-19.
    
    [35] Tanaka K, Kawaguchi D, Yokoe Y, Kajiyama T, Takahara A, Tasaki S. Surface segregation of chain ends in α,ω-fiuoroalkyl-terminated polystyrenes films [J]. Polymer 2003, 44: 4171-4177.
    [36] Hirao A, Koide G, Sugiyama K. Synthesis of Novel Well-Defined Chain-End- and In-Chain-Functionalized Polystyrenes with One, Two, Three, and Four Perfluorooctyl Groups and Their Surface Characterization [J]. Macromolecules 2002, 35: 7642-7651.
    [37] El-Shehawy A A, Yokoyama H, Sugiyama K, Hirao A. Precise Synthesis of Novel Chain-End-Functionalized Polystyrenes with a Definite Number of Perfluorooctyl Groups and Their Surface Characterization [J]. Macromolecules 2005, 38: 8285-8299.
    
    [38] Borkar S, Jankova K, Siesler H W, Hvilsted S. New Highly Fluorinated Styrene-Based Materials with Low Surface Energy Prepared by ATRP [J]. Macromolecules 2004,37: 788-794.
    
    [39] Graham P, Stone M, Thorpe A, Nevell T G, Tsibouklis J. Fluoropolymers with very low surface energy characteristics [J]. J. Fluorine.Chem., 2000, 104: 29-36.
    
    [40] Boker A, Reihs K, Wang J, Stadler R, Ober C K. Selectively Thermally Cleavable Fluorinated Side Chain Block Copolymers: Surface Chemistry and Surface Properties[J]. Macromolecules 2000, 33:1310-1320.
    
    [41] SaTdi S, Guittard F, Guimon C, Geribaldi S. Low Surface Energy Perfluorooctyalkyl Acrylate Copolymers for Surface Modification of PET [J]. Macromol. Chem. Phys., 2005,206:1098-1105.
    [42] SaTdi S, Guittard F, Guimon C, Geribaldi S. Synthesis and characterization of copolymers based on styrene and partially fluorinated acrylates [J]. Euro. Polym. Jour., 2006,42:702-710.
    
    [43] Beamson G, Alexander M R. Angle-resolved XPS of fluorinated and semi-fluorinated side-chain polymers [J]. Surf. Interface Anal., 2004,36:323-333.
    
    [44] Yang S, Wang J, Ogino K, Valiyaveettil S, Ober C K. Low-Surface-Energy Fluoromethacrylate Block Copolymers with Patternable Elements [J]. Chem. Mater., 2000, 12:33-40.
    
    [45] Marianne K, Bernett W, Zisman A. Wetting properties of acrylic and methacrylic polymers containing fluorinated side chains [J]. J. Phys. Chem., 1962,66: 1207-1208.
    
    [46] Sharfrin E G, Zisman W A. Constitutive relations in the wetting of low energy surfaces and the theory of the retraction method of preparing monolayers[J].J.Phys.Chem.,1960,64:519- 524.
    [47]Fujimori A,Araki T,Nakahara H,Ito E,Hara M,lshii H,Ouchi Y,Seki K.Polarized Near Edge X-ray Absorption Fine Structure Spectroscopic Study on Organized Molecular Films of Fluorinated Comb Polymers with Various Chain Lengths[J].Langmuir 2002,18:1437-1440.
    [48]Park I J,Lee S B,Choi C K,Kim J.Surface Properties and Structure of Poly(Perfluoroalkylethyl Methacrylate)[J].J.Colloid Interface Sci.1996,181:284-288.
    [49]Hayakawa T,Wang J,Sundararajan N,Xiang M,Li X,Glusen B,Leung G C,Ueda M,Ober C K.Photoswitching Surfaces:New Photopatternable,Self-Organizing Fluoropolymers Containing Acid Labile Semifluorinated Groups[J].J.Phys.Org.Chem.2000,13:787-795.
    [50]Rabolt J F,Russell T P,Twieg R J.Structural studies ofsemifluorinated n-alkanes.I.Synthesis and characterization of F(CF_2)n(CH_)2)_mH in the solid state[J].Macromolecules 1984,17:2786-2794.
    [51]Mahler W,Guillon D,Skoulios and A.Smectic liquid crystal from(perfluorodecyl) decane.Molecular Crystals Liquid Crystals[J],Letters,1985,2:111-119.
    [52]Wang J,Mao G,Ober C K,Kramer E J.Liquid Crystalline,Semifluorinated Side Group Block Copolymers with Stable Low Energy Surfaces:Synthesis,Liquid Crystalline Structure,and Critical Surface Tension[J].Macromolecules 1997,30:1906 -1914.
    [53]Hayakawa T,Wang J,Xiang M,Li X,Ueda M,Ober C K,Genzer J,Sivaniah E,Kramer E J,Fischer D A.Effect of Changing Molecular End Groups on Surface Properties:Synthesis and Characterization of Poly(styrene-b-semifluorinated isoprene) Block Copolymers with -CF_2H End Groups[J].Macromolecules 2000,33:8012-8019.
    [54]Honda K,Morita M,Otsuka H,Takahara A.Molecular Aggregation Structure and Surface Properties of Poly(fluoroalkyl acrylate) Thin Films[J].Macromolecules 2005,38(13):5699-5705.
    [55]Xiang M,Li X,Ober C K,Char K,Genzer J,Sivaniah E,Kramer E J,Fischer D A.Surface Stability in Liquid-Crystalline Block Copolymers with Semifluorinated Monodendron Side Groups[J].Macromolecules,2000,33:6106-6119.
    [56]Andruzzi L,Chiellini E,Galli G,et al.Engineering low surface energy polymers through molecular design:synthetic routes to fluorinated polystyrene-based block copolymers[J].J.Mater.Chem.,2002,12:1684-1692.
    [57]Li X,Andruzzi L,Chiellini E,Galli G,Ober C K,Hexemer A,Kramer E J,Fischer D A.Semifluorinated Aromatic Side-Group Polystyrene-Based Block Copolymers:Bulk Structure and Surface Orientation Studies [J].Macromolecules 2002,35:8078 -8087.
    [58]Graupe M.Takenaga M,Koini T,Colorado R Jr,Lee T R.Oriented Surface Dipoles Strongly Influence Interracial Wettabilities[J].J.Am.Chem.Soc.1999,121:3222 -3223.
    [59]Pittman A G.In Fluoropolymers;Wall,L.A.,Eds.;Wiley-Interscience:New York,1972;p 419.
    [60]王新平(WANG Xin-ping),陈志方(CHEN Zhi-fang),沈之荃(SHEN Zhi-quan).高分子表面动态行为 与接触角时间依赖性.中国科学(Science in China),B辑(ser.B).2005,35(1):64-69.
    [61]Russell T P.Surface-Responsive Materials[J].Science 2002,297:964-967.
    [62]Mori H,Hirao A,Nakahama S,Senshu K.Synthesis and Surface Characterization of Hydrophilic-Hydrophobic Block Copolymers Containing Poly(2,3-dihydroxypropyl methacrylate[J].Macromolecules 1994,27:4093-4100.
    [63]Schmidt D L,Brady R F Jr,Lain K,Schmidt D C,Chaudhury M K.Contact Angle Hysteresis,Adhesion,and Marine Biofouling[J].Langmuir 2004,20:2830-2836.
    [64]Katano Y,Tomono H,Nakajima T.Surface Property of Polymer Films with Fluoroalkyl Side Chains[J].Macromolecules 1994,27:2342-2344.
    [65]Park I J,Lee S B,Choi Ch K.Surface Properties of the Fluorine-Containing Graft Copolymer of Poly((perfluoroalkyl) ethyl methacrylate)-g-poly(methyl methacrylate)[J].Macromolecules 1998,31:7555-7558.
    [66]Nishino T,Urushihara Y,Meguro M,Nakamae K.Surface properties and structures of diblock and random copolymers with perfluoroalkyl side chains[J].J.Colloid Interface Sci.,2004,279:364-369.
    [67]李鲲(LI Kun),郭建华(GUO Jian-hua),李欣欣(LI Xin-xin),吴平平(WU Ping-ping).原子转移自由基聚合合成甲基内烯酸丁酯与内烯酸全氟烷基乙酯两嵌段共聚物及其性能的研究[J].高分子学报(Acta Polymerica Sinica),2002,2:235-241.
    [68]Hikita M,Tanaka K,Nakamura T,Kajiyama T,Takahara A.Aggregation states and surface wettability in films of poly(styrene-block-2-perfluorooctyl ethyl acrylate) diblock copolymers synthesized by atom transfer radical polymerization[J].Langmuir 2004,20:5304-5310.
    [69]Li K,Wu P P,Han Z W.Preparation of surface properities of fluorine-containing diblock copolymer[J].Polymer 2002,43:4079-4086.
    [70]Yokoyama H,Tanaka K,Takahara A,Kajiyama T,Sugiyama K,Hirao A.Surface Structure of Asymmetric Fluorinated Block Copolymers[J].Macromolecules 2004,37:939-945.
    [71]Al-Hussein M,Serero Y,Konovalov O,Mourran A,Moiler M,de Jeu W H.Nanoordering of Fluorinated Side-Chain Liquid Crystalline/Amorphous Diblock Copolymers[J].Macromolecules,2005,38:9610-9616.
    [72]Morita M,Ogisu H,Kubo M.Surface Properties of Perfluoroalkylethyl Acrylate/n-Alkyl Acrylate Copolymers[J].J.Appl.Polym.Sci.,1999,73:1741-1749.
    [73]Wang K,Karlsson G,Almgren M,Asakawa T.Aggregation Behavior of Cationic Fluorosurfactants in Water and Salt Solutions[J].J.Phys.Chem.B,1999,103:9237-9246.
    [74]Li Y J,Li P X,Wang J B,Wang Y L,Yan H K,Dong C C,Thomas R K.Thermodynamics of micellization for partially fluorinated cationic Gemini surfactants and related single-chain surfactants in aqueous solution[J].J.Colloid Interface Sci.,2005,287:333-337.
    [75]Sadtler V M,Giulieri F,Krafft M P,Riess J G.Micellization and Adsorption of Fluorinated Amphiphiles:Questioning the ICF_2=1.5CH_2 Rule[J].Chem.Eur.J,1998,4:1952-1956.
    [76] Downer A, Eastoe J, Pitt A R, Simister E A, Penfold J. Effects of Hydrophobic Chain Structure on Adsorption of Fluorocarbon Surfactants with either -CF_3 or H-CF_2-Terminal Groups [J]. Langmuir 1999, 15:7591-7599.
    
    [77] Zhang G F, Marie P, Maaloum M, Muller P, Benoit N, Krafft M P. Occurrence, Shape, and Dimensions of Large Surface Hemimicelles Made of Semifluorinated Alkanes. Elongated versus Circular Hemimicelles. Pit- and Tip-Centered Hemimicelles [J]. J. Am. Chem. Soc., 2005, 127: 10412-10419.
    
    [78] Eastoe J, Rogers S E, Martin L J, Paul A, Heenan R K, Webster J R P. Fluorosurfactants at Structural Extremes: Adsorption and Aggregation [J]. Langmuir 2006,22: 2034-2038.
    
    [79] Zhang H S, Pan J, Hogen-Esch T E. Synthesis and Characterization of One-Ended Perfluorocarbon-Functionalized Derivatives of Poly(ethylene glycol)s [J]. Macromolecules 1998, 31: 2815-2821.
    
    [80] Sawada H, Ikeno K, Kawase T. Synthesis of Amphiphilic Fluoroalkoxyl End-Capped Cooligomers Containing Oxime-Blocked Isocyanato Segments: Architecture and Applications of New Self-Assembled Fluorinated Molecular Aggregates [J]. Macromolecules 2002,35:4306-4313.
    
    [81] Zhang Y, Wu C, Fang Q, Zhang Y X. A Light-Scattering Study of the Aggregation Behavior of Fluorocarbon-Modified Polyacrylamides in Water [J]. Macromolecules 1996,29: 2494-2497.
    
    [82] Matsumoto K, Ishizuka T, Harada T, Matsuoka H. Association Behavior of Fluorine-Containing and Non-Fluorine-Containing Methacrylate-Based Amphiphilic Diblock Copolymer in Aqueous Media [J]. Langmuir 2004, 20:7270-7282.
    
    [83] Matsumoto K, Mazaki H, Matsuoka H. Amphiphilic Vinyl Ether Block Copolymers: Synthesis and Characteristics of Their Micelles in Water [J]. Macromolecules 2004,37: 2256-2267.
    
    [84] Matsumoto K, Kubota M, Matsuoka H, Yamaoka H. Water-Soluble Fluorine-Containing Amphiphilic Block Copolymer: Synthesis and Aggregation Behavior in Aqueous Solution [J]. Macromolecules 1999, 32: 7122-7127.
    
    [85] Hwang H S, Heo J Y, Jeong Y T, Jin S H, Cho D, Chang T, Lim K T. Preparation and properties of semifluorinated block copolymers of 2-(dimethylamino)ethyl methacrylate and fluorooctyl methacrylates[J]. Polymer 2003, 44:5153-5158.
    
    [86] Lim K T, Lee M Y, Moon M J, Lee G D, Hong S S, Dickson J L, Johnston K P. Synthesis and properties of semifluorinated block copolymers containing poly(ethylene oxide) and poly(fluorooctyl methacrylates) via atom transfer radical po!ymerization[J]. Polymer 2002, 43:7043-7049.
    
    [87] Hwang H S, Kim H J, Jeong Y T, Gal Y S, Lim K T. Synthesis and Properties of Semifluorinated Copolymers of Oligo(ethylene glycol) Methacrylate and 1H, 1H,2H,2H-Perfluorooctyl Methacrylate[J]. Macromolecules 2004, 37:9821-9825.
    
    [88] Zhu S X, Edmonds W F, Hillmyer M A, Lodge T P. Synthesis and Self-Assembly of Highly Incompatible Polybutadiene-Poly(hexafluoropropylene oxide) Diblock Copolymers[J]. J. Polym. Sci.: Part B: Polym. Phys., 2005,43:3685-3694.
    
    [89] Ito H, Imae T, Nakamura T, Sugiura M, Oshibe Y. Self-association of water-soluble fluorinated diblock copolymers in solutions[J]. J Colloid Interface Sci., 2004,276:290-298.
    
    [90] Matsumoto K, Nishimura R, Mazaki H, Matsuoka H, Yamaoka H. Synthesis and Hydrogel Formation of Fluorine-Containing Amphiphilic ABA Triblock Copolymers[J]. J. Polym. Sci.: Part A: Polym. Chem., 2001, 39:3751-3760.
    
    [91] Zhou Z L, Li Z B, Ren Y, Hillmyer M A, Lodge T P. Micellar Shape Change and Internal Segregation Induced by Chemical Modification of a Tryptych Block Copolymer Surfactant[J]. J. Am. Chem. Soc., 2003, 125:10182-10183.
    
    [92] Lodge T P, Hillmyer M A, Zhou Z L. Access to the Superstrong Segregation Regime with Nonionic ABC Copolymers [J]. Macromolecules 2004, 37:6680-6682.
    
    [93] Fu G D, Phua S J, Kang E T, Neoh K G. Tadpole-Shaped Amphiphilic Block-Graft Copolymers Prepared via Consecutive Atom Transfer Radical Polymerizations[J]. Macromolecules 2005, 38: 2612-2619.
    
    [94] Li Z B, Kesselman E, Talmon Y, Hillmyer M A, Lodge T P. Multicompartment Micelles from ABC Miktoarm Stars in Water[J]. Science 2004, 306:98-101.
    
    [95] Imae T, Tabuchi H, Funayama K, Sato A, Nakamura T, Amaya N. Self-assemblies of block copolymer of 2-perfluorooctylethyl methacrylate and methyl methacrylate[J]. Colloid Surfaces A: Physicochem. Eng. Aspects, 2000, 167:73-81.
    
    [96] Edmonds W F, Li Zh b, Hillmyer M A, Lodge T P. Disk Micelles from Nonionic Coil-Coil Diblock Copolymers[J]. Macromolecules 2006, 39:4526-4530.
    
    [97] Urushihara Y, Nishino T. Effects of Film-Forming Conditions on Surface Properties and Structures of Diblock Copolymer with Perfluoroalkyl Side Chains [J]. Langmuir 2005, 21: 2614-2618.
    
    [98] Nishino T, Urushihara Y, Meguro M, Nakamae K. Surface properties and structures of diblock copolymer and homoploymer with perfluoroalkyl side chains[J]. J. Colloid Interface Sci., 2005, 283:533-538.
    
    [99] Krupers M J, Sheiko S S, Moller M. Micellar morphology of a semi fluorinated diblock copolymer[J]. Polym. Bull., 1998, 40:211-217.
    
    [100] Synytska A, Appelhans D, Wang Z K, Simon F, Lehmann F, Stamm M, Grundke K. Perfluoroalky End-Functionalized Oilgoesters: Corelation between wettability and End-Group Segregation. Macromolecules 2007,40:297-305.
    
    [101] Li Y, Meli L, Lim K T, Johnston K P, Green P F. Structural Inversion of Micellar Block Copolymer Thin Films [J]. Macromolecules 2006, 39:7044-7054.
    
    [102] 何卫东.高分子化学实验[M].合肥:中国科学技术大学出版社,2003:17-19.
    
    [103] Keller R N, Wycoff H D. The Synthesis and purified of copper halide [J]. Inorg. Synth., 1946,2:1.
    
    [104] Matyjaszewski K, Shipp D A, Mcmurtry G P, Gaynor S G, Pakula T. Simple and Effective One-Pot Synthesis of (Meth)Acrylic Bolck Copolymers Through Atom Transfer Radical Polymerization [J]. J. Polym. Sci.: Part A: Polym. Chem., 2000,38:2023-2031.
    
    [105] Ramakrishnan A, Dhamodharan R. Facile Synthesis of ABC and CBABC Multiblock Copolymers of Styrene, tert-Butyl Acrylate, and Methyl Methacrylate via Room Temperature ATRP of MMA. [J]. Macromolecules 2003,36:1039-1046.
    
    [106] Lavielle L, Schultz J. Surface properties of graft polyethylene in contact with water: I. Orientation phenomena [J]. J.Colloid Interface Sci., 1985, 106:438-445.
    
    [107] Wang X P, Wang X B, Chen Z F. Study on reconstruction mechanism at the surface of a glassy polymer [J]. Polymer 2007,48: 522-529.
    
    [108] Krupers M, Moller M. Semifluorinated diblock copolymers, Synthesis, characterisation and amphiphilic properties [J]. Macromol. Chem. Phys., 1997, 198:2163-2179.
    
    [109] Ye S, Nihonyanagi S, Uosaki K. Sum Frequency Generation (SFG) Study of the pH-Dependent Water Structure on the Fused Quartz Surface Modified by Octadecyltrichlorosilane (OTS) Monolayer [J]. Phys. Chem. Chem. Phys., 2001, 3: 3463-3469.
    
    [110] Park I J, Lee S B, Choi C K. Surface properties for poly(perfluoroalkylethyl methacrylate)/poly(n-alkyl methacrylate)s mixtures[J]. J. Appl. Polym. Sci., 1994, 54: 1449-1454.
    
    [111] Kassis C M, Steehler J K, Betts D E, Guan Z, Romack TJ, DeSimone J M, Linton R W. XPS Studies of Fluorinated Acrylate Polymers and Block Copolymers with Polystyrene[J]. Macromolecules 1996, 29:3247 -3254.
    
    [112] Wang X F, Ni H G, Xue D W, Wang X P, Feng R R, Wang H F. Solvent effect on the film formation and the stability of the surface properties of poly(methyl methacrylate) end-capped with fluorinated units [J]. J. Colloid Interface Sci., 2008, 321: 373-383.
    
    [113] Wang J, Chen C, Buck S M, Chen Z. Molecular Chemical Structure on Poly(methyl methacrylate) (PMMA) Surface Studied by Sum Frequency Generation (SFG) Vibrational Spectroscopy [J]. J. Phys. Chem. B.,2001, 105: 12118-12125.
    
    [114] Briggman K A, Stephenson J C, Wallace W E, Richter L J. Absolute molecular orientational distribution of the polystyrene surface[J]. J. Phys. Chem. B., 2001, 105: 2785-2791.
    
    [115] Chen Z, Shen Y R, Somorjai G A. Studies of polymer surfaces by sum frequency generation vibrational spectroscopy [J]. Annu. Rev. Phys. Chem., 2002, 53: 437-465.
    
    [116] Wang H F, Gan W, Lu R, Rao Y, Wu B H. Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS) [J]. Int. Rev. Phys. Chem., 2005, 24: 191-256.
    
    [117] Lu R, Gan W, Wu B H, Zhang Z, Guo Y, Wang H F. C-H Stretching Vibrations of Methyl, Methylene and Methine Groups at the Vapor/Alcohol (n = 1-8) Interfaces[J]. J. Phys. Chem. B, 2005, 109: 14118-14129.
    [118] Gan W, Zhang Z, Feng R R, Wang H F. Identification of overlapping features in the sum frequency generation vibrational spectra of air/ethanol interface [J]. Chem. Phys. Lett., 2006,423: 261-265.
    
    [119] Lu R. Gan W. Wu B H, Chen H, Wang H F. Vibrational Polarization Spectroscopy of CH Stretching Modes of the Methylene Group at the Vapor/Liquid Interfaces with Sum Frequency Generation [J]. J. Phys. Chem. B 2004, 108: 7297-7306.
    
    [120] Wang J S, Krzysztol M. Transition metal catalyzed atom transfer radical polymerization (ATRP): principle and mechanism [J]. Polym. Mater. Sci., 1995, 73: 414-417.
    
    [121] Zhang Z B, Shi Z Q, Ying S K. Synthesis of fluorine-containing block copolymers via ATRP 2. Synthesis and characterization of semifluorinated di- and triblock copolymers [J]. Polymer 1999, 40: 5439-5444.
    
    [122] Natanya M L. Hansen, Katja J, Soren H. Fluoropolymer materials and architectures prepared by controlled radical polymerizations. Europ. Polym. J., 2007,43: 255-293.
    
    [123] Zhang Z B, Ying S K, Hu Q H, Xu X D. Semifluorinated ABA triblock copolymers: Synthesis, characterization, and amphiphilic properties [J]. J. Appl. Polym. Sci., 2002, 83: 2625-2633.
    
    [124] Matyjaszewski K, Xia J. Atom Transfer Radical Polymerization [J]. Chem. Rev., 2001, 101: 2921-2990.
    
    [125] Guan Z, DeSimone J M. Fluorocarbon-Based Heterophase Polymeric Materials. 1. Block Copolymer Surfactants for Carbon Dioxide Applications [J]. Macromolecules 1994, 27: 5527-5532.
    
    [126] Ni H G, Wang X F, Zhang W, Wang X P, Shen Z Q. Stable hydrophobic surfaces created by self-assembly of poly(methyl methacrylate) end-capped with 2-perfluorooctylethyl methacrylate units [J]. Surf. Sci., 2007, 601:3632-3639.
    
    [127] Wang J, Woodcock S E, Buck S h, Chen C, Chen Z. Different Surface-Restructuring Behaviors of Poly(methacrylate)s Detected by SFG in Water [J]. J. Am. Chem. Soc, 2001, 123: 9470-9471.
    
    [128] Miyamae T, Nozoye H. Morphology and chemical structure of poly(methyl methacrylate) surfaces and interfaces: restructuring behavior induced by the deposition of SiO_2 [J]. Surf. Sci., 2003, 532-535: 1045-1050.
    
    [129] Ji N, Ostroverkhov V, Lagugne-Labarthet F, Shen Y R. Surface vibrational spectroscopy on shear-aligned poly(tetrafluoroethylene) films [J]. J. Am. Chem. Soc, 2003, 125: 14218-14219.
    
    [130] Kweskin S J, Komvopoulos K, Somorjai G A. Conformational changes at polymer gel interfaces upon saturation with various liquids studied by infrared-visible sum frequency generation vibrational spectroscopy [J]. Appl. Phys. Lett., 2006, 88: 134105.
    
    [131] Van de Grampel R D, Ming W, Gildenpfennig A, van Gennip W J H, Laven J, Niemantsverdriet J W, Brongersma H H, de With G, van der Linde R. The Outermost Atomic Layer of Thin Films of Fluorinated Polymethacrylates [J]. Langmuir 2004,20: 6344-6351.
    
    [132] Wanka G, Hoffmann H, Ulbricht W. The aggregation behavior of poly (oxyethylene) -poly(oxypropylene)-poly(oxyethylene) block copolymers in aqueous solution [J]. Colloid Polym. Sci. 1990,268: 101-117.
    
    [133] Alexandridis P, Athanassiou V, Fukuda S, Hatton T A. Surface Activity of Poly(ethylene oxide)-block-Poly(propylene oxide)-block-Poly(ethylene oxide) Copolymers [J]. Langmuir 1994, 10: 2604-2612.
    
    [134] Kim M W, Cao B H. Additional reduction of surface tension of aqueous polyethylene oxide (PEO) solution at high polymer concentration [J]. Europhysics Letters 1993,24: 229-234.
    
    [135] Chen C Y, Even M A, Chen Z. Detecting Molecular-Level Chemical Structure and Group Orientation of Amphiphilic PEO-PPO-PEO Copolymers at Solution/Air and Solid/Solution Interfaces by SFG Vibrational Spectroscopy [J]. Macromolecules 2003,36:4478-4484
    
    [136] Clarke M L, Chen C, Wang J, Chen Z. Molecular level structures of poly(n-alkyl methacrylate)s with different side chain lengths at the polymer/air and polymer/water interfaces. Langmuir 2006, 22: 8800- 8806.
    
    [137] Yin C L, Chang C H. Infrared Spectroscopy Analysis of Mixed DPPC/Fibrinogen Layer Behavior at the Air/Liquid Interface under a Continuous Compression-Expansion Condition [J]. Langmuir 2006, 22: 6629-6634.
    
    [138] Bai Y X, Qian J W, Sun H B, An Q F. Dilute solution behavior of partly hydrolyzed poly(vinyl acetate) in selective solvent mixtures and the Pervaporation performance of their membranes in benzene/cyclohexane separation [J]. Journal of Membrane Science 2006, 279: 418-423.
    [139] Semenov A N, Nyrkova I A, Khokhlov A R. Polymers with Strongly Interacting Groups: Theory for Nonspherical Multiplets [J]. Macromolecules 1995,28: 7491-7500.
    
    [140] Hillmyer M A., Lodge T P. Synthesis and self-assembly of fluorinated block copolymers [J]. J. Polym. Sci.: Part A: Polym. Chem., 2002, 40: 1-8.
    
    [141] Carey D H, Ferguson G S. A Smart Surface: Entropic Control of Composition at a Polymer/Water Interface [J]. J. Am. Chem. Soc. 1996,118: 9780-9781.
    
    [142] Carey D H, Grunzinger S J, Ferguson G S. Entropically Influenced Reconstruction at the PBD-ox/Water Interface: The Role of Physical Cross-Linking and Rubber Elasticity [J]. Macromolecules 2000,33:8802-8812.
    
    [143] Ming W, Tian M, van de Grampel R D, Melis F, Jia X, Loos J, van der Linde R. Low surface energy polymeric films from sloventless liquid oligoesters and partially fluorinated isocyanates[J]. Macromolecules 2002, 35:6920-6929.
    
    [144] Sauer B B, McLean R S, Thomas R R. Tapping mode AFM studies OF nano-phases on fluorine-containing polyester coatings and octadecyltrichlorosilane monolayers [J]. Langmuir 1998, 14: 3045-3051.
    
    [145] Sheiko S, Lermann E, Moller M. Self-Dewetting of Perfluoroalkyl Methacrylate Films on Glass [J]. Langmuir 1996,12:4015-4024.
    
    [146] Pederson C J, Frensdorff H K. Macrocyclic polyethers and their complexes [J]. Angew. Chem. Inr. Ed. Engl., 1972,11: 16-25
    
    [147] Izat R M, Terry R E, Haymore B L, Hansen L D, Dalbey N K, Avondet A G, Christensen J J. Calorimetric titration study of the interaction of several uni- and bivalent cations with 15-crown-5, 18-crown-6, and two isomers of dicyclohexo-18-crown-6 in aqueous solution at 25.degree.C and .mu. = 0.1 [J]. J Am Chem Soc, 1976,98: 7620-7626.
    
    [148] Takahashi S, Kasemura T, Asano K. Surface molecular mobility for copolymers having perfluorooctyl and/or polyether side chains via dynamic contact angle [J]. Polymer 1997, 38: 2107-2111.
    
    [149] Ulman A. An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self Assembly, Academic Press, New York, 1991.
    
    [150] Nishino T, Meguro M, Nakamae K, Matsushita M, Ueda Y. The Lowest Surface Free Energy Based on -CF_3 Alignment [J]. Langmuir 1999, 15:4321-4323.
    
    [151] van de Grampel R D, Ming W, Laven J, van der Linde R, Leermakers F A M. A Self-Consistent-Field Analysis of the Surface Structure and Surface Tension of Partially Fluorinated Copolymers: The Influence of Polymer Architecture [J]. Macromolecules 2002, 35: 5670-5680.
    
    [152] Jariwala C P, Mathias L J. Syntheses, polymerization, and characterization of novel semifluorinated methacrylates, including novel liquid-crystalline materials [J]. Macromolecules 1993, 26: 5129-5136.
    
    [153] Elman J F, Johs B D, Long T E, Koberstein J T. A Neutron Reflectivity Investigation of Surface and Interface Segregation of Polymer Functional End Groups [J]. Macromolecules 1994, 27: 5341-5349.
    
    [154] Affrossman S, Hartshorne M, Kiff T, Pethrick R A, Richards R W. Surface Segregation in Blends of Hydrogenous Polystyrene and Perfluorohexane End-Capped Deuterated Polystyrene, Studied by SSIMS and XPS [J]. Macromolecules 1994, 27: 1588-1591.
    
    [155] Hopkinson I, Kiff F T, Richards R W, Bucknall D G, Clough A S. Equilibrium concentration profiles of physically end tethered polystyrene molecules at the air-polymer interface [J]. Polymer 1997, 38: 87-98.
    
    [156] Schaub T F, Kellogg G J, Mayes A M, Kulasekere R, Ankner J F, Kaiser H. Surface Modification via Chain End Segregation in Polymer Blends [J]. Macromolecules 1996, 29: 3982-3990.
    
    [157] Thunemann A F, Lochhaas K H. Self-Assembly of Perfluorodecanoic Acid with Cationic Copolymers: Ultra-Low Energy Surfaces and Mesomorphous Structures [J]. Langmuir 1998, 14: 4898-4903.
    
    [158] Wang J, Ober CK. Self-Organizing Materials with Low Surface Energy: The Synthesis and Solid-State Properties of Semifluorinated Side-Chain Ionenes [J]. Macromolecules 1997, 30: 7560-7567.
    
    [159] Andrade J D. Polymer Surface Dynamics [C]. New York: Plenum press, 1988: 1 -8.
    
    [160] Shimizu T, Tanaka Y, Kutsumizu S, Yano S, Ordered Structure of Poly(1H,1H-fluoroalkyl α-fluoroacrylate)s [J]. Macromolecules 1996, 29: 156-164.
    [161]Chaudhury M K.lnterfacial interaction between low-energy surfaces[J].Mater.Sci.Eng.Rep.1996,16:97-159.
    [162]Wu S.Polymer Interface and Adhesion.Marcel Dekker,New York,1982.
    [163]Cox J K C,Constantine B,Eisenberg A,Lennox R B.Polystyrene-poly(ethylene oxide) diblock copolymers form well-defined surface aggregates at air/water interface.Langmuir 1999,15:7714-7718.
    [164]Yang J P,Ni H G,Wang X F,Zhang W,Wang X P.Creating stable hydrophobic surfaces by poly(butyl methacrylate) end-capped with 2-perfluorooctylethyl methacrylate units[J].Polym.Bull.,2007,59:105-115.
    [165]Zheng W,Wang Z G.Morphology ofABC Triblock Copolymers[J].Macromolecules 1995,28:7215-72231.
    [166]Simon P F W,Ulrich R,Spiess H W,Wiesner U.Block Copolymer-Ceramic Hybrid Materials from Organically Modified Ceramic Precursors[J].Chem.Mater.,2001,13:3464-34861.
    [167]李美顺,鲁在君,刘盈.嵌段共聚物在本体中自组装形态的研究进展.高分子通报,2007,11:6-15.
    [168]Karbarz M,Stojek Z,Georgiou T K,Patrickios C S.Microphase separation in ABA triblock copolymer-based model conetworks in the bulk:Effect of loop formation[J].Polymer 2006,47:5182-5186.
    [169]Bates F S,Fredrickson G H.Block Copolymer Thermodynamics:Theory and Experiment.Annu.Rev.Phys.Chem.,1990,41:525-557.
    [170]Bates F S.Polymer-Polymer Phase Behavior[J].Science 1991,251:898-905.
    [171]Hamley I W.The Physics of block Copolymer;Oxford University Press;Oxford,1998.
    [172]Gallot B.Comb-like and block liquid crystalline polymers for biological applications[J].Prog.Ploym.Sci.,1996,21:1035-1088.
    [173]Gao L C,Pan Q W,Chen X F,Fan X H,Zhang X L,Zhen Z H,Zhou Q F.Double-Hexagonal Morphology Formed by Rod-Rich Triblock Copolymer[J].Macromolecules 2007,40:9205-9207.
    [174]Zhang D,Shen Y R,Somorjai G A,Studies of surface structures and compositions of polyethylene and polypropylene by IR + visible sum frequency vibrational spectroscopy[J].Chem.Phys.Lett.,1997,281:394.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700