用户名: 密码: 验证码:
基于光波导的芯片间光互连网络的设计与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着通信和计算机技术等信息科学技术的发展,特别是近几年来高速信息通信网的飞速发展,要求计算机处理速度向着每秒千亿次、万亿次甚至更快的高性能计算机方向发展。而传统电互连技术的性能由于固有的物理原因而受到限制,已越来越不适应高速信息处理与传输的要求。因此,光互连技术的研究越来越受到国内外研究者的重视,以高速率的光互连技术取代目前计算机中所采用的铜导线,以光子而不是电子为媒介,在芯片间之间实现高密度、高速传输数据。
     本文的研究对象为基于波导的芯片间光互连网络,首先从Maxwell方程出发,分析阶跃型平板波导中的波动方程以及场分布的解的形式和相关参量。由于方程的解析解难以确定,引入有限差分光束传输法,详细推导出FDBPM求解光在波导中传输的过程,并用它在Matlab上来实现光波导器件的设计和仿真。
     其次提出一种新型的PCB上芯片间光互连的基本结构,主要包括:VCSEL激光器、波导耦合器、内置光波导和光接收器;光互连层是其实现的关键,充分利用有限差分光束传输法来设计和分析光互连层。对所设计的矩形多模光波导仿真分析显示,其传输效率将大于99%。接下来,系统研究光波导的制备工艺,通过实验摸索,总结出一套刮刀法制作光波导的工艺流程,主要包括模具制作和波导制作两个部分,它具有步骤简单,易于控制波导芯层尺寸,适合制作大尺寸波导等突出优点。然后,对制作出的波导样品进行了通光测试和波导损耗测试,结果表明,其各路波导的平均损耗大概在3dB左右,符合通信要求。
     最后针对芯片间互连网络特点,分别设计了三种不同的网络模型:基于弯曲波导的全连接光互连网络、基于光开关阵列的全光交换互连网络和基于Mesh的光电混合互连网络。通过分析各自特点,选用最后一种方案,并在PCB板上成功制作出基于2×2 Mesh的光互连网络演示系统。它采用阵列式VCSEL/PIN垂直腔表面发射并行光发射/光接收模块,通过PCB板中光波导层进行光信号传输。对该系统进行全面测试表明:系统成功实现芯片间MESH网络的上移、下移、左移、右移光互连功能,光波长850m,单通道速率3.125Gbit/s,误码率低于10-16,完全满足通信要求。
     总之,成功实现了一种基于光波导的芯片间光互连网络,它将光互连层引入到常规电路板中,克服了电路板上芯片间电互连的高速瓶颈,具有创新性,对发展宽带、高速、大容量信息通讯网和高性能计算机并行处理和传输系统,具有重要的现实意义和应用前景。
Recently, with the development of information technoledge, such as telecommunications and computers, computers'processing speed was required to hundreds of billions per second or even trillions times per second, especially in high-speed information networks. But the performance of conventional electrical interconnection technology, because of the inherent physical restrictions, has become more and more unsuitable for high-speed information processing and transmission requirements. As a result, domestic and foreign researchers pay more attantion to optical interconnection technology aiming to replace the traditional copper wire interconnects, with photons rather than electronic as a medium, to realize high-density, high-speed communtions between chips.
     This paper focuses on waveguide-based interchip optical interconnection network. Firstly, from the Maxwell equation, the step-index planar waveguide were analyzed to get its wave equation, field distribution and related parameters. As the equation could not be solved exactly, we introduced finite difference beam propagation method (FDBPM) and derived it in detail for light transmitting in waveguides. And with it, we realized the design and simulation of optical waveguide devices in Matlab.
     Then, we proposed a new chip-to-chip optical interconnect structure on PCB, including VCSEL laser, waveguide coupler, embedded optical waveguide and optical receivers. The optical interconnect layer is the key to its implementation. So we designed and analyzed the optical interconnect layer in FDBPM, and the simulation of rectangular multi-mode waveguide in Matlab shows that the transmission efficiency would be greater than 99%. Next, the production process of waveguide was discussed, and through experiments, we summed up a new waveguide fabrication process named doctor bladding, that mainly includes two steps:mold-making and waveguide-making. The whole fabrication process was simple and easy to control for the size of waveguide core, suitable for making large-size waveguides and other prominent advantages. Then, the samples of waveguide fabricated were tested and results showed the average waveguide loss was about 3dB, that would be enough to meet the communication requirements.
     Finally, according to the characteristics of the interchip interconnection network, we designed three different network models:fully-connected network based of bending waveguide, all-optical switch interconnection network based of optical switch array and mesh-based opto-electronic hybrid connected network. By analyzing their own characteristics, the third option was chosen. We successfully fabricated a 2x2 Mesh-based optical interconnection network for demonstrations, which included parallel optical transmitter /receiver module-VCSEL/PIN array, and realized the optical signal transmitting in waveguides embedded in PCB. Experiments confirmed that each node of this network could realized to move up, down, left, right, the light's wavelength was 850nm, the data rate in each channel could reach above 3.125 Gbps and the bit error rate (BER) could be up to 10-16, which would be enough to satisfy communications.
     In a word, a new interchip waveguide-based optical interconnection network, with a conventional optical interconnection layer in printed circuit boards, was designed and realized, which could overcome the bottleneck of high-speed electrical interconnecs. It would be a innovation and could have important practical significances and applications to the development of broadband, high-speed, large-capacity information communication networks and parallel processing and transmission of high-performance computer systems.
引文
[1]Jeff Hecht.光纤光学.(第四版).贾东方,余震虹,刘俭辉译.北京:人民邮电出版社,2004.5-6
    [2]Guoqiang Li, Emel Yuceturk, Dawei Huang. Analysis of free-space optical interconnects for the three-dimensional optoelectronic stacked processor. Optics Communications,2002,202(4-6):319-329
    [3]Ben Layet, John F. Snowdon, Comparison of two approaches for implementing free-space optical interconnection networks, Optics Communications,2001, 189(1-3):39-46
    [4]Rong Wang, Aleksandar D. Rakic, Analysis of lensless free-space optical interconnects based on multi-transverse mode vertical-cavity-surface-emitting lasers. Optics Communications,1999,167(1-6):261-271
    [5]M. Johnck, A. Neyer,2D optical array interconnects using plastic optical fibres, Electronics Letters,1997,33(10)
    [6]Andreas Neyer, Bjorn Wittmann, Matthias Johnck. lastic-Optical-Fiber-Based Parallel Optical Interconnects, IEEE Journal of Selected Topics in Quantum Electronics,1999,5(2)
    [7]Bjorn Wittmann, Matthias Johnck, Andreas Neyer, POF-Based Interconnects for Intracomputer Applications, IEEE Journal of Selected Topics in Quantum Electronics,1999,5(5)
    [8]Jung Jin Ju, Suntak Park, Min-su Kim, et al. Polymer-Based Long-Range Surface Plasmon Polariton Waveguides for 10-Gbps Optical Signal Transmission Applications. Journal of Lightwave Technology,2008,26(11):1510-1519
    [9]Odile Liboiron-Ladouceur, Howard Wang, Ajay S. Garg, et al. Low-power, transparent optical network interface for high bandwidth off-chip interconnects. Optics Express.2009,17(8):6550-6561
    [10]M. Gruber, S. Sinzinger, J. Jahns. Optoelectronic multichip module based onplanar-integrated free-space optics. Proc. SPIE, Optics in Computing,2000:4089
    [11]SIA, The National Technology Roadmap for Semiconductors—Interconnect. International Technology Roadmap for Semiconductors,2007 Edition.2-5
    [12]M. Gruber, S. Sinzinger, J. Jahns. Optoelectronic multichip module based on planar-integrated free space optics. Proc. SPIE, Optics in Computing.2000.4089.
    [13]J. A. Kash, F. E. Doany, L. Schares, Chip-to-chip optical interconnects, Proc. OFC 2006, OSA/OFC
    [14]David A. B. Miller, Optical Interconnects, Proc. OFC.2010, OSA/OFC/NFOEC
    [15]David A. B. Miller. Devices for optical Interconnects to Chips. Proc. OFC.2007, OSA/OFC.
    [16]Kenji Kintaka, Junji Nishii, Shunsuke Murata, et al.8-Channel WDM Optical Interconnect Device using Add-Drop Multiplexers Integrated in a Thin-Film Waveguide. Proc. OFC.2008, COTA/ICQI/IPNRA/SL
    [17]N. Destouches, A. V. Tishchenko, J. C. Pommier, et al.99% efficiency measured in the-1st order of a resonant grating. Optics Express,2005,13(92):3230-3236
    [18]Ralf Waldhausl, Bernd Schnabel, Peter Dannberg, et al. Efficient coupling into polymer waveguides by gratings. Applied Optics.1997,36(36):9383-9389
    [19]Peter Modh, Johan Backlund, Jo rgen Bengtsson, et al. Multifunctional gratings for surface-emitting lasers:design and implementation. Applied Optics.2003,42(24): 4847-4853
    [20]D. Krabe, F. Ebling, N. Arndt-Staufenbiel, et al. New technology for electrical/optical systems on module and board level. Proc. ECTC,2000.970-974.
    [21]R. T. Chen, L. Lin, C. Choi, et al. Fully embedded board-level guided-wave optoelectronic interconnecs, Proc IEEE.2000,88(6).780-793,
    [22]In-Kui Cho, Seoung Ho Ahna, Myung-Yung Jeong. Chip-to-chip Optical Link by Using Optical Wiring Method, Proc. of SPIE,2008,6801(68011M)
    [23]Elmar Griese, Parallel Optical Interconnects for High Performance Printed Circuit Board," Proc. The 6th Int. Conf.1999.173
    [24]Laurent Schares, A. Kash, Fuad E. Doany, et al. Terabus:Terabit/Second-Class Card-Level Optical Interconnect Technologies. IEEE Journal of Selected Topics in Quantum Electronics,2006,12(5)
    [25]D.Kucharski et al., A 20Gb/s CMOS VCSEL Driver with Pre-Emphasis and Regulated Output Impedance in 0.13μm CMOS. IEEE IntlSolid-State Circuits Conf.2005
    [26]D.Guckenberger. IV, 10mW, 10Gb/s CMOS Optical Receiver Front-End. IEEE Radio-Frequency Integrated Circuits (RFIC) Symposium.2005
    [27]Xiaolong Wang, Wei Jiang, Li Wang, Fully Embedded Board-Level Optical Interconnects From Waveguide Fabrication to Device Integration. Journal of Lightwave Technology,2008,26(2)
    [28]Chul Chae Choi. Thin-film VCSEL and Optical Interconnection Layer Fabrications for Fully Embedded Board Level Optical Interconnects:[Dissertation for Doctor of Philosophy]. US:The University of Texas at Austin,2003
    [29]阮刚,肖夏,R.Streiter等.集成电路芯片上光互连研究的新进展.半导体学报,2001,4:387~390
    [30]David A. Hutt, Karen Williams, Paul P. Conway, Challenges in the manufacture of glass substrates for electrical and optical interconnect. Circuit World,2007,33(1): 22-30
    [31]蔡伯荣,唐志飞,孙守瑶等.集成光学.成都:电子科技大学出版社,1990
    [32]唐天同,王兆宏.集成光学.北京:科学出版社,2005
    [33]Yariv. A.现代通信光电子学.(第五版).陈鹤鸣,施伟华,张力译.北京:电子工业出版社.2005
    [34]Optiwave. OptiBPM Technical Background and Tutorials-Waveguide Optics Modeling Software System. (Version 6.0). Optiwave Corporation.2003
    [35]葛德彪.电磁波时域有限差分法.西安:西安电子科技大学,2002
    [36]刘少斌.色散介质时域有限差分方法.北京:科学出版社,2010
    [37]R.A.Norwood. Design Manufacturing and Testing of Planar Optical Waveguide Devices. Proc of SPIE, Bellingham.WA,2001(4439)
    [38]刘昊.有机聚合物光波导的研究:[硕士学位论文].南京:东南大学图书馆,2004
    [39]冯恩信.电磁场与电磁波.西安:西安交通大学出版社.2004
    [40]王福明,贺正辉,索瑾.应用数值计算方法.北京:科学出版社.1992
    [41]B.Kippelen, D.D.C.Bradley, Polymer Photonic Devices, Proc. SPIE. Bellingham. MA,1998(3281)
    [42]杨建义,冯浩.Y分支器单元的有限差分光束传输法分析.光子学报:1994(23):335~343
    [43]叶培大.光波导技术基本原理.北京:北京人民邮电出版社,1981
    [44]王沫然.MATLAB与科学计算(第2版).北京:电子工业出版社,2008
    [45]Cleve B.Moler. MATLAB科学计算.喻文键译.北京:电子工业出版社,2008
    [46]H. J. W. M. Hoekstra, G. J. M. Krijnen, P. V. Lambec. New formulation of the beam propagation method based on the slowly varying envelope approximation. Optics Communications,1993,97(5-6):301-303
    [47]Hong Ma, Alex K.Y.Jen, Larry R. Dalton, et al. Polymer-Based Optical Waveguides. Materials Processing and Devices. Optics Communications,2002, 14(19):1339-1365
    [48]Petar Pepeljugoski, Jeffrey Kash, Fuad Doany, et al. Low Power and High Density Optical Interconnects for Future Supercomputers, Proc. OFC.2010. OS A/ OFC/NFOEC
    [49]Byung Sup Rho, Woo-Jin Lee, Jung Woon Lim, et al. High-reliability flexible optical printed circuit board for opto-electric interconnections. Optical Engineering. 2009,48(1):015401 [50] Shogo Ura, Kouji Shinoda, Chikara Ito, al et. Signal Transmission from VCSEL in Thin-Film-Waveguide WDM Optical Interconnects Board. Proc OFC,2007. OSA/IPNRA
    [51]Mu Hee Cho, Sung Hwan Hwang, Han Seo Cho, High-Coupling-Efficiency Optical Interconnection Using a 90-Bent Fiber Array Connector in Optical Printed Circuit Boards, IEEE Photonics Technology Letters,2005,17(3)
    [52]Seiki Hiramatsu, Takashi Mikawa, Optical Design of Active Interposer for High-Speed Chip Level Optical Interconnects, Journal of Lightwave Technology, 2006,24(2)
    [53]E.Griese. Optical Interconnections on Printed Circuit Boards. SPIE 2000,4089. 60-71
    [54]Byung Sup Rho, Saekyoung Kang, Han Seo Cho, et al. PCB-Compatible Optical Interconnection Using 45 °-Ended Connection Rods and Via-Holed Waveguides. Journal of Lightwave Technology,2004,22(9):2128-2134
    [55]Sung Hwan Hwang, Mu Hee Cho, Sae-Kyoung Kang, et al. Two-Dimensional Optical Interconnection Based on Two-Layered Optical Printed Circuit Board. IEEE Photonics Technology Letters,2007,19(6):411-413
    [56]Real Vallee, Gang He. Coupling between an optical fiber and a planar waveguide. Optics Communications,1996,126(4-6):293-307
    [57]Yuzo Ishii, Shinji Koike, Yoshimitsu Arai,et al. SMT-Compatible Optical-I/O Chip Packaging for Chip-Level Optical Interconnects. Proc IEEE, Electronic Components and Technology Conference,2001.7038
    [58]张震.光波导的设计模拟与BPM算法研究.[硕士学位论文].武汉:华中科技大学图书馆,2006
    [59]陈宇星.曲,直光纤导波的比较分析.哈尔滨工程大学学报.1998,3(2):113~115
    [60]王荣,朱英勋,王顺喜等.弯曲光纤的辐射特性分析.解放军理工大学学报(自 然科学版).2004,5(4):21-24
    [61]Dietrich Marcuse. Curvature loss formula for optical fibers. J.Opt.Soc.Am,1976, 66(3)
    [62]Ross T.Schermer, James H.Core. Improved bend loss fomula verified for optical fiber by simulation and experriment. IEEE Jou of Quan Elec.2007,43(10)
    [63]Zhaoran Rena Huang, Daniel Guidotti, Lixi Wan, et al. Hybrid Integration of End-to-End Optical Interconnects on Printed Circuit Boards. IEEE Transactions on Components and Packaging Technologies,2007,30(4):708-785
    [64]冯勇华,罗风光,袁菁等.基于EOPCB的芯片网络.华中科技大学学报(自然科学版).2005(35):5-15
    [65]Teck Guan Lim, Bryan Sik Pong Lee, Tsuyoshi Shioda, et al. Demonstration'of High Frequency Data Link on FR4 Printed Circuit Board Using Optical Waveguides. Proc. IEEE Electronic Components and Technology Conference, 2007.1268-1269
    [66]ZONG Liangjia, LUO Fengguang, YU Zhihua. A new optical interconnection module for high coupling efficiency on EOPCB. Proc. SPIE,2008,7279(727901)
    [67]Nina Hendrickx, Jurgen Van Erps, Geert Van Steenberge, et al. Tolerance Analysis for Multilayer Optical Interconnections Integrated on a Printed Circuit Board. Journal of Lightwave Technology,2007,25(9):23952400
    [68]禹忠,汪敏强,姚熹.光通讯波段聚合物光波导材料的研究进展.化学通报,2001(1):5-10
    [69]钱淑冰.有机聚合物光波导的测试与封装.[硕士学位论文].南京:东南大学图书馆,2008
    [70]吕广才,胡国华,恽斌峰等.含氟聚酰亚胺有机聚合物光波导的制备.电子器件,2007,30(3):752~754
    [71]W.Y.Liu, A.Harkar. Novel Techlnique Micromachining for Submillimeter Wave circults. Proc of SPIE,2000,4176.272-230
    [72]V.Seidemann, S.Buttgenbach. A novel fabrication process for 3D meander shaped mirco coils in SU8 dielectric and their application to linear micro motors. Proc of SPIE,2001,4407.304-310
    [73]Ciprian Iliescu, Francis E.H.Tay, Jianmin Miao. Wafer level packaging of pressure senor using SU8 photoresist. Proceedings of SPIE,2005,5649.297-308
    [74]A.Neyer, S.Kopetz, E.Rable. Electrical-Optical Cricult Board Using Polysiloxane Optical Waveguide Layer. Electronic Components and Technology Conference. 2005:246-231
    [75]Bjorn Wittmann, Stefan Lehmacher, Stefan Kopecz. Optical Interconnects on and in Printed Circlut Boards. International Journal of Electronics and Communications. 2001(5):319-322
    [76]朱军,赵小林,倪智萍.SU8光刻胶的应用工艺研究.微细加工技术,2001(2)
    [77]张聪慧.基于EOPCB的矩形聚合物光波导研究.[硕士学位论文]武汉:华中科技大学图书馆.2008.36-37
    [78]凌云,张彤,崔一平.有机聚合物光波导的研制.电子器件,2005(6):265-267
    [79]祖继锋.聚合物波导在光互连中的应用.高技术通讯.1995,(3):52~55
    [80]John L.Hennessy, David A. Patterson. Computer architecture:a quantitative approach (Fourth Edition), Elsevier. Inc,2007.200-201
    [81]张以漠.光互连网络技术.北京:电子工业出版社.2006.28-32
    [82]J. Beals Ⅳ, N. Bamiedakis, A.Wonfor, et al. A terabit capacity passive polymer optical backplane based on a novel meshed waveguide architecture. Appl Phys A. 2009,95:983-988
    [83]万助军,袁菁,吴亚明等.平面光路中交叉波导的损耗和串扰研究.半导体光电.2008,29(4)
    [84]查英,孙德贵,刘铁根等.基于Banyan网络的无阻塞Si02波导4×4矩阵光开关.光电子.激光,2007,18(8):931~934
    [85]K. Kurata, T. Yoshikawa, I. Hatakeyama, et al. A 16_16 Crosspoint Switch module with 3.125-Gbit/port Optical I/O Interfaces based on OIP(Optical-interconnection as IP)Design Concept. Proceedings of SPIE,2002,4870.69-73
    [86]Di Yang, Yanping Li, Fei Sun, et al. Fabrication of a 4 × 4 strictly nonblocking SOI switch matrix. Optics Communications,2005,250:48-53
    [87]Byoung-Joon Seo, Seongku Kim, Bart Bortnik,et al. Optical Signal Processor Using Electro-Optic Polymer Waveguides. Journal of Lightwave Technology,2009, 27(15):3092-3104
    [88]Joris Van Campenhout, William M. J. Green, Solomon Assefa, et al. Low-power, 2×2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks. Optics Express.2009,17(26):24020-24030
    [89]Hugo L. R. Lira, Sasikanth Manipatruni, Michal Lipson. Broadband hitless silicon electro-optic switch for on-chip optical networks. Optics Express.2009,17(25): 22271-22277
    [90]Joris Van Campenhout,William M. J. Green, Yurii A. Vlasov. Design of a digital, ultra-broadband electro-optic switch for reconfigurable optical networks-on-chip. Optics Express.2009,17(26):23793-23799
    [91]Qing Wang, Jianping Yao. A high speed 2×2 electro-optic switch using a polarization modulator. Optics Express.2007,15(25):16500-16506
    [92]丁旭.基于EOPCB的Mesh网络的设计与实现.[硕士学位论文]武汉:华中科技大学图书馆.2009
    [93]赵宏智.2D Mesh片上网络中交换机服务性能影响的研究及其拓扑改进.电子学报,2009,37(2)
    [94]Kevin DeMartino, Verizon Communications. An Architecture for a Seamless Mesh Network. Proc of Design of Reliable Communication Networks (DRCN) 2003, Banff, Alberta, Canada, October,2003
    [95]Koji Nakano, Randomized initialization on the 1-dimensional reconfigurable mesh, Proc IEEE. the eighth international conference on parallel and distributed computing,2007:293-294.
    [96]Z. Yu, et al., Reconfigurable mesh-based inter-chip optical interconnection network for distributed-memory multiprocessor system. Opt. Int. J. Light Electron. Opt. (2010), doi:10.1016/j.ijleo.2009.05.027
    [97]Vitesse.6.5Gbps 12×12 Asynchronous Crosspoint Switch Datasheet. Vitesse Semiconductor Corporation.2-9
    [98]海博.HBT12-M32/HBR12-M32并行光发射和接收模块技术说明书.武汉:武汉海博光技术公司,2006
    [99]Silabs. C8051F310/1/2/3/4/5/6/7 Datasheet. Silicon Laboratories.2006.1-5
    [100]Muhsen Aljada, Kamal E. Alameh, Yong-Tak Lee, High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors, Optics Express.2006,14(1524):6823-6827
    [101]Feng Zhao, Yun Zhang, Jizuo Zou, et al. Wavelength division multiplexers demultiplexers for optical interconnects in massively parallel processing. Opt. Eng. 2003,42(273)
    [102]Jing Yuan, Fengguang Luo, Xinjun Zhou, Optical interconnection in embedded-fiber printer circuit boards, Optik,2008.119:46-50
    [103]Yoichi Taira, Hidetoshi Numata, Fumiaki Yamada, et al. Board to Board Optical Interconnect for Server Applications. Proc. OFC.2005. OSA/FIO
    [104]Yadin, Orenstein. Parrallel Optical Interconnects over Multimode Waveguides, Journal of Lightwave Technology,2007,25(10)
    [105]Biow Hiem Ong, Xiaocong Yuan, Swee Chuan Tjin, Adjustable refractive index modulation for a waveguide with SU-8 photoresist by dual-UV exposure lithography. Applied Optics,2006,45(31)
    [106]Yongzhang Leng, Victor Yun, Lisa Lucas. Dispensed polymer waveguides and laser-fabricated couplers for optical interconnects on printed circuit boards, Applied Optics,2007,46(4)
    [107]Zhihua Li, Huajun Shen, Chengyue Yang, Edge-view photodetector for optical interconnects. Optics Letters,2007,32(20)
    [108]李斌,罗风光,余志华等.基于4×4 mesh光互连网络的EOPCB设计.华中科技大学学报(自然科学版),2009,37(12):37~39
    [109]Liangjia ZONG, Fengguang LUO, Zhihua YU. A new optical interconnection module for high coupling efficiency on EOPCB. Proc. SPIE,2008,7279 (727901)
    [110]Zhihua Yu, Fengguang Luo, Xu Di, et al. Highly reliable optical interconnection network on printed circuit board for distributed computer systems. Optics & Laser Technology. Optics & Laser Technology 42 (2010):1332-1336
    [111]Zhihua Yu, Fengguang Luo, Bin Li, et al. Reconfigurable mesh-based inter-chip optical interconnection network for distributed-memory multiprocessor system. Optik.2010,121:1845-1847

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700