用户名: 密码: 验证码:
孔隙介质地震波传播及衰减特征评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用Biot介质理论研究孔隙介质的弹性波是受到广泛注意的课题,然而在煤田地震勘探领域应用的例子很少。本文基于Biot介质的理论,研究了各向同性耗散孔隙介质参数对各类波的相速度、吸收衰减等参数的影响及频率依赖,指出渗透率对衰减的影响与流体粘滞性相反,渗透率减小将有和粘性增加一样的效果,反之亦然。在上述结论的指导下,分别利用交错网格有限差分正演和物理模拟正演获取地震数据,进行频谱分析,对比孔隙介质与单相介质的频谱,孔隙介质的频谱有“往低频移动”趋势,表现为“主频低值,低频高值,高频低值”的频谱特征,利用“主频和分频属性”评价该特征,并利用正演模拟数据进行了验证。指出时频分析过程中,采样率、时频窗影响频谱分析精度和效率存在。在淮南顾桂矿区、河南永城车集矿区利用纵波衰减特征预测了灰岩富水区,在淮南顾桥矿区利用横波衰减特征预测了煤层瓦斯富集区。
Elastic waves in porous media based on the Biot theory are received widespread attention; however, seismic exploration in the coalfield shows few examples of applications. Based on the Biot theory, the impact of isotropic dissipative porous media parameters on the various types of wave phase velocity or attenuation was studied. The results show that the impact of permeability is the very opposite of the impact of viscosity upon attenuation. The effects of decrease in permeability and increase in viscosity are almost identical and vice versa. Under the guidance of the above-mentioned conclusions, the staggered grid finite difference forward and physical simulation forward were respectively used to simulate seismic data, spectral analysis based on the forward seismic data shows that there is significant difference in the spectrum of porous media and single-phase media, showing the spectral characteristics "low-central-frequency value, low-frequency high-value, high-frequency low-value ",these characteristics have been verified under usage of forward data. During time-frequency analysis process, the sampling rate influences the accuracy of spectrum, as well as time-frequency windows, and so on. Gu-gui in the Huainan mining area, Ju-ji in the Yongcheng mining area used P-wave attenuation characteristics to predict the limestone water-rich region; Gu-qiao in the Huainan mining area used the S-wave attenuation characteristics to predict the coal seam gas-rich region.
引文
参考文献
    1.彭苏萍.中国煤矿高产高效矿井地质保障系统[M].河北煤炭.1999,增刊,1-4.
    2. Voigt W. Lehrbuch der kirstallphysik, Teubner, Leipzig,1928.
    3. Reuss A.Berechnung der fliessgrense von misch kristallen auf grund der plastizitatbedingung fur einkristalle zeitschrift fur angewandte muthematik aus mechanire,1929,9:49-58.
    4. Hill R. A self-consistent mechanics of composite materials [J].Journal Mechanic Physic Solids,1965, 13:213-222.
    5. Gassmann F. Elastic waves through a packing of spheres [J]. Geophysics,1951,16:673-685.
    6.陈信平,刘素红.浅谈Gassmann方程[J].中国海上油气地质,1996,10:122127.
    7.杜世通.地震波动力学[M].东营:石油大学出版社,2007.
    8. Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid:Low-frequency range [J]. The Journal of the Acoustical Society of America,1956,28:168-178.
    9. Biot M.A. Theory of propagation of elastic waves in a fluid-saturated porous solid:High-frequency range [J]. The Journal of the Acoustical Society of America,1956,28:179-191.
    10. Biot M A. Mechanics of deformations and acoustic propagation in porous media [J]. J Applied Phys,1962, 33:1482-1498.
    11. Biot M A. Generalized theory of acoustic propagation in porous dissipative media [J]. The Journal of the Acoustical Society of America.1962,34:1254-1264.
    12. Biot M A, Wills D G The elastic coefficients of the theory of consolidation [J].Journal of Applied Mechanics, 1957,24:594-601.
    13. Johnson D L,Koplik J,Dashen R.Theory of dynamic permeability and tortuosity in fluid-saturated porous media[J]. Journal of Fluid Mechanics Digital Archives,2006,62:370-379.
    14. Berryman J G. Confirmation of Biot theory [J].Applied physics letter,1980,37:898.
    15. Brown R J S. Longitudinal Instabilities and Secondary Flows in the Planetary Boundary Layer [J].Geophysics,1980,45:1269.
    16. Johnson D L, Plona T J, and Scala C. Tortuosity and acoustic slow waves [J]. Physical Review Letters.1982, 49:1840-1845.
    17. Bouzidi Y. The acoustic reflectivity and transmissivity of liquid saturated porous media:Experimental tests of theoretical concepts [D]. Edmonton:University of Alberta, Department of physics,2003.
    18. Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid I:Low-frequency range [J]. The Journal of the Acoustical Society of America,1956,28:168-178.
    19. Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid Ⅱ:High-frequency range [J]. The Journal of the Acoustical Society of America,1956,28:179-191.
    20. Norris A N. Radiation from a point source and scattering theory in a fluid saturated porous solid [J]. The Journal of the Acoustical Society of America,1985,77:2012-2023.
    21. Fellah E A, Chapelon J Y. Ultrasonic wave propagation in human cancellous bone:Application of Biot theory [J]. The Journal of the Acoustical Society of America,2004,116:61-73.
    22.毛娅丹.层状饱和多孔介质中Biot慢波的影响[J].石油地球物理勘探,2005,40:429-434.
    23. Greertsma J. and Smit D.C. Some aspects of elastic wave propagation in fluid-saturated porous solid [J]. Geophysics,1961,26:169-181.
    24. N. C. Dutta and H Ode. Attenuation and dispersion of P-waves in fluid-filled porous rocks with partial gas saturation (white model) part Ⅱ:Biot theory [J]. Geophysics,1979,44:1777-1788.
    25. N. C. Dutta and H Ode. Attenuation and dispersion of P-waves in fluid-filled porous rocks with partial gas saturation (white model) part Ⅱ:result [J]. Geophysics,1979,44:1789-1805.
    26. S.Hassanzadeh.流体饱和孔隙介质中的地震模拟:一种增强储集层特性的方法,《美国勘探地球物理学家学会第58届年会论文集》,石油工业出版社,1989:556-640.
    27. Amos Nur等著,许云译.双相介质中波的传播,北京:石油工业出版社,1986.
    29. Parra J O, Xu P C. Dispersion and attenuation of acoustic guided waves in layered fluid-filled porous media [J]. The Journal of the Acoustical Society of America,1994,95:91-98.
    30. Grant A Gist. Fluid effects on velocity and attenuation in sandstones [J]. The Journal of the Acoustical Society of America,1994,96(2):1158-117.
    31. Arthur I. M. Denneman, Guy G. Drijkoningen. Reflection and transmission of waves at a fluid/porous-medium interface [J]. Geophysics,2002,67:282-291.
    32. Brian H. Russell, Ken Hedlin. Tutorial:Fluid-property discrimination with AVO:A Biot-Gassmann perspective [J]. Geophysics,2003,68:29-39.
    33. Jose M Carcione, Hans B. Helle. A constitutive equation and generalized Gassmann modulus for multimineral porous media [J]. Geophysics,2005,70:N17-N26.
    34. Valeri Korneev. Slow waves in fractures filled with viscous fluid [J]. Geophysics,2008,73:N1-N7.
    35. Casper Olsen, Kathrine Hedegaard. Prediction of Biot coefficient from rock-physical modeling of North Sea chalk [J]. Geophysics,2008,73:E89-E96.
    36. Dvorkin J, Nur. A. Dynamic poroelasticity:A unified model with the squirt and the Biot mechanisms [J]. Geophysics,1993,58(4):524-533.
    37. Dvorkin J. The squirt-flow mechanism:Macroscopic description [J]. Geophysics,1994,59:428-438.
    38. Born W T. The attenuation constant of earth materials [J]. Geophysics.1941,6:132-148.
    39. Wyllie L R J, Gardner G H F and Gregory A R. Studies of elastic wave attenuation in porous media [J]. Geophysics,1962,27:569-589.
    40. Gardner G H F, Wyllie L.R.J. and Droschak D.M. Effects of pressure and fluid saturation on attenuation of elastic waves in sands [J]. Jour. of Pet. Tech,1964,16:189-198.
    41. Usher M J. Elastic behavior of rocks at low frequencies [J]. Geophysical Prospecting,1962,10:119-127.
    42. Akbar N, Dvorkin J, Nur A. Relating P-wave attenuation to permeability [J]. Geophysics,1993,58(1):20-29.
    43. Tokuo Yamamoto, Thomas Nye, and Murat Kuru. Imaging the permeability structure of a limestone aquifer by crosswell acoustic tomography [J]. Geophysics,1996,60:1634-1645.
    44. Jorge O. Parra. The transversely isotropic poroelastic wave equation including the Biot and the squirt mechanisms:Theory and application [J]. Geophysics,1997,62:309-318.
    45. Jorge O. Parra. Poroelastic model to relate seismic wave attenuation and dispersion to permeability anisotropy [J].Geophysics,2000,65:202-210.
    46. Jorge O. Parra, Chris L. Hackert. Characterization of fractured low Q zones at the Buena Vista Hills reservoir, California [J]. Geophysics,2002,67:1061-1070.
    47. Jose M. Carcione, Stefano Picotti. P-wave seismic attenuation by slow-wave diffusion:Effects of inhomogeneous rock properties [J]. GEOPHYSICS,2006,71:O1-O8.
    48.乔文孝,王宁,严炽培.声波在两种多孔介质界面上的反射和透射[J].地球物理学报,1992,35(2):242-248.
    49.刘克安,张新明,刘家琦.双相介质纵波波动方程小波域多尺度模拟[J].计算力学学报,2006,23(3):264-269.
    50.魏修成.双相各向异性介质中的地震波场研究[D].博士学位论文,北京:石油大学,1995.
    51.刘洋.裂缝性油气藏多波多分量地震勘探方法研究[D].博士学位论文,北京:石油大学,1998.
    52.杨顶辉,张中杰.双相各向异性研究与应用前景[J].地球物理学进展,2000,15(2):7-21
    53.杨顶辉,陈小宏.含流体多孔介质的BISQ模型[J].石油地球物理勘探,2001,36(2):146-159.
    54.张慧星.孔隙介质中地震波场正演及油气预测技术研究[D].北京:中国矿业大学,2004.
    55.雍学善,马海珍,高建虎.双相介质AVO方程及参数简化研究[J].地球科学进展,2006,21(3):242-249.
    56.卢明辉,巴晶,杨慧珠.双相介质分界面上弹性波的反射与透射[J].地球物理学进展,2007,22(5):1439-1445.
    57.赵鸿儒,唐文傍,郊铁栓.超声地震模型试验技术及应用[M].北京:石油工业出版社,1-10
    58.狄帮让.裂隙与砂体地震物理模型研究[D].北京:石油大学,2006,3-4.
    59.牟永光.三维复杂介质地震物理模拟[M].北京:石油工业出版社,2005.1
    60. Alterman Z, Karal J F C. Propagation of elastic waves in layered media by finite-difference methods [J].Bull Seism Soc Am,1968,58:367-398.
    61. Alford R M, Kelly K R, Boore D M. Accuracy of finite-difference modeling of the acoustic wave equation[J].Geophysics,1974,39(4):838-842.
    62. Kelly K R, Ward R W, Treitel S. Synthetic seismograms, a finite-difference approach [J].Geophysics,1976, 41(1):2-27.
    63. Virieux J. P-SV wave propagation in heterogeneous media:Velocity-stress finite-difference method [J].Geophysics,1985,51(4):889-901.
    64. Dablain M A. The application of high-order differencing to scalar wave equation [J].Geophysics,1986, 51(1):54-66.
    65. Bayliss A, Jordan K E, LeMesurier B J, Turkel E. A fourth-order accurate finite-difference scheme for the computation of elastic waves [J].Bull Seism Soc Am,1986,76:1115-1132.
    66. Levander A R. Fourth-order finite-difference P-SV seismograms [J]. Geophysics,1988,53(11):1425-1436.
    67. Graves R W. Simulating seismic wave propagation in 3-D elastic media using staggered-grid finite difference[J].Bull Seism Soc Am,1996,86:1091-1106.
    68.裴正林.地震物理模型数据处理研究[D].北京,石油大学,2002.
    69.裴正林,牟永光.非均匀介质地震波传播交错网格高阶有限差分模拟[J].石油大学学报(自然科学版),2003,27(6):17-21.
    70. Igel H, Mora P, Riollet B. Anisotropic wave propagation through finite difference grids [J].Geophysics,1995, 60(4):1203-1216.
    71.郭建.双相介质中P波波场的有限差分模拟[J].石油地球物理勘探,1992,(02):515-520.
    72. Dai N, Vafidis A, Kanasewich E R. Wave propagation in heterogeneous, porous media:A velocity-stress, finite-difference method [J].Geophysics,1995,60(2):327-340.
    73. Carcione J M, Quiroga-Goode G. Some aspects of the physics and numerical modeling of Biot P waves [J].Journal Compute Acoustic,1996,3:262-280.
    74. Ozdenvar T, McMechan G. Algorithms for staggered-grid computations for poroelastic,elastic,acoustic and scalar wave equation[J].Geophysics Prospecting,1997,45:403-420.
    75. Carcione J M, Helle H B. Numerical solution of the poroviscoelastic wave equation on a staggered mesh [J]. Journal Compute Physics,1999,154:520-527.
    76.何樵登,张中杰,编著.横向各向同性介质中地震波及其数值模拟[M].长春:吉林大学出版社,1996.
    77.董良国,马在田,曹景忠,等.一阶弹性波方程交错网格高阶差分解法[J].地球物理学报.2000,43(3):411-419.
    78.孟庆生,何樵登,朱建伟,等.基于BISQ模型双相各向同性介质中地震波数值模拟[J].吉林大学学报(地球科学版),2003,33(2):217-221.
    79.张会星,何兵寿,宁书年.双相介质中纵波方程的高阶有限差分解法[J].物探与化探,2004,(04):307-313.
    80.刘克安,张新明,刘家琦.双相介质纵波波动方程小波域多尺度模拟[J].计算力学学报, 2006,(03):264-269.
    81.裴正林.三维各向异性介质中弹性波方程交错网格高阶有限差分法模拟[J].石油大学学报(自然科学版).2006,30(2):16-20.
    82.李卫志.双相介质地震波场数值模拟研究[D].成都:成都理工大学,2007.
    83.韩钟.地震波数值模拟及波场特征分析[D].成都:成都理工大学,2007.
    84. Reynolds A C. Boundary conditions for the numerical solution of wave propagation problems [J]. Geophysics,1978,43(6):1099-1110.
    85. Clayton R W, Engquist B. Absorbing boundary conditions for acoustic and elastic wave equations [J]. Bulletion of the Seismological Society of America,1980,45(5):895-904.
    86. Francis Collino, Chrysoula Tsogka. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media [J]. Geophysics,2001,66(1):294-307.
    87. Y Q Zeng, J Q He, and Q H Liu. The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media [J]. Geophysics,2001,66(4):1258-1266.
    88.苑春方,彭苏萍,张中杰,等.]Kelvin-Voigt均匀粘弹性介质中传播的弹性波[J].中国科学D辑地球科学,2005,35:957-962.
    89.李小凡.大延伸非均匀介质中地震波全弹性散射理论Ⅰ——弹性波多次散射理论[J].力学学报,2002,34:559-568.
    90.李小凡.大延伸非均匀介质中地震波全弹性散射理论Ⅱ——弹性波多次散射理论[J].力学学报,2002,34:743-755
    91.尹军杰,刘学伟,李文慧.地震波散射理论及应用研究综述[J].地球物理学进展,2005,3,:123-134.
    92.鞠杨,杨永明,毛彦喆.孔隙介质中应力波传播机制的实验研究[J].中国科学E辑:技术科学.2009,39:904-918.
    93. Gladwin M T; Stacey F D.Anelastic degradation of acoustic pulses in rock [J]. Physics of the Earth and Planetary Interiors,1974,8:332-336.
    94. Jones T D. Pore fluids and frequency-dependent wave propagation [J]. Geophysics,1986,51 (10): 1939-1953
    95.马昭军,刘洋.地震波衰减反演研究综述[J].地球物理学进展,2005,20:1074-1082.
    96. Changjun Zhang, Tadeusz J U. Estimation of quality factors from CMP records [J].Geophysics,2002, 67:1542-1547.
    97.刘学伟,邰圣宏.用面波反演风化层的Q值[J].石油物探1996,35(2):89-95.
    98.刘学伟,邰圣宏.一种考虑噪音干扰的地表风化层Q值反演方法[J].石油地球物理勘探,1996,31(3):367-373.
    99. Youli Quan, Jerry M. Harris. Seismic attenuation tomography using the frequency shift method [J]. Geophysics,1997,62 (3):895-905.
    100. Langqiu F. Sun, Bernd Milkereit.Measuring velocity dispersion and attenuation in the exploration seismic frequency band [J].geophysics,2009,74:WA113-WA122
    101.汪安民,王殊.基于小波变换的高分辨率信号频谱分析方法[J],计量技术,2004,12,3-9.
    102. Satish Sinha. Spectral decomposition of seismic data with continuous-wavelet transforms [J].Geophysics, 2005,70(6):19-25.
    103.刘天佑,盛秋红等.复小波频谱分析在地震数据处理中的应用[J].石油地球物理勘探,2007,42(增刊),72-75.
    104. Jorge O P, Chris L. H, Xu P C. Characterization of fractured low Q zones at the Buena Vista Hills reservoir,California [J].Geophysics,2002,67:1061-1070.
    105.赵海波,王秀明,王东,等.完全匹配层吸收边界在孔隙介质弹性波模拟中的应用[J].地球物理学 报,2007,50:581-591.
    106. Zhu X, McMechan G A. Numerical simulation of seismic response of poroelastic reservoirs using Biot theory [J].Geophysics,1991,56(3):328-339.
    107.孙成禹,宫同举,张玉亮,等.波动方程有限差分法中的频散与假频分析[J].石油地球物理勘探,2009,44:43-48
    108.邓继新,俞军.流体饱和岩石超声速度频散的特性研究[J].北京大学学报,2003,39:835-843.
    109.孙成禹,宫同举,张玉亮.波动方程有限差分法中的频散与假频分析[J].石油地球物理勘探,2009,44:43-48.
    110.彭苏萍,高云峰,彭晓波.淮南煤田含煤地层岩石物性参数研究[J].煤炭学报,2004,4:177-181.
    111.徐长发,李国宽.实用小波方法[M].华中科技大学出版社,2008,P1-63.
    112.彭苏萍,杜文凤,苑春方,等.不同结构类型煤体地球物理特征差异分析和纵横波联合识别与预测方法研究[J].地质学报,2008,26:801-820.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700