用户名: 密码: 验证码:
高效抗硫集输缓蚀剂研制及缓蚀机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究内容属于国家“十一五”规划重大科技专项课题。针对川东普光气田集输系统恶劣的腐蚀环境:P_(H2S)>1.5MPa、P_(CO2)>1.0MPa及平均矿化度159 000mg/l,合成了咪唑啉衍生物、曼尼希碱、吡啶季铵盐、喹啉季铵盐和新含氮稠杂环季铵盐五种缓蚀剂。通过设计正交试验,对各缓蚀剂的合成工艺进行了优化,并筛选了与之有较好缓蚀协同作用的增效剂,复配以各种表面活性剂和溶剂制成了成品缓蚀剂;用饱和H_2S/CO_2失重、高压H_2S/CO_2静态和动态失重、抗硫化氢应力腐蚀开裂、原子力显微镜(AFM)和环境扫描电镜(SEM)评价了各种缓蚀剂的抗硫性能;通过X能量衍射色散光谱(EDX)对试片表面产物膜的成分分析和量子化学密度泛函理论(DFT)探讨了缓蚀剂的作用机制及分子结构和抗硫性能的关系。
     研究结果表明,正交试验优化后的工艺为各缓蚀剂的最佳合成工艺。咪唑啉衍生物、曼尼希碱和季铵盐缓蚀剂分别与苯基硫脲、丙炔醇和增效剂Y1(含S、N化合物)有着较好的协同抗硫效应;提高缓蚀剂的水溶性,抗硫性能变弱。
     五类缓蚀剂在含硫环境中都有一定的缓蚀性能,其优劣顺序为:新含氮稠杂环季铵盐>喹啉季铵盐>吡啶季铵盐>咪唑啉衍生物>曼尼希碱。高效缓蚀剂在含硫环境中的作用机制主要是有效抑制CO_2/Cl~-腐蚀,并促使试片表面生成致密的碳化物和硫化物保护膜。
     缓蚀剂的分子结构和抗硫性能关系密切。缓蚀剂分子的极性越高、E_(LUMO)越小、E_(HOMO)越大、最低非占轨道和最高占据轨的能隙即能量差ΔE(E_(LUMO)-E_(HOMO))越小,缓蚀性能越强。总的来说,缓蚀剂的静电吸附作用越强,空间位阻效应越小,中心吸附原子的电子云密度越大,缓蚀剂的抗硫效果越好。
The contents of this thesis belonged to the national "Eleventh Five-Year" plan major science and technology issues. Five kinds of corrosion inhibitors of imidazoline derivatives, Mannich bases, pyridine and quinoline and a new nitrogen-containing fused heterocyclic quaternary ammonium salts were synthetized for harsh corrosive environment of PuGuang gas gathering and transportation system, in which the partial pressure of hydrogen sulfide was more than 1.5 MPa, partial pressure of carbon dioxide was more than 1.0 MPa and the average salinity was 159 000mg/l. Synthesis conditions of various inhibitors were optimized by orthogonal experimental design and selected its’handsome synergist which had synergistic inhibition with it. After complexed with various surface active agents and solvents, the finished product inhibitors were gotten. Those inhibitors were evaluated through weight loss methods which saturated with H_2S/CO_2 and high pressure of H_2S/CO_2 at the static and dynamic conditions respectively. And the methods of Anti-hydrogen sulfide stress corrosion cracking, Atomic Force Microscope (AFM) and Environmental Scanning Electron Microscopy (SEM) were taken to evaluate the performance of corrosion resistance to sulfur. Inhibition mechanism and the relationship between molecular structure and anti-sulfur property were researched through composition analysis of the sample surface of product films obtained by X Energy Dispersive Diffraction Spectra (EDX) and quantum chemical paramaters obtained by Density Functional Theory (DFT).
     The results showed that the optimized synthesis of orthogonal test were the best synthetic inhibitors. Imidazoline derivatives and Mannich bases, respectively, worked in coordination with phenyl thiourea, propargyl alcohol and quaternary ammonium salts had a good synergistic anti-sulfur effect with synergist Y1(a compound containing S and N elements). Corrosion inhibitive properties were weaker when improve water-soluble of all corrosion inhibitors. Five corrosion inhibitors all had some certain anti-sulfur properties in the corrosion environment containing H_2S/CO_2.The order of advantages and disadvantages was: New nitrogen-containing fused heterocyclic quaternary ammonium salt > quinoline quaternary ammonium salt > pyridine quaternary ammonium salt > imidazoline derivatives> Mannich base. The mechanism of corrosion inhibitor which have better inhibitive property of sulfur corrosion was mainly inhibit the corrosion of CO_2/Cl~-in the environment of H_2S/CO_2/Cl~-, and promoted dense carbide and sulfide protective film on the specimen surface.
     The anti-sulfur performance was closely related to the molecular structure of corrosion inhibitors. Corrosion inhibitors were more efficient in the sulfur-containing environment that their molecules are higher polarity, smaller the E_(LUMO), greater the E_(HOMO) and smaller theΔE which stand for the energy gap of E_(LUMO) and E_(HOMO). In general, corrosion inhibitors, which have stronger electrostatic adsorption, smaller the steric effect, and larger the electron density of central adatom, would have better corrosion resistance to sulfur.
引文
[1]戴金星,夏新宇,卫延召.中国天然气资源及前景分析——兼论“西气东输”的储量保证[J].石油与天然气地质, 2001, 22(1): 1-8.
    [2]戴金星.中国含硫化氢的天然气分布特征、分类及其成因探讨[J].沉积学报, 1985, 3(4): 109-120.
    [3]杨继盛.采气工艺基础[M].北京:石油工业出版社, 1992. 49-53.
    [4] Trabanelli G. Inhibitors:An old remedy for a new challenge[J]. Corrosion, 1991(47): 410-419.
    [5] Linter B R, Burstein G T. Reactions of pipeline steels in carbon dioxide solutions[J]. Corrosion Science, 1999, 41(1): 117-139.
    [6] López D A, Pérez T, Simison S N. The influence of microstructure and chemical composition of carbon and low alloy steels in CO_2 corrosion. A state-of-the-art appraisal[J]. Materials & Design, 2003, 24(8): 561-575.
    [7] Davies D H, Burstein G T. The effects of bicarbonate on the corrosion and passivation of iron[J]. Corrosion 1980, 36(88): 416-422.
    [8] Yin Z F, Zhao W Z, Bai Z Q, et al. Corrosion behavior of SM 80SS tube steel in stimulant solution containing H_2S and CO_2[J]. Electrochimica Acta, 2008, 53(10): 3690-3700.
    [9] He W, Knudsen O, Diplas S. Corrosion of stainless steel 316L in simulated formation water environment with CO_2-H_2S-Cl~-[J]. Corrosion Science, 2009, 51(12): 2811-2819.
    [10] Fierro G, Ingo G M, Mancia F. XPS investigation on the corrosion behavior of 13Cr martensitic stainless steel in CO_2-H_2S-Cl~- environment[J]. Corrosion, 1989, 45(10): 814-823.
    [11] Fierro G, Ingo G, Mancia F, et al. XPS investigation on AISI 420 stainless steel corrosion in oil and gas well environments[J]. Journal of Materials Science, 1990,25(2): 1407-1415.
    [12]白真权.模拟油田H_2S/CO_2环境中N80钢的腐蚀及影响因素研究[J].材料保护, 2003, 36(4):32-34.
    [13]周计明.油管钢在含CO_2/H_2S高温高压水介质中的腐蚀行为及防护技术的作用[D].西安:西北工业大学, 2002.
    [14]周卫军. CO_2和微量H_2S共存条件下N80S抗硫油管钢的腐蚀行为[J].腐蚀与防护, 2007, 28(7):357-360.
    [15]王成达.油气田开发中H_2S/CO_2腐蚀研究进展[J].西安石油大学学报(自然科学版), 2005, 20(5):66-70.
    [16] Gelder K, Erlings J G, Damen J W M, et al. The stress corrosion cracking of duplex stainless steel in H_2S/CO_2/Cl~- environments[J]. Corrosion Science, 1987, 27(10-11): 1271-1279.
    [17]柏文峰.油井管在湿硫化氢环境下应力腐蚀试验若干影响因素研究[D].上海交通大学, 2010.
    [18]徐东林,刘烈炜,张振飞等.几种合金元素对油套管钢H_2S/CO_2腐蚀的影响[J].石油化工腐蚀与防护, 2008, 25(1): 20-23.
    [19] Mancia F. The effect of environmental modification on the sulphide stress corrosion cracking resistance of 13Cr martensitic stainless steel in H_2S-CO_2-Cl~- systems[J]. Corrosion Science, 1987, 27(10-11): 1225-1237.
    [20]陶勇寅,杜则裕,李云涛.管线钢硫化氢应力腐蚀的影响因素[J].天津大学学报, 2004, 37(4): 358-362.
    [21]王兵,李长俊,廖柯熹等.含硫气田设备及管道的腐蚀与防腐[J].油气田环境保护, 2007, 17(4): 40-43+57-58.
    [22]赵伟,于会景.高含硫气田管道腐蚀原因分析与防护措施[J].化学工程与装备, 2010(3): 66-69.
    [23]张天胜.缓蚀剂[M].北京:化学工业出版社, 2008. 10.
    [24]黄红兵,黄黎明,唐永帆等.川渝含硫气田缓蚀剂的应用[J].石油与天然气化工, 2007, 36(3): 227-233+174.
    [25] Ugryumov O V, Varnavskaya O A, Khlebnikov V N, et al. Corrosion inhibitors of the SNPKh brand. 2. The P,N-containing corrosion inhibitor for protection of oil-field equipment[J]. Protection of Metals, 2007, 43(1): 87-94.
    [26] Lucio-Garcia M A, Gonzalez-Rodriguez J G, Martinez-Villafane A, et al. A study of hydroxyethyl imidazoline as H_2S corrosion inhibitor using electrochemical noise and electrochemical impedance spectroscopy[J]. Journal of Applied Electrochemistry, 2010, 40(2): 393-399.
    [27]于洁,祝英剑.抗硫化氢腐蚀缓蚀剂[P].中国发明专利. CN1563494. 2005.
    [28] Wang B, Du M, Zhang J, et al. Electrochemical and surface analysis studies on corrosion inhibition of Q235 steel by imidazoline derivative against CO_2 corrosion[J]. Corrosion Science, 2011, 53(1): 353-361.
    [29] Wang Y, Han D, Li D, et al. A Complex Imidazoline Corrosion Inhibitor in Hydrochloric Acid Solutions for Refinery and Petrochemical Plant Equipment[J]. Petroleum Science and Technology, 2009, 27(16): 1836-1844.
    [30]郑家燊,赵景茂,孙娈芬等.高含硫钻井液缓蚀剂的合成及性能研究[J].石油学报, 1992, 13(1): 125-134.
    [31]张玉芳.含H_2S/CO_2环境中缓蚀剂对不同油管钢的缓蚀作用[J].腐蚀与防护, 2006, 27(11): 561-563+573.
    [32]顾明广,苏芳.抑制CO_2/H_2S腐蚀的气液双相新型缓蚀剂的制备及评价[J].华北科技学院学报, 2007(3): 39-42.
    [33]杨怀玉,陈家坚,曹楚南等. H_2S水溶液中的腐蚀与缓蚀作用机理的研究Ⅵ.H_2S溶液中咪唑啉衍生物分子结构与其缓蚀性能的关系[J].中国腐蚀与防护学报, 2002, 22(3):148-152.
    [34]杨怀玉,陈家坚,曹楚南等. H_2S水溶液中的腐蚀与缓蚀作用机理的研究V.咪唑啉衍生物在H_2S溶液中的缓蚀作用特征[J].中国腐蚀与防护学报, 2001, 21(6):321-327.
    [35]杨怀玉,陈家坚,曹楚南等. H_2S水溶液中的腐蚀与缓蚀作用机理的研究ⅷ咪唑啉衍生物在H_2S溶液中的吸附作用行为[J].中国腐蚀与防护学报, 2003, 23(2):75-78.
    [36]黄红兵,李辉,谷坛等.四川含硫气田缓蚀剂及应用技术研究[J].石油与天然气化工, 2002, 31(S1): 54-58.
    [37]尹成先,胥勋源,李旭等.新型缓蚀剂TG500在高CO_2和Cl~-环境中的缓蚀行为[J].中国腐蚀与防护学报, 2007, 27(1): 23-26.
    [38]赵昀.咪唑啉型缓蚀剂的合成及其缓蚀行为研究[D].北京化工大学, 2006.
    [39]关建宁,宋娜,张金俊等.咪唑啉型缓蚀剂合成方法的研究进展[J].工业水处理, 2009(4): 9-12.
    [40]李善建,于洪江,王京光.一种曼尼希碱型盐酸酸化缓蚀剂的合成及缓蚀性能[J].油田化学, 2008 (2): 118-121.
    [41] ASTM G1-03. Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens[S]. American Society for Testing and Materials, 2005.
    [42] Li X, Mu G. Tween-40 as corrosion inhibitor for cold rolled steel in sulphuric acid: Weight loss study, electrochemical characterization, and AFM[J]. Applied Surface Science, 2005, 252(5): 1254-1265.
    [43] Hosseini M G, Arshadi M R. Study of 2-butyne-1,4-diol as Acid Corrosion Inhibitor for Mild Steel with Electrochemical, Infrared and AFM Techniques[J]. International Journal of Electrochemical Science, 2009, 4(9): 1339-1350.
    [44] Lebrini M, Lagrenée M, Vezin H, et al. Experimental and theoretical study for corrosion inhibition of mild steel in normal hydrochloric acid solution by some new macrocyclic polyether compounds[J]. Corrosion Science, 2007, 49(5): 2254-2269.
    [45] Gece G. The use of quantum chemical methods in corrosion inhibitor studies[J]. Corrosion Science, 2008, 50(11): 2981-2992.
    [46] Ashry E S H, Nemr A, Esawy S A, et al. Corrosion inhibitors: Part II: Quantum chemical studies on the corrosion inhibitions of steel in acidic medium by some triazole, oxadiazole and thiadiazole derivatives[J]. Electrochimica Acta, 2006, 51(19): 3957-3968.
    [47] (O|¨)gretir C, Mih?i B, Bereket G. Quantum chemical studies of some pyridine derivatives as corrosion inhibitors[J]. Journal of Molecular Structure: THEOCHEM, 1999, 488(1-3): 223-231.
    [48]张敬畅,曹维良.量子化学在缓蚀剂化学中的应用[J].北京化工学院学报, 1986(1): 26-30.
    [49]胡松青,胡建春,郁金华等.抗CO_2腐蚀咪唑啉衍生物缓蚀性能的密度泛函理论[J].中国石油大学学报(自然科学版), 2009, 33(6): 128-131.
    [50]杨频,高孝恢.性能--结构--化学键[M].北京:高等教育出版社, 1987. 156-158.
    [51] Paul Schweinsberg D, George G A, Nanayakkara A K, et al. The protective action of epoxy resins and curing agents--inhibitive effects on the aqueous acid corrosion of iron and steel[J]. Corrosion Science, 1988, 28(1): 33-42.
    [52] Shokry H, Yuasa M, Sekine I, et al. Corrosion inhibition of mild steel by schiff base compounds in various aqueous solutions: part 1[J]. Corrosion Science, 1998, 40(12): 2173-2186.
    [53] Mu G N, Zhao T P, Liu M, et al. Effect of Metallic Cations on Corrosion Inhibition of an Anionic Surfactant for Mild Steel[J]. Corrosion, 1996, 52(11): 853-856.
    [54]王慧龙,刘靖,郑家燊. HCl介质中双季铵盐对碳钢的缓蚀作用[J].腐蚀科学与防护技术, 2002, 28(2): 100-102.
    [55] Liu X, Okafor P C, Zheng Y G. The inhibition of CO_2 corrosion of N80 mild steel in single liquid phase and liquid/particle two-phase flow by aminoethyl imidazoline derivatives[J]. Corrosion Science, 2009, 51(4): 744-751.
    [56] Wang B, Du M, Zhang J. Study of the Inhibition Mechanism of Imidazoline Derivative Inhibitor on CO_2 corrosion for Q235 Steel[J]. Multi-Functional Materials and Structures, 2009, 79(82): 981-984+2317.
    [57]顾明广.油气田用气液两相缓蚀剂的开发[D].北京化工大学, 2005.
    [58]王彬,张静,杜敏.咪唑啉类缓蚀剂对含饱和CO_2的模拟油田采出液中Q235-A钢的缓蚀作用[J].中国腐蚀与防护学报, 2010, 30(1): 16-20.
    [59]张静,杜敏,于会华等.分子结构对咪唑啉缓蚀剂膜在Q235钢表面生长和衰减规律的影响[J].物理化学学报, 2009, 25(3): 525-531.
    [60]郭稚弧.缓蚀剂及其应用[M].武汉:华中工学院出版社, 1987. 180-181.
    [61] Ashassi-Sorkhabi H, Shaabani B, Seifzadeh D. Corrosion inhibition of mild steel by some schiff base compounds in hydrochloric acid[J]. Applied Surface Science, 2005, 239(2): 154-164.
    [62]王勤娜,施宝昌,韩克飞.喹啉季铵盐类缓蚀剂在盐酸中的缓蚀性能研究[J].陕西化工, 1999, 28(2):14-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700