用户名: 密码: 验证码:
棉秆直接热解炭化工艺参数试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农作物秸秆从生产、收集、加工、运输到能源利用转化,秸秆废弃物都会对生态环境产生直接或间接的影响。针对该问题,将农业废弃物棉花秸秆转化为绿色能源---生物炭,进行分散式热解炭化技术有效利用棉秆资源,不仅能变废为宝,还能减少对环境的污染。通过综述分析国内外在废弃生物质原料热解炭化方面开展的研究,提出将农业废弃物棉花秸秆采用分散式热解炭化的模式,从炭化方式、炭化装置和影响固体产物得率的因素方面进行试验研究,达到生物质秸秆资源的就地处理、经济利用的目的。本论文以农作物秸秆棉花秸秆为对象,通过直接热解炭化为技术路线,利用分散式热解炭化炉,以固体产物生物质炭为目标产物,深入地研究直接热解炭化的影响因素和目标产物的性质,为生物质资源的有效利用提供理论支撑。
     得到以下研究工作:
     (1)研究棉秆的机械物理特性测试、元素分析和热重动力学分析。基于原料的成分和热失重的关系出发,分析棉秆直接热解固体产物得率的影响因素,并提出直接热解棉秆合适的的参数范围:最低温度大于300℃、最高温度小于600℃升温速率小于30min/℃。
     (2)分别在不同热解装置中对棉秆进行热解炭化试验研究,工艺参数选择不同热解温度、不同保温时间和不同升温速率,获得热解前后的原料质量变化及热解参数与热解产物的关系,经分析得出:未经粉碎的棉秆在热解温度400℃进行热解炭化后,生成的秸秆炭的比例最高。在棉秆热解过程中,随着反应温度的增加,热解固体产物质量不断减小。通过正交试验得到了直接热解最优组合的热解工艺参数为:热解温度400℃,升温速率5℃/min,保温时间2h。其得炭率可达49.98%。在单因素试验的基础上,采用Box-Benhnken试验设计和响应面分析法建立二次回归数学模型,得到优化工艺参数,研究表明分散式炭化原料与燃烧原料质量比2:1,得炭率达50%。
     (3)利用ANSYS软件研究生物质热解炉内部温度场的分布,分别对热解炉炭化室、燃烧室和添加传热片后炭化室内温度的变化进行模拟。热解炉内由于气体的流动,温度分布是不均匀的、且温度差异较大。为了满足热解所需温度,必须要有足够的保温时间使炉内温度达到设置温度,才能让炭化原料充分炭化;为了保证原料的完全炭化,在热解炉的设计中要尽量增大烟囱与炭化原料的接触面积;通过对炭化室在500℃温度场变化情况的分析,发现接近炭化室外壁和外侧的温度偏低,在改进方面可以通过添加保温层来解决。炭化炉的底部温度偏低,可以通过添加传热片的方法,利用传热片良好的传热效果将热量传递到底部和侧面,尽量达到温度场的均匀分布;将添加传热片先后炭化室内温度场进行比较,可以看出添加传热片的效果很明显,温度死角明显减少,提高了底部温度和外侧温度。
     (4)分析了不同热解条件下的固体产物性质。随着热解条件的改变,固体产物质量分布比例和产物中各元素的比例都发生了变化。采用SEM、元素分析仪、红外光谱仪等分析仪器对直接热解炭化的固体产物理化结构、固定炭含量等进行分析。随着热解温度的升高,固体产物中各元素含量都发生了变化。在500℃时,棉秆炭中的固定炭含量最高。对棉秆热解后的固体产物理化特性进行研究得到,棉秆炭发热量接近30MJ/Kg,含水率小于6%,灰分小于9%,挥发分小于30%,固定炭含量32%,堆积密度421Kg/m3,堆积角58.16。,摩擦系数0.45-0.60,流动性指数69.1。棉秆炭不易于成型、不易流动和发热量较高。
     (5)分散式热解炭化炉应用预测分析。从原料适应性、能源转化效率、分散热解炭化与集中建厂炭化、秸秆压缩利用的生产成本和经济效益方面,预测炭化炉的可应用性。通过试验发现,炭化炉不仅适用于棉秆,还可以普遍适用于大部分农作物秸秆和农林废弃物。预测分析以10000t/a炭化棉秆为例,比较炭化成本,表明分散就地炭化与集中建厂炭化、秸秆压缩利用,分散炭化成本较低,利润较好。
     生物质热解炭化过程是一个非常复杂的过程,不仅与生物质原料的种类、外界环境等有很大的影响,还与热解工艺参数和实际热解设备条件有关。本文对生物质资源中的棉花秸秆展开热解研究,通过试验和仿真分析,研究利用生物质资源高效的热解工艺和优化。
Staw waste, produced in the process of production, gathering, processing, transportation and energy conversion of straw, has a direct or indirect impact on the ecological environment. Hence the study aims to convert cotton stalk into green energy--biochar by applying dispersed pyrolytic carbonization technology, which will utilize cotton stalk resource effectively and alleviate the environmental pollution. Having reviewed studies about pyrolytic carbonization of waste biomass materials at home and abroad, it applies a mode of dispersed pyrolysis carbonization in cotton stalks: experiments are conducted on carbonization mode, carbonizing device and carbonization process to achieve on-site treatment on biomass straw materials and realize economic benefits. The study is on cotton stalk. By conducting pyrolytic carbonization directly and utilizing dispersed pyrolytic carbonizing furnace, the paper, making solid biomass char as the target product, studied the factors of direct pyrolytic carbonization and the qualities of target product, providing theoretical support for effective utilization of biomass materials.
     The main findings are as follows.
     (1) Tests on mechanical properties of cotton stalks, elemental analysis and thermogravimetric analysis are conducted. Based on the relationship between the component of raw material and thermal weight loss, it analyzes the factors of the yield of direct pyrolytic solid product of cotton stalks and points out the parameters of direct pyrolysis of cotton stalk: the minimum temperature is higher than300℃, the maximum temperature is lower than600℃, and heating rate not suitable too high.
     (2) Study on the pyrolysis products of crushed cotton stalks pyrolysis experiments in the different equipment. The effects of three factors (pyrolysis temperature, pyrolysis heating rate and pyrolysis holding time) were investigated by using the mass of the products yield as the indexes. Through direct pyrolysis experiments on cotton stalks, the changes of raw material mass and the relationship between pyrolysis parameters and pyrolytic products are found. In the process of pyrolysis, the mass of pyrolytic solid product decreases as the reaction temperature increases; when the pyrolysis temperature is higher than400℃, fixed carbon(FC)content in solid product begins to decrease as reaction temperature increases. In order to determine the optimum technological parameter of pyrolysis, an orthogonal experiment is conducted. The maximum product yield of49.98%is obtained with5℃/min of heating rates,400℃of optimum pyrolysis temperature, and2h of holding time. Box-Benhnken design (BBD) and response surface methodology (RSM) are adopted to obtain the optimum parameters on the basis of results of single-factor experiments. The results indicate that the optimum parameters is ratio of raw material of carbonization chamber and combustion chamber2:1, maximum product yield of50%.
     (3) Temperature field on the biomass carbonization furnace is simulated and analyzed by the software, Ansys. Because of the gas flow in the pyrolysis furnace, temperature has not been evenly spread, and there is a large temperature difference. In order to meet the pyrolysis temperature, it must have had enough holding time, let the charring materials carbonize fully; it should increase the chimney and carbonized material contact area of pyrolysis furnace to increase the temperature of vents through stack draft; Through even arrangement of heat transfer around the coking furnace, use the heat transfer tablet to transfer heat to the bottom and sides, to achieve even distribution of temperature field.
     (4) With the development of the pyrolysis reaction, it changes the distribution proportion of solid products and elements. T he solid residues were analyzed by elemental analyzers, scanning electron microscopy (SEM), FTIR and thermogravimetric analyzer. When the temperature rises, the element in solid products gradually increase or decrease; fixed carbon(FC) content is maximum when the temperature is500℃. Study on the physicochemical properties of a solid product obtained after pyrolysis of cotton stalk found that calorific value of cotton stalk is30MJ/kg, moisture content10.125%, ash9%, volatile30%, fixed carbon content of32%, bulk density421kg/m3, Accumulated angle58.16°, friction coefficient0.45-0.60, flow property69.1. The results show Cotton carbon formed easily and is not so easy to flow with high calorific value.
     (5) This part is about prediction analysis about the application of dispersed pyrolytic carbonization furnace. To predict the applicability of carbonization furnace, it analyzes the raw material adaptability, energy conversion efficiency, dispersed pyrolytic carbonization and centralized plant carbonization, and the cost and benefits of straw compression. It is found that carbonization furnace could be applied not only to cotton stalk but also to most crop straw and agricultural and forestry waste. The enterprise production cost of plants with electricity as energy is higher than plants using oil and burning produced by pyrolysis carbonization furnace. By comparison with dispersed on-site carbonization, centralized plant carbonization and straw compression, it turns out that dispersed carbonization has low cost and high benefit.
     Biomass pyrolysis is a very complex process.Pyrolysis is not only relative to the raw material and environment., but also has intimate correlation to process parameters and pyrolysis equipmeng. Only part of the work of this paper, study of a raw material.It is verified by simulations and experimental.
引文
1.边轶,刘石彩,简相坤等.白松木成型燃料热解焦油馏分分析及热解动力学研究.太阳能学报,2013,34(1):68-72
    2.陈温福,张伟明,孟军等.生物炭应用技术研究.中国工程科学,2011,13(2),83-89
    3.崔昌龙,王伟,张楠.轻度炭化法制生物质成型燃料技术概述.黑龙江农业科,2010:139-140
    4.崔喜彬,李志合,李永军,等.下降管式生物质快速热解实验装置设计与实验.农业机械学报,2011,42(1):113-116
    5.邓剑,罗永浩,王贵军等.稻秆的烘焙预处理及其固体产物的气化反应性能.燃料化学学报,2011,39(1):26-31
    6.邓波.生物质固化成型特性及有限元研究.山东大学,2008
    7.董宇,申哲民,王茜等.生物质活性炭制备的比较研究.安徽农业科学,2011(39):3444-3448
    8.董玉平,王理鹏,邓波等.国内外生物质能源开发利用技术.山东大学学报(工学版),2007(12),37(3):64-69
    9.杜建红,孙丽娅,张永康等.三段式炭化装置及炭化工艺参数研究.机械设计与制造,2010:186-188
    10.杜现军.棉秆力学特性研究与切割试验台的研制[学位论文].山东:山东农业大学,2011
    11.杜立新.生物质致密成型技术处理农林废弃物.山西能源与节能,2010,58(1):21-11
    12.段玉燕.户用型生物质气化炉的开发与试验研究.浙江大学,2008
    13.方进.上吸式生物质气化炉设计与实验研究.安徽工程大学,2012
    14.冯刚,吴永新,地里夏提·艾合买提.新疆棉秆资源的开发利用.水利电力机械,2006,28(12):50-53
    15.浮爱青,谌伦建,杨洁等.小麦与玉米秸秆的热解过程及其动力学分析.化学工业与工程,2009,26,(4):350-353
    16.付小倩,魏朝晖.玉米秸秆热解特性及动力学的实验研究.中国电力教育,2008年研究综述与技术论坛专刊:719-720
    17.傅庚福.成型生物质炭化及成型炭特性研究.南京林业大学,2009
    18.傅旭峰,仲兆平,肖刚等.几种生物质热解特性及动力学的对比.农业工程学报,2009,25(1):199-202
    19.高武军,薛选平,史剑鹏,张峻青.SH2007型内热式直立炭化炉的研发设计.煤气与热力,2010(30):14-17
    20.甘颖.卧式碳化炉生产过程的热工分析及自动测控.南华大学学报,2002,16(1):58-62
    21.郭聪颖,袁巧霞,赵红.生物质燃烧技术的研究进展.湖北农业科学,2011(21):4326-4329
    22.郭胜,赵淑红,杨悦乾等.除芒稻种摩擦特性测量.东北农业大学学报,2010,41(7):118-121
    23.古启隆,杜秋香.STQ-I型生物质炭气油联产系统评价分析.可再生能源,2006(3):47-48
    24.何芳,易维明,孙容峰等.小麦和玉米秸秆热解反应与热解动力学分析.农业工程学报,2002,18(4):10-12
    25.何芳,易维明,徐梁等.应用同步热分析仪确定小麦秸秆热解需热量·农业工程学报,2005,21(8):122-125
    26.何振刚,张小甫,田福平.天水市农作物秸秆利用现状与开发建议.甘肃农业科技,2009,8:44-46
    27.花莉,张成,马宏瑞等.秸秆生物炭土地利用的环境效益研究.生态环境学报,2010,19(10),2489-2492
    28.黄彪,陈学榕,江茂生等.不同炭化条件下炭化物的结构与性能表征.光谱学与光谱分析,2006,26(3):455-459
    29.黄彪,高尚愚.木材炭化机理的研究一炭化方法和炭化条件对杉木间伐材炭化物物性的影响.林产化学与工业,2005:95-98
    30.黄彪,林冠烽,唐丽荣等.二步炭化制备高活性木炭的特性表征.林产化学与工业,2009(29):125-128
    31.韩芹芹,杨跃辉,姜逢清等.新疆棉秆循环经济利用的适宜模式探讨.干旱区资源与环境,2008,10:172-178
    32.韩连恩,张连发.生产生物质炭化燃气的方法及反火生物质炭化燃气发生炉:中国,200510040840.1[P].2007-10-3
    33.韩璋鑫.生产生物质干馏炭和生物质燃气的方法及快速热解炭化炉:中国,200810019302.8[P].2011-04-13
    34.黄彪,高尚愚.木质炭化物高效开发利用研究综述.世界林业研究,2004,2004,17(2):31-33
    35.黄志光.碳管炉碳化工艺优化探讨.中国装备,2010(4):189
    36.蒋磊,任强强.秸秆热解过程HCl析出特性的试验研究.可再生能源,2011,29(1):27-31
    37.姜东升,邹尚伟.浅谈秸秆焚烧的危害和综合利用的重要性.2009中国环境科学学会学术年会论丈集:797-799
    38.蒋恩臣,何光设.生物质热分解技术比较研究.可再生能源,2006(04):58-62
    39.蒋卉,蒋文举.微波法制玉米秸秆活性炭工艺条件及性能研究.林产化学与工业,2005,25(4):91-93
    40.矫常命,何芳.玉米秸秆热解液体产物热值的测定.山东理工大学学报,2006,20(2):11-13
    41.吉林省林业科学研究院,吉林省红石林业局.特种黑木炭研制报告.吉林林业科技,1994,108(1):1-6
    42.蒋莉,马飞,梁国斌等.木质素活性炭的制备及工艺优化.新型炭材料,2011,26(5):396-400
    43.赖艳华,吕明新,马春元,等.生物质多孔燃料层辐射加热热解过程的影响因素分析.太阳能学报,2011,32(05):735-740
    44.李建芬.生物质催化热解和气化的应用基础研究.华中科技大学,2007
    45.李林安,佟景伟,李鸿琦等.非对称活塞稳态温度场的三维有限元分析.天津大学学报,1995(01):107-112
    46.李瑜.废植物热解制气制油制炭的研究.再生资源与循环经济,2008(6):34-38
    47.李燕东,王述洋,刘会粉,等.生物质成型颗粒燃料气化锅炉的设计研究.机电产品开发与创新,2009,22(4):37-40
    48.李鹏.户用型上吸式生物质气化炉的结构设计与试验研究.石河子:石河子大学,2008
    49.李金霞,卞科,许斌.棉秆资源特性及其在农业上的应用.河南农业科学,2007,1:46.-49
    50.李永玲,吴占松.秸秆热解特性及热解动力学研究,热力发电,2008,7:1-5
    51.李爱民,李晓东,李水清,等.生物质废弃物在回转窑内热解研究.太阳能学报,2000,21(4):333-340
    52.李在峰,雷廷宙,丁鸣,等.生物质热解制炭制气系统研究.2004年中国生物质能技术与可持续发展研讨会论文集,2004
    53.刘玲,刘长江.农作物秸秆的利用现状及发展前景.农业科技与装备,2008,2:129-130
    54.刘瑞伟.我国农作物秸秆利用现状及对策.农业与术,2009,29(1):7-9
    55.刘康,贾青竹,王昶.生物质热解技术研究进展.化学工业与工程,2008,25(5):459-464
    56.刘保江,高品,刘路等.一种基于废弃农作物秸秆制备生物质炭的方法.上海:CN101993701A,2011-03-30
    57.刘石彩,蒋剑春,陶渊博等.生物质固化制造成型炭技术研究.林产化工通讯,2002(02):3-5
    58.刘荣厚,袁海荣,徐璐.玉米秸秆热解反应动力学的研究.太阳能学报,2007,28(5):527-531
    59.卢洪波,苏桂秋,贾春霞等.生物质秸秆热解反应及动力学分析.东北电力大学学报,2007,27(2):38-41
    60.马元庚.介绍一种移动式炭化炉.林产化工通讯,1993(4):24-26
    61.马林转,宁平,何屏,等.生物质在固定床中的热解试验研究.资源开发与市场,2006,22(1):01-02
    62.马君.杨木及其刨花板炭化热解产物比较研究.北京林业大学,2011
    63.马文超,陈冠益,颜蓓蓓,胡艳军.生物质燃烧技术综述.生物质化学工程,2007:43-48
    64.满莉.木炭的构造、特点及在农业生产上的应用.林业调查规划,2006,5:69-70
    65.孟军,张伟明,王绍斌等.农林废弃物炭化还田技术的发展与前景.沈阳农业大学学报,2011:387-392
    66.母军,于志明,刘婧婧.废弃人造板炭化产物分析.北京林业大学学报,2009,31(增刊1):139-142
    67.南占东,杨湄,韩伟等.油料作物秸秆快速热解及其生物油特性的研究.中国油料作物学报,2008,30(4):501-505
    68.潘根兴,林振衡,李恋卿等.试论我国农业和农村有机废弃物生物质碳产业化.中国农业科技导报,2011,13(1):75-82
    69.秦岭.生物质热解动力学及反应机理的研究.清华大学,2012
    70.曲静霞,姜洋,潘亚杰等.大型机制木炭生产线设计与性能评价可再生能源,2004,115(3):44-46
    71.日本能源学会编,史仲平,华兆哲译.生物质和生物能源手册.北京:化学工业出版社,2007
    72.司耀辉,陈汉平,王贤华等.农业秸秆燃烧特性及动力学分析.华中科技大学学报(自然科学版),2012(40):128-132
    73.孙立,张晓东.生物质热解气化原理与技术.北京:化学工业出版社,2013,74-96
    74.石磊,赵由才,柴晓利.我国农作物秸秆的综合利用技术进展.中国沼气,2005,23(2):11-14
    75.石海波,孙姣,陈文义等.生物质热解炭化反应设备研究进展.化工进展,2012,31(10):2130-2136
    76.商辉,路冉冉,孙晓锋,等.微波热解生物质废弃物的研究.可再生能源,2011,29(03):25-30
    77.孙振钧.中国生物质产业及发展取向.农业工程学报,2004(05):1-5
    78.田永华,魏廷贤,于文斌.秸秆木炭生产方法研究.石油化工应用,2010,29(12):23-24
    79.陶毓博,刘星,李鹏等.碳化工艺对木陶瓷性能影响的研究.材料热处理学报,2007,28(6):6-10
    80.王文兵.利用机械设备取代人工烧制木炭的应用分析.实验研究,2005,6:23-25
    81.王明峰,蒋恩臣,周岭.玉米秸秆热解动力学分析[J].农业工程学报,2009,25(2):204-207
    82.王楠,陈敏,王洋等.碳化秸秆作为金属液保温剂的研究.钢铁,2007,42(10):80-82
    83.王勇,赵勤瑞.江苏秸秆利用现状及对策.江苏农村经济,2011,310(4):66-67
    84.王有权,王虹,王喜才.用敞开式快速炭化窑生产炭的工艺:中国200610048274.3[P].2009-6-17
    85.王洪志,刘朝.干燥前后花生壳的热解特性研究.生物质化学工程,2007:31-34
    86.王金梅,陈革新,赵培庆等.生物质连续炭化工艺研究.现代化工,2009(29):300-302
    87.王娜.生物质热解炭、气、油联产实验研究.天津大学,2012
    88.王伟文,冯小芹,段继海.秸秆生物质热裂解技术的研究进展.中国农学通报,2011(27):355-361
    89.王秦超,卢平,黄震等.生物质低温热解炭化特性的实验研究.中国电机工程学报,2012,32(增刊):121-126
    90.汪亮.NYL45A生物质燃烧炉的研发.北京工业大学,2012
    91.汪芳,陈新春.农作物秸秆利用现状及综合利用技术.农技服务,2007,24(8):117
    92.吴恩熙,颜练武,胡茂中.直接碳化法制备碳化钒的热力学分析.粉末冶金材料科学与工程,2004,9(3):192-196
    93.吴杰.新疆棉花秸秆利用现状分析和探讨.中国棉花,2005,33(2):9-11
    94.吴文炳,张鹏东,王宁等.微波辐射龙眼壳制备活性炭的正交试验研究.天津化工,2009,23(4):23-26
    95.吴创之,周肇秋,阴秀丽等.我国生物质能源发展现状与思考农业机械学报,2009,40(1):91-99
    96.吴汉民.利用农林废弃物生产生物质成型炭的工艺.江西:CN101812344A,2010-08-25
    97.吴伟祥,陈英旭,盛奎川等.用于还田的生物质炭制取及燃气余热回收利用装置.浙江:CN101984017A,2011-03-09
    98.魏飞,刘建辉.敞口快速炭化窑及配套设备的研究.硅谷,2009,15:110
    99.魏敦崧,李芳芹,李连民,等.生物质固定床气化试验研究.同济大学学报,2006,34(2):254-260
    100.卫振峰.制炭机的开发与研制.机械工程师,1997,5:18-19
    101.肖刚,刘继驰,金保升等.稻类秸秆高温炭化焦炭的特性研究.燃烧科学与技术,2010:1-4
    102.修双宁,易维明,李保明.生物质热裂解动力学的研究进展.生物质化学工程,2007:47-53
    103.邢志卿,马超,付兴.天津市棉秆综合利用模式现状及发展建议.农业技术与装备,2010,196(08):16-18
    104.邢志卿,马超,付兴.抓好棉秆综合利用发展循环经济.农机科技推广,2010,7:26-27
    105.谢荣,汪多湘,李世成.农业废弃物机制木炭成套设备及生产技术.中国农业机械学会2006年学术年会论文集:1440-1444
    106.徐娜.神奇“绿炭”.Enviroment,2009, 7:48-49
    107.徐颖.秸秆利用现状及建议.吉林畜牧兽医,2012,3:56-57
    108.徐云荣.利用大铁皮桶烧制木炭技术.安徽农学通报,2011,17(12):263-265
    109.徐学耘.棉秆原料的初步分析.建筑人造板,1998,16(5):27-30
    110.徐泽龙,陆荣荣.农业废弃物制备活性炭及其应用进展.广西轻工业,2010,3:65-67
    111.徐庆福.林业生物质能源开发利用技术评价与产品结构优化研究.东北林业大学,2007
    112.薛志远.一种秸秆炭化装置.河南:200420049261.4,2005-05-04
    113.严妍,接梅梅,韩姗珊.农作物秸秆综合利用方法浅析.污染防治技术,2010,23(4):87-88
    114.杨海平,陈汉平,晏蓉,等.温度对生物质固定床热解影响的研究.太阳能学报,2007,28(10):1152-1158
    115.杨昌炎,吴祯祯,郑冬洁等.玉米秸秆微波热解研究.武汉工程大学学报,2011,33(6):20-22
    116.杨铁军,曹巨辉,汪宏涛等.秸秆综合利用技术进展研究.2008年中国环境科学学会学术年会优秀论文集:1559-1562
    117.杨娟.生物质资源制备高品质活性炭的研究.中南大学,2011
    118.杨帅,杨树斌,甘云华等.生物质成型燃料热解特性及动力学研究.节能技术,2010:199-201+205
    119.于雪斐,伊松林,冯小江等.热解条件对农作物秸秆热解产物得率的影响.北京林业大学学报,2009,31(1):174-177
    120.赵希强,宋占龙,刘洪贞等.农作物秸秆微波热解特性试验.农业工程学报,2009,25(10):210-214
    121.郑秋生,李龙,贾桂芹等.棉秆的应用研究进展.纤维素科学与技术,2010,18(4):65-72
    122.郑权男,薛兵,徐少南等.硅藻土中伴生有机质的炭化与吸附性能.硅酸盐学报,2013,41(2):230-234
    123.郑赞.基于组分分析的生物质热裂解动力学机理研究.浙江大学,2006
    124.周建斌,段红燕,李思思.杨木炭胶合成型速燃炭的制备与燃烧性能.农业工程学报,2010,26(6):257-261
    125.周新华,齐庆杰,都宇等.玉米秸秆热解规律的试验研究.可再生能源,2005,124(6):21-23
    126.周新华,齐庆杰,郝宇等.玉米秸秆在不同条件下热解规律实验研究.应用能源技术,2006,98(2):1-3
    127.周劲松,王铁柱,骆仲泱等.生物质焦油的催化裂解研究.燃料化学学报,2003(02):144-148
    128.庄晓伟,陈顺伟,张桃元等.7种生物质炭燃烧特性的分析.林产化学与工业,2009(29):169-173
    129.庄晓伟,陈顺伟,潘忻等.机制棒的连续式固化成型工艺研究.生物质化学工程,2009,43(6):23-26
    130.朱金陵,何晓峰,王志伟等.玉米秸秆颗粒热解制炭的试验研究.太阳能学报,2010:789-793
    131.朱锡锋.生物质热解原理与技术.合肥:中国科学技术大学出版社,2006:144-166.
    132.朱华炳,胡孔元,陈天虎,等.内燃加热式生物质气化炉设计.农业机械学报,2009,40(02):96-02
    133.张庆恩,张鑫.作物秸秆回收利用潜力大.农业经济与科技,2003(6):48
    134.张巍巍,曾国勇,傅海燕等.稻秆热解的固体产物性能.华东理工大学学报(自然科学版),2007,33(2):219-222
    135.张文标,王伟龙,赵丽华等.机制炭理化性能的研究.浙江林学院学报,2003,20(2):215-218
    136.张润楚,郑海涛,兰燕.试验设计与分析及参数优化.北京:中国统计出版社,2003
    137.张桂花,汤楚宙,熊远福,等.包衣稻种物理特性的测量及其应用.湖南农业大学学报:自然科学版,2004,30(1):68-70
    138.中国棉花协会.2014全国棉农意向调查.http://www.china-cotton.org/article
    139.邹吉华,邹吉红,王志伟,等.热解法处理生物质废渣的最新技术.北方环境,2000(4):58-60
    140.赵建宁,张贵龙,杨殿林.中国粮食作物秸秆焚烧释放碳量的估算.农业环境科学学报,2011,30(4):812-816
    141.周岭,周福君,蒋恩臣等.棉秆不同组分热解特性及动力学.农业工程学报,2009,25(8):220-224
    142. Ayhan D. Combustion characteristics of different biomass fuels. Progress in Energy and Combustion Science,2004 (30):219-230
    143. Axel F, Felix Zr. Heat of reaction measurements for hydrothermal carbonization of biomass. Bioresource Technology,2011,102 (16):7595-7598
    144. Burkhard K, Werner H, Friedhelm B. Catalytic hydroliquifaction of biomass. Fuel,1999,69 (4):448-455
    145. Badie S, Girgis A M, Soliman, Nady A F. Development of micro-mesoporous carbons from several seed hulls under varying conditions of activation. Microporous and Mesoporous Materials.2010,4:518-525
    146. Brendan H, Chuangwei Z, Yiannis A. Levendis. Influence of the fuel structure on the flame synthesis of carbon nanomaterials. Carbon,2011,49 (11):3412-3423
    147. Chou C S, Lin S H, Lu W C. Preparation Lu.Preparation and characterization of solid biomass fuel made from rice straw and rice bran. Fuel Processing Technology,2009,90:980-987.
    148. Chou C S, Lin S H. The optimum conditions for preparing solid fuel briquette of rice straw by a piston-mold process using the Taguchi method. Fuel Processing Technology,2009,90:1041-1046
    149. Colomba D B. Combustion and gasification rates of lignocellulosic chars. Progress in Energy and Combustion Science,2009,35 (2):121-140
    150. Debdoubi A, El amarti A, Colacio E. Production of fuel briquettes from esparto partially pyrolyzed. Energy Conversion and Management, 2005,46:1877-1884
    151. Demirbas A. Calculation of higher heating values of biomass fuels. Fuel. 1997,76:431-434
    152.Demirbas A. Determination of combustion heat of fuels by using non-calorimetric experimental data. Energy Education Science Technology, 1988,1:7-12.
    153. Di B C, Signorelli G, Di Russo C, et al. Product distribution from pyrolysis of wood and agricultural residuals. Ind. Eng. Chem.Res, 1999,38:2216-2224
    154. Deng H, Zhang G L, Xu X L. Optimization of preparation of activated carbon from cotton stalk by microwave assisted phosphoric acid-chemical activation. Journal of Hazardous Materials,2010,182:217-224
    155. EL-hendawy A A, Alexander A J, Andrews R J. et al. Effects of activation schemes on porous surface and thermal properties of activated carbons prepared from cotton stalks. Analytical and Applied Pyrolysis, 2008,82(2):272-278
    156. Elauria J C, Castro M L Y, Racelis D A. Sustainable biomass production for energy in the Philippines. Biomass and Bioenergy, 2003,25 (5):531-540
    157. Hirai Y, Inoue E, Mori K. Application of a quasi-static stalk bending analysis to the dynamic response of rice and wheat stalks gathered by a combine harvester reel.Biosystems Engineering, 2004, 88(3):281-294
    158. Jone E W, Catallo W J, Benjamin L Legendre. Biomass pyrolysis kinetics:A comparative critical review with relevant agricultural residue case studies. Journal of Analytical and Applied Pyrolysis, 2011,91(1):1-33
    159. Karan H, Thawan S, Preecha K. The experimental study on pyrolysis of the cassava rhizome in the large scale metal kiln using flue gas. Energy Procedia, 2012, 14: 1684-1688
    160. Lundgren J, Hermansson R, Dahl J. Experimental studies of a biomass boiler suitable for small district heating systems. Biomass and Bioenergy, 2004, 26: 443-453
    161. Lido L,Hata T,Kajimoto T,et al.Removal of mercury by carbonized wood materials from aqueous solutions of different types of mercury compounds. Resource Processing Technology,199,46(l):3-8
    162. Maiti S, Dey S, Purakayastha S. Physical and thermochemical characterization of rice husk char as a potential biomass energy source. BioresourceTechnology, 2006,97(16):2065-2070
    163. Pelaez-Samaniego M R, Garcia-Perez M, Cortez L B. Improvements of Brazilian carbonization industry as part of the creation of a global biomass economy. Renewable and Sustainable Energy Reviews, 2008,12 (4):1063-1086
    164. Paist A, Poobus A, Tiikma T. Probes for measuring heat transfer parameters and fouling intensity in boilers. Fuel, 2002, 81(14):1811-1818
    165. Pratie N S, Babu B V. Experimental studies on producer gas generation from wood waste in a downdraft biomass gasifier. Bioresource Technology, 2009, 100(12):3127-3133
    166. Raquel S G, Paul N W, Wayne E. Coates.Cotton (Gossypium) plant residue for industrial fuel.An economic assessment, Industrial Crops and Products,1997,7:1-8
    167. Rosas j m, Bedia J, Rodri Gufz-Mirasoi J, et al. On the preparation and characterization of chars and activated carbons from oranges kin. Fuel Processing Technology, 2010,91(10):1345-1354
    168. Rousset P, Figueiredo C. Pressure effect on the quality of eucalyptus wood charcoal for the steel industry:A statistical analysis approach. Fuel Processing Technology, 2011,92(10): 1890-1897
    169. Repellin V,Govin A,Rolland A,Guyonnet R.Modelling anhydrous weight loss of wood chips during torrefaction. Biomass and Bioenergy,2010,34(5):602-609
    170. Rysoula M, Stavropoulo G G, Costas Panay-Iotou. Enhanced adsorption of phenolic compounds, commonly encountered in olive mill wastewaters, on olive husk derived activated carbons. Bioresource Technology, 2008,99(14): 6400-6408
    171. Sra A H, Fierro V, EL-smed H,et al.2-Steps KOH activation of rice straw: Suny, Webleypa. Preparation of activated carbons from corncob with large specific surface area by a variety of chemical activators and their application in gas storage. Chemical Engineering, 2010, 162(3):883-892
    172. Thomas G, Kim D J, Anker D J, et al. An experiental study of biomass ignition. Fuel, 2003,82:1633-1641
    173. Wang T P, Yin J, Zheng Z M. Effects of chemical inhomogeneity of corn stalk on solvolysis liquefaction, Carbohydrate Polymers, 2012, 87:2638-2641
    174. Tsai W T, Lee M K, Chang Y M. Fast pyrolysis of rice husk: Product yields and compositions. Bioresource Technology, 2007,98(1):22-28
    175. Yang H P, Yan R, Chen H P, et al. In-depth investigation of biomass pyrolysis based on three major components:hemicellulose, cellulose and lignin. Energy & Fuels, 2006,22(1):388-393.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700