用户名: 密码: 验证码:
Fe-Ni-C-B系高温高压合成含硼金刚石单晶的工艺与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究发现,向金刚石中掺杂某些元素可以使金刚石获得特殊优异的性能。硼由于具有与碳接近的原子半径,易于进入金刚石晶格,含硼金刚石一直是掺杂金刚石研究的热点。已有的研究发现,含硼金刚石是一种P型半导体材料,甚至还具有超导特性;另外,含硼金刚石还具有明显优于常规金刚石的热稳定性和化学惰性。以含硼金刚石为代表的特种金刚石制备与应用将是二十一世纪人造金刚石行业发展的主要方向之一。含硼金刚石的制备对于丰富人造金刚石的品种,提高其品质,拓展其应用乃至从总体上提升我国人造金刚石行业的技术水平都有十分重要的意义。
     但是,目前已有的研究大多着眼于含硼金刚石薄膜,对单晶材料少有研究;而且,目前现有的合成含硼金刚石单晶的方法一般条件较为苛刻,生产成本较高,难以在工业化生产条件下获得高品位的含硼金刚石单晶。因此,如何采用较为低廉的原料和较为简便的方法合成优质的含硼金刚石单晶,并进一步对其半导体特性进行研究,便成为含硼金刚石单晶研究深化的紧迫任务。
     本文在粉末冶金铁基触媒相关研究的基础上,向触媒原材料中添加合理的硼源材料,制备含硼粉末冶金铁基触媒。使用制备出的触媒匹配人造金刚石专用石墨组成Fe-Ni-C-B反应体系,在高温高压下合成含硼金刚石单晶。通过对含硼触媒的成分、高温高压合成工艺和提纯工艺的优化设计,系统研究了Fe-Ni-C-B系高温高压合成含硼金刚石单晶的工艺。通过金刚石晶体结构和性能的系统表征,研究了硼对金刚石晶体结构和性能的影响。通过对高温高压下含硼金刚石单晶在Fe-Ni-C-B系中的碳源供给、形成机制以及生长机制的讨论,系统研究了含硼金刚石单晶的高温高压合成机理。本文以含硼金刚石单晶合成工艺为主线,从触媒制备、合成工艺、结构与性能表征和合成机理等几个主要方面,系统开展了含硼金刚石单晶的实验分析和理论研究工作。
     本文从铁基触媒原材料优选及制备工艺优化入手,为粉末冶金方法制备含硼触媒奠定了工艺基础。通过对触媒原材料质量(主要是氧含量)的严格控制,优化金属粉末配比和添加石墨粉,改进了铁基触媒的成分构成;提出了粉末轧制-烧结-冲制新的制备工艺,提高了触媒的质量和贵重金属镍的利用率。
     从硼源材料优选,硼源合理添加量的选择以及触媒成分多元合金化三个方面对含硼粉末冶金铁基触媒的成分进行了优化设计。首先优选出六方氮化硼作为硼源材料,并对其适宜的添加量进行了探讨。试验证明,硼源添加量应为a-2a,过量添加会影响金刚石的品位。进而以铜为例,证明在触媒成分中添加有益元素的多元合金化可以明显提高金刚石的品位。
     从优选石墨、改进合成压块组装结构和设计新的合成工艺三个方面对高温高压合成金刚石工艺进行了优化设计。优选出G4D石墨作为合成含硼金刚石单晶的碳源材料;借鉴粉末工艺对合成压块的组装结构进行了改进,提高了腔体内压力、温度的稳定性;以保证金刚石的优晶生长为目的设计了压力功率动态匹配合成工艺,并通过设备改造和压力标定及温度测量完成了这一新工艺设计;同时,确定出含硼金刚石单晶在Fe-Ni-C-B系中的优晶生长区:P=5.5-5.7GPa,T=1400-1500℃。
     利用铁基触媒及其包覆膜具有铁磁性和脆性大的特点,设计了一套单纯依靠机械方法提纯金刚石的新工艺。经试验验证,新工艺既可以有效提纯金刚石,且无污染,方法简单,机械化程度高,具有重要的推广应用价值。
     应用现代分析测试技术对含硼金刚石单晶的晶体结构和主要性能进行了系统表征。试验结果表明,合成的金刚石单晶受硼的影响,表面比较粗糙,{111}面较发达。Raman特征峰的偏移提供了硼进入金刚石晶格的间接证据;而红外吸收光谱则直接探测到了含硼金刚石晶体内部的B-C键。采用第一原理的模拟计算表明,硼在金刚石晶格中易于以置换原子的形式存在。由于硼原子对晶体表面碳原子的取代,有效地阻止或延缓了金刚石的氧化,使得含硼金刚石单晶具有明显优于常规金刚石的热稳定性:表面起始氧化温度提高了约170℃,氧化过程的表观活化能约为常规金刚石的3.5倍。
     试验结果和理论分析进一步证明,金属碳化物才是金刚石生长的直接碳源,且触媒熔体中金属碳化物的充分形成直接影响金刚石的碳源供给,并进而影响金刚石的合成效果。
     依据金属包覆膜物相结构系统表征的结果,借鉴Fe-Ni-C系中金刚石的合成机理,讨论了含硼金刚石在Fe-Ni-C-B系中的形成机制。试验发现,硼是以金属-碳-硼化合物的形式溶入金属包覆膜内,经金属中间相的催化反应而析出活性硼原子(团),再向金刚石扩散,其扩散的路径、形式与碳相同。含硼金刚石单晶的形成依赖于金属-碳-硼化合物在包覆膜内层的分解。
     本文还依据对金刚石单晶/金属包覆膜界面微观结构表征的结果,借鉴经典的晶体生长理论,讨论了含硼金刚石单晶在Fe-Ni-C-B系中的生长机制。研究结果表明,含硼金刚石单晶在Fe-Ni-C-B系中是以层状方式长大的。这种层状生长的台阶来源前期以二维晶核为主,后期则以位错为主。自金属包覆膜中脱溶析出的层片状碳-硼原子团扩散到达金刚石单晶表面,在生长台阶前端被吸附,长成含硼金刚石单晶的一部分。随着台阶的不断扩展,新的台阶在刚长成的晶面上继续形成,含硼金刚石单晶则以层状堆叠的方式逐步生长。
It has been found that the properties of diamond can be significantly enhanced by doping some elements into diamond lattice. Boron atoms, whose atomic radius is close to that of carbon, can enter into diamond lattice relatively easily and nowadays, boron-doped diamond has become a hot spot due to the related advantages in practice. For instance, boron-doped diamond is semi-conductive or even super-conductive and the thermal stability and chemical inertia of boron-doped diamond are much better than those of the normal one. In addition, boron-doped diamond can be manufactured by many kinds of methods. The manufacture and application of special diamond, which is represented by the boron-doped one, will be the important innovative orientation in 21st century. The study on manufacture of boron-doped diamond is significant for the technical progress of the whole industry in China for it will enrich the species of synthetic diamond, upgrade its properties and extend its application fields.
     However, at present, most studies focus on boron-doped aggregate crystals and poly- crystalline films and only a few on single crystals. Furthermore, almost all the methods for synthetic boron-doped diamond single crystal require strict conditions and involve high cost; therefore, it is hard to obtain high quality boron-doped diamond single crystal under existing industrial conditions.In this light, it is very urgent to obtain synthetic high-quality boron-doped diamond single crystal with cheaper raw materials and simpler method.
     This paper mainly focuses on synthesis of boron-doped diamond single crystal in Fe-Ni-C-B system under high-pressure and high-temperature (HPHT). The Fe-Ni-C-B reactive system is composed of boron-doped iron-based catalyst alloy and graphite. The boron-doped iron-based catalyst alloy was made by powder metallurgy method by adding boron source into the raw materials. The synthesis technology of boron-doped diamond was promoted by redesigning the composition of the catalyst, improving synthesis process and developing new purification technique. At the same time, the synthesis mechanism of boron-doped diamond under HPHT, consisting of the carbon source and mechanism for diamond growth as well as the formation route, was also studied systemically. This paper is organized based on the whole preparation process of boron-doped diamond including catalyst manufacture, HPHT synthesis and purification, characterization of structure and properties of diamond as well as the synthesis mechanism.
     As the first step of diamond synthesis, the composition of iron-based catalyst was enhanced by modifying the ratio of pure iron powder to nickel and introducing graphite powder. The chemical composition of raw materials was strictly controlled, the oxygen content, especially. A new kind of formation method for catalyst preparation was developed from powder rolling to sintering, then to punching. This method is helpful to increase the product yield and utilization efficiency of nickel.
     The composition of boron-doped catalyst was designed by optimizing the boron source and its addition level. The multi-component alloying of catalyst by adding some elements such as copper was discussed as one part of composition design. On the basis of the experimental results, hexagonal boron nitride (hBN) is considered as a feasible boron source. In addition, the addition quantity of hBN should be controlled in the range of a-2a because excessive addition will damage the quality of diamond crystal. Moreover, the added copper is helpful to control the crystal growth rate and enhance the quality of diamond.
     G4D type graphite disc is admitted as the suitable carbon source for boron-doped diamond synthesis. The structure of assembly bulk was improved by adopting the means of powder catalyst mode to enhance the stability of temperature and pressure in synthesis cell. A new pressure and temperature dynamic match technology was proposed aiming to control the pressure and temperature within the range for high-quality diamond growth. Then the new synthesis technology is realized with the modified high-pressure apparatus. In addition, the real pressure in synthesis cell was calibrated and the temperature in synthesis cell was measured by thermocouple. Due to the experimental work mentioned above, the growth region for high-quality boron-doped diamond single crystal in Fe-Ni-C-B system was definite: P=5.5-5.7GPa,T=1400-1500℃.
     A new diamond purification process was created by fully utilizing the ferromagnetism and high brittleness of iron-based catalyst and metallic film. The diamond single crystals can be purified completely with mechanical separation methods. Furthermore, the new process is more valuable in practice with no pollution, lower cost and simpler operation.
     The shape of diamond crystals is cube-octahedral with rough surface and developed {111} faces due to the presence of boron. The shift of Raman scattering peak suggests boron atoms entering into diamond lattice. The B-C covalent bond in diamond is directly found in IR absorption spectra. The boron atoms are inclined to substitute the carbon atoms in diamond lattice on basis of the calculation results with the first principle. In addition, due to the substitution of boron to carbon on the crystal surface, the thermal stability of boron-doped diamond is more excellent than that of the normal one. The surface initial oxidation temperature of the boron-doped diamond is advanced by 170℃, and the apparent activation energy of oxidation process of boron-doped diamond is 3.5 times as much as that of the normal one.
     The experimental results of this paper further prove that the direct carbon source for diamond growth in Fe-Ni-C-B system under HPHT is metallic carbides, not graphite. The yield and quality of synthetic diamond crystals are determined by the full formation of metallic carbide in catalyst melt, i.e. the solution degree of graphite in it.
     The diffusion form and route of boron are the same to those of carbon in the process of diamond formation. The boron-doped metallic carbides diffuse through the metallic film surrounding diamond and arrive on the film/diamond interface, where active boron and carbon atoms will precipitate from the carbides and enter into diamond. In general, the formation of boron-doped diamond depends on the decomposition of carbides on the film/diamond interface.
     Plenty of trace of diamond layer growth was found via modern materials testing technique. The origin of growth steps for diamond layer growth is two-dimensional nucleation at the initial stage and more growth steps originate from the dislocations that result from the mismatch between boron and carbon atom. The layer boron-carbon atom groups, namely the growth unit, which arrive on the surface growing diamond, will be absorbed on the side of the steps and become one part of diamond crystal.
引文
1.G.Davies.Diamond[M].Bristol:Adams Hilgor,1984.
    2.宋健民.钻石合成[M].台北:全华科技图书股份有限公司,1989.
    3.J.E.Field.The properties of natural and synthetic diamond[M].New York:Academic Press,1992.
    4.F.P.Bundy,H.T.Hall,H.M.Strong,et al.Man-made diamonds[J].Nature,1955,176:51-55.
    5.N.V.Novikov,A.A.Shulzhenko.New superhard materials and their industrial application [J].Sverk.Mater.,1987,(9):8-14.
    6.W.O.Donald.Diamond,industrial[A].U.S.Geological Survey Minerals Yearbook-2003[C].Reston:USGS Publication,2004:22.1-22.9.
    7.A.A.Altukhov,M.S.Afanas'ev,V.B.Kvaskov,et al.Application of diamond in high technology[J].Inorganic Mater.,2004,40:50-70.
    8.T.Nakahara,N.Fujimori.Innovation in diamond[J].Mater.Res.Innov.,1997,(1):38-43.
    9.R.J.Caveney.Diamond research:past,present and future[J].J.Hard Mater.1994,5:23-29.
    10.杨光繁.超硬材料的发展及前景[J].新材料产业,2005,(9):60-64.
    11.姚裕成.中国人造金刚石诞生纪事[J].超硬材料工程,2007,19(6):45-46.
    12.夏瑶峰.我国人造金刚石发展的几个历史镜头[J].超硬材料工程,2008,20(2):48-51.
    13.李志宏,赵博,宜云雷,等.骄人的成就,光辉的未来——热烈庆祝中国人造金刚石诞生45周年[A].中国机床工具工业协会超硬材料分会编.第五届郑州国际超硬材料及制品研讨会[C].北京:海洋出版社,2008:1-16.
    14.戴志.我国超硬材料面临的问题及对策[J].中国超硬材料,2008,(3):32-35.
    15.李志宏.2007年行业经济运行情况简介[A].中国超硬材料发展论坛论文集[C].桂林:桂林矿产研究院,2008:13.
    16.谭金华.2008年1-6月份中国内地天然石材、磨料磨具及人造金刚石出口量值统计汇总表[J].石材,2008,(8):50-51.
    17.H.T.Hall.The synthesis of diamond[J].J.Chem.Edu.,1961,38(10):1-7.
    18.S.Ferro.Synthesis of diamond[J].J.Mater.Chem.,2002,12:2843-2855.
    19.王光祖.人造金刚石合成技术开拓创新的五十年[J].金刚石与磨料磨具工程,2004,(6):73-77.
    20.刘长泰,荣际凯,魏忠义.爆炸制造金刚石的方法及装置[P].中国专利:91106989.5,1992-11-04.
    21.P.S.Decarli,J.C.Jamieson.Diamond synthesis by explosive shock[J].Science,1961,133:1821-1822.
    22.文潮,王光祖.炸药爆轰合成纳米金刚石综述[A].中国机床工具工业协会超硬材料分会编.第五届郑州国际超硬材料及制品研讨会[C].北京:海洋出版社,2008:79-86.
    23.王建华.炸药爆轰合成纳米金刚石研究[D].太原:中北大学,2003:1-30.
    24.H.P.Bovenkerk,F.P.Bundy,H.T.Hall,et al.Preparation of diamond[J].Nature,1959,184:1094-1098.
    25.F.P.Bundy.Direct conversion of graphite to diamond in static pressure apparatus[J].Science,1962,137:1057-1058.
    26.F.P.Bundy,H.M.Strong,R.H.Wentorf.Methods and mechanisms of synthetic diamond growth[J].Chem.Phys.Carbon,1973,10:213-263.
    27.R.Abbaschian,H.Zhu,C.Clarke.High pressure-high temperature growth of diamond crystals using split sphere apparatus[J].Diamond Relat.Mater.,2005,14:1916-1919.
    28.H.M.Strong,R.H.Wentorf,Jr.The growth of large diamond crystals[J].Naturwissenschaften,1972,59:1-7.
    29.D.Choudhary,J.Bellare.Manufacture of gem quality diamonds:a review[J].Ceramics Int.,2000,26:73-85.
    30.H.Sumiya,S.Satoh.High-pressure synthesis of high-quality diamond crystal[J].Diamond Relat.Mater.,1996,5:1359-1365.
    31.H.Sumiya,N.Toda.High-quality large diamond crystals[J].New Diamond Front.Carbon Tech.,2000,10:233-251.
    32.贾晓鹏.宝石级大单晶的合成技术与最新研究进展[J].新材料产业,2008,(8):55-57.
    33.T.Anthony.The chemical vapor deposition of diamond:A discussion of reported techniques and mechanisms[M].Diamond ARI Seminar.Naval Research Laboratory.Washington.DC.1987.
    34.蒋翔六.金刚石薄膜研究进展[M].北京:化学工业出版社,1991.
    35.L.Chow,D.Zhow.Chemical vapor deposition of novel materials[J].Thin Solid Film,2000,368:193-197.
    36.M.Seiichino.Development of diamond techniques at low pressure[J].Thin Solid Film,2000,368:231-235.
    37.方啸虎.超硬材料科学与技术[M].北京:中国建材工业出版社,1998.
    38.陈光华,张阳.金刚石薄膜的制备与应用[M].北京:化学工业出版社,2004.
    39.骆金龙.CVD金刚石薄膜的制备以及其特性和器件研究[D].上海:复旦大学,2004:13-16.
    40.M.Asman,J.Heberlein,E.Pfender.A review of diamond CVD utilizing halogenated precursors[J].Diamond Relat.Mater.,1999,8:1-16.
    41.P.W.May.Diamond thin film:a 21st-century material[J].Phil.Trans.R.Soe.Lond.A,2000,358:473-495.
    42.F.P.Bundy.Pressure-temperature phase diagram of elemental carbon[J].Phys.A:Statis.Mech.Appl.,1989,156:169-178.
    43.F.P.Bundy,W.A.Bassett,M.S.Weathers,et al.The pressure-temperature phase and transformation diagram for carbon:updated through 1994[J].Carbon,1996,34:141-153.
    44.陈乾旺,娄正松,王强,等.人工合成金刚石研究进展[J].物理,2005,34(3):199-204.
    45.Y.D.Li,Y.T.Qian,H.W.Liao,et al.A reduction-pyrolysis-catalysis synthesis of diamond[J].Science,1998,281:246-247.
    46.Q.W.Chen.Diamond formation by reduction of carbon dioxide at low temperatures[J].J.Am.Chem.Sot.,2003,125:9302.
    47.Z.S.Lou,Q.W.Chen,W.Wang,et al.Growth of large diamond crystals by reduction of magnesium carbonate with metallic sodium[J].Angew.Chem.Int.Ed.,2003,42:4501.
    48.Z.S.Lou,Q.W.Chen,Y.F.Zhang,et al.Growth of carbon nanotubes from MgCO_3 via a simple chemical reduction process[J].J.Phys.Chem.B.,2004,108:4239.
    49.R.E.Langford.The origin of diamonds[J].J.Korean Chem.Sot.,1978,22(3):138-149.
    50.温斌,李廷举,董闯,等.新金刚石[J].新型炭材料,2004,4:319.
    51.孙立涛,巩金龙,朱志远,等.等离子体诱导碳纳米管到纳米金刚石的相变[J].物理学报,2004,53(10):3467-3471.
    52.P.W.Bridgrnan.An experimental contribution to the problem of diamond synthesis[J].J. Chem.Phys.,1947,15(2):92-98.
    53.H.T.Hall.Ultra-high-pressure,high-temperature apparatus:the "Belt"[J].Rev.Sci.Instru.,1960,31:125-131.
    54.李志宏,钱惟圭.中国超硬材料四十年发展及展望[A].中国机床工具工业协会超硬材料分会编.第四届郑州国际超硬材料及制品研讨会论文集[C].北京:机械工业出版社,2003:1-21.
    55.姚裕成,胡光亚,佟学礼.从两面顶、六面顶、凹模的特点论我国合成金刚石装备大型化的方向[J].人工晶体学报,1999,28(1):103-107.
    56.R.F.Davis.Diamond films and coatings[M].Berkshire:Noyes Publications,1993.
    57.贺海燕.超硬薄膜涂层材料研究进展及应用[J].陶瓷,2007,12:25-30.
    58.王光祖.我国人造金刚石晶体生长机理研究概述[J].金刚石与磨料磨具工程,2000,(2):48-50.
    59.Z.T.Shen.Important progress in study on synthesizing mechanism of synthetic diamond with flux-catalyst method at super-high pressure[J].人工晶体学报,2005,34(6):1035-1049.
    60.张治军,李正南,陈坚.静压法合成人造金刚石晶体生长机理研究进展[J].超硬材料工程,2006,18(3):40-43.
    61.K.Lonsdale,H.J.Milledge,E.Naave.X-ray studies of synthetic diamonds[J].Miner.Magazine,1959,32:185-201.
    62.B.B.Pate.The diamond surface:atomic and electronic structure[J].Surf.Sci.,1986,65:3448-3456.
    63.吉林大学固体物理教研室编.人造金刚石[M].北京:科学出版社,1975.
    64.萄清泉.高温高压下石墨变金刚石的结构转化机理[J].吉林大学学报(自然科学版),1972,(2):52-63.
    65.A.A.Giardini,J.A.Kohn,D.W.Eckart.Notes and news:formation of coesite and kyanite from pyrophyllite at very high pressure and high temperature[J].Amer.Mineral.,1961,46:976-981.
    66.A.A.Giardini,J.E.Tydings.Diamond synthesis:observations on the mechanism of formation[J].Amer.Mineral.,1962,47:1393-1399.
    67.X.Yan,H.Kanda,T.Ohsawa,et al.Behavior of graphite-diamond conversion using Ni-Cu and Ni-Zn alloys as catalyst-solvent[J].J.Mater.Sci.,1990,25:1585-1589.
    68.R.C.Burns,J.O.Hansen,R.A.Spits,et al.Growth of high purity large synthetic diamond crystals[J].Diamond Relat.Mater.,1999,8:1433-1437.
    69.H.M.Strong.Catalystic effects in the transformation of graphite to diamond[J].J.Chem.Phys.,1963,39:2057-2062.
    70.R.H.Wentorf.The behaviour of some carbonaceous materials at very high pressures and high temperatures[J].J.Phys.Chem.,1965,69:3063-3069.
    71.S.Naka,A.Tsuzuki,S.I.Hirano.Diamond formation and behavior of carbides in several 3d-transition metal-graphite systems[J].J.Mater.Sci.,1984,19:259-262.
    72.J.Perry,S.Nelson,S.Hosomi.Diamond formation in solid metal[J].Mater.Res.Bull.,1990,25:749-756.
    73.E.Pavel.Combinative mechanism of HP-HT catalytic synthesis of diamond[J].Phys.B:Conden.Matter,1998,245:288-292.
    74.J.Sung.Graphite→diamond transition under high pressure:a kinetics approach[J].J.Mater.Sci.,2000,35:6041-6054.
    75.Z.L.Liu,Z.L.Li,Z.G.Sun.Catalysis mechanism and catalyst design of diamond growth[J].Metal.Mater.Trans.A,1999,30:2757-2766.
    76.李丽,许斌,宫建红,等.高温高压合成金刚石中触媒的价电子结构分析[J].高压物理学报,2006,20(4):372-377.
    77.王秦生.超硬材料制造[M].北京:中国标准出版社,2002.
    78.S.Hosomi.Graphite-diamond conversion proceeded by the use of carburized cobalt solvent [J].Mater.Res.Bull.,1984,19:479-486.
    79.T.D.Varfolomeeva,L.A.Ivanov,A.V.Tsvyashchenko,et al.Role of the electron structure of metals in the process of transfer to graphite into diamond[J].Sverk.Mater.,1986,8(4):6-8.
    80.H.Kanda,M.Akaishi,S.Yamaoka.New catalysts for diamond growth under high pressure and high temperature[J].Appl.Phys.Lett.,1994,65(6):784-786.
    81.孙江,李君峰,耿大全.人造金刚石用触媒材料的研究现状[J].金属功能材料,1996,3(2):41-46.
    82.方啸虎.合成金刚石的研究与应用[M].北京:地质出版社,1996.
    83.郭永存,李志华,张广云.金刚石的人工合成与应用[M].北京:科学出版社,1984.
    84.王光祖.我国合成金刚石用触媒合金试验研究的回顾[A].人造金刚石探秘——王光祖论文集[C].杭州:浙江大学出版社,2001:215-219.
    85.苗建国,张沪.金刚石合成用触媒材料的新进展[A].中国机床工具工业协会超硬材料分会编.第四届郑州国际超硬材料及制品研讨会[C].北京:机械工业出版社,2003:48-49.
    86.林铭西.金属触媒的催化效应率及其在合成金刚石中的应用[J].人工晶体学报,1984,13(2):142-145.
    87.F.P.Bundy,H.P.Bovenkerk,H.M.Strong.Diamond-graphite equilibrium line from growth and graphitization of diamond[J].J.Chem.Phys.,1961,35(2):383-391.
    88.A.S.Smolyar.The region of diamond formation from fluids[J].Sverk.Mater.,1993,15(3):5-14.
    89.H.Kanda,M.Akaishi,S.Yamaoka.New catalysts for diamond growth under high pressure and high temperature[J].Appl.Phys.Lett.,1994,65:784-786.
    90.D.A.Mortimer,M.Niicholas.The wetting of carbon by copper and copper alloys[J].J.Mater.Sci.,1970,5:149-155.
    91.L.Gou,S.M.Hong,Q.Q.Gou.Investigation of the process of diamond formation from SiC under high pressure and high temperature[J].J.Mater.Sci.,1995,30:5687-5690.
    92.J.Y.Choi,J.K.Park,K.Y.Eun,et al.SiC enhanced nucleation of diamond under high temperature and high pressure[J].Diamond Relat.Mater.,1996,5:1214-1217.
    93.江锦春,李良彬,洪时明,等.从碳化硅和铁体系合成金刚石[J].高压物理学报,1997,11(2):58-62.
    94.李良彬,江锦春,杨通道,等.碳化钒作碳源合成金刚石[J].高压物理学报,1998,12(2):62-65.
    95.L.W.Yin,M.S.Li,J.J.Cui,et al.Diamond formation using Fe_3C as a carbon source at high temperature and high pressure[J].J.Cryst.Growth,2002,234:1-4.
    96.M.Akaishi,H.Kanda,S.Yamaoka.Morphology of synthetic diamonds grown from Na_2CO_3solvent-catalyst[J].J.Cryst.Growth,1990,106:471-475.
    97.M.Akaishi.New non-metallic catalysts for the synthesis of high pressure and high temperature diamond[J].Diamond Relat.Mater.,1993,2:183-189.
    98.Yu.N.Pal'yanov,A.G.Sokol,Yu.M.Borzdov,et al.The diamond growth from Li_2CO_3, Na_2CO_3,K_2CO_3 and Cs_2CO_3 solvent-catalysts at P=7GPa and T=1700-1750℃[J].Diamond Relat.Mater.,1999,8:1118-1124.
    99.S.Yamaoka,M.D.Shaji Kumar,M.Akaishi,et al.Reaction between carbon and water under diamond-stable high pressure and high temperature conditions[J].Diamond Relat.Mater.,2000,9:1480-1486.
    100.M.Akaishi,M.D.Shaji Kumar,H Kanda,et al.Formation process of diamond from supercritical H_2O-CO_2 fluid under high pressure and high temperature conditions[J].Diamond Relat.Mater.,2000,9:1945-1950.
    101.M.Akaishi,H.Kanda,S.Yamaoka.Phosphorus:an elemental catalyst for diamond synthesis and growth[J].Science,1993,259:1592-1593.
    102.D.Michau,H.Kanda,S.Yamaoka.Crystal growth of diamond from a phosphorus solvent under high pressure-high temperature conditions[J].Diamond Relat.Mater.,1999,8:1125-1129.
    103.袁公昱,方啸虎.人造金刚石合成与金刚石工具制造[M].长沙:中南工业大学出版社,1992.
    104.方啸虎冲国超硬材料新技术与进展[M].合肥:中国科技大学出版社,2003.
    105.戴兰芳,魏琼林.NiFe合金粉末触媒合成金刚石研究[J].人工晶体学报,2004,33(6):1057-1059.
    106.王光祖.粉状触媒的技术特性及其对金刚石合成的影响[A].人造金刚石探秘——王光祖论文集[C].杭州:浙江大学出版社,2001:150-154.
    107.姬生,唐卫平,许雅周.粉末触媒合成金刚石工艺特点[J].武汉船舶职业技术学院学报,2008,(4):57-59.
    108.卢喜瑞,唐敬友,刘党库,等.Fe_(70)Ni_(30)合金粉体触媒及合成金刚石中杂质元素的原子发射光谱分析[J].金刚石与磨料磨具工程,2008,(3):47-50.
    109.周连科.合成金刚石用触媒合金粉末的开发应用[J].新材料产业,2007,(5):49-51.
    110.王志法,姜国圣.触媒中氧含量对人造金刚石合成效果的影响[J].中南矿冶学院学报,1993,24(2):233-236.
    111.徐燕军,柳成渊,陈哲,等.粉末触媒合成柱真空烧结工艺的研究[J].金刚石与磨料磨具工程,2008,(4):18-21.
    112.张曙光,王磊,马自力,等.气雾化Ni-Mn-Co合金粉末触媒制备及其合成金刚石特性[J]. 粉末冶金技术,2002,20(1):16-19.
    113.郭宏,卢彩涛,经海,等.NiMnCo粉末触媒合成金刚石特征的研究[J].人工晶体学报,2003,32(6):585-590.
    114.孙江,李基发,冯庆田.人造金刚石用触媒形状的新构想[J].高压物理学报,1993,7(2):148-151.
    115.杨炳飞,冯安生,岳铁兵,等.叶蜡石在高压合成中作为密封传压介质的应用研究[J].矿产综合利用,2006,(1):37-41.
    116.李瑞,马红安,韩奇钢,等.基于ANSYS的金刚石合成腔内的温度场分析[J].吉林大学学报(工学版),2008,38(3):535-538.
    117.王光祖.合成块的组装方式与金刚石的合成[A].人造金刚石探秘——王光祖论文集[C].杭州:浙江大学出版社,2001:227-233.
    118.谢有赞.金刚石理论与合成技术[M].长沙:湖南科学技术出版社,1993.
    119.彭献伟,林玉,王振海,等.大腔体高品级金刚石合成工艺探讨[A].中国机床工具工业协会超硬材料分会编.第五届郑州国际超硬材料及制品研讨会[C].北京:海洋出版社,2008:71-74.
    120.C.S.Kennedy,G.C.Knnedy.The equilibrium boundary between graphite and diamond[J].J.Geophy.Res.,1976,61(14):2467-2469.
    121.H.M.Strong,R.M.Chrenko.Further studies on diamond growth rate and physical properties of laboratory-made diamond[J].J.Phys.Chem.,1971,75:1838-1843.
    122.周东晨,赵国权.金刚石合成工艺[M].北京:机械工业出版社,1998.
    123.郝兆印,陈宇飞.非恒功率加热技术的研究[J].高压物理学报,1993,3(9):238-240.
    124.赵清国,薛胜辉,杨东红,等.Φ49腔体高品级金刚石合成及工艺[J].金刚石与磨料磨具工程,2007,(5):44-46.
    125.李启泉,彭振斌,陈启武.六面顶金刚石合成稳定性研究[J].金刚石与磨料磨具工程,2008,(2):16-20.
    126.R.Kalish.Doping of diamond[J].Carbon,1999,37:781-785.
    127.R.M.Chrenko.Boron,the dominant acceptor in semiconducting diamond[J].Phys.Rev.B,1973,7:4560-4567.
    128.R.F.Mamin,T.Inushima.Conductivity in boron-doped diamond[J].Phys.Rev.B,2001,63:3201-3204.
    129.宫建红,李木森,许斌,等.Ⅱb型金刚石单晶的制备和半导体特性研究进展[J].功能材料,2003,6(34):622-625.
    130.E.Klugrnann,M.Polowczyk.Semiconduction diamond as material for high temperature thermistors[J].Mater.Res.Innovat.,2000,4:45-48.
    131.萄清泉.含硼黑金刚石的结构与合成机理及其特殊性能的探讨[J].人造金刚石,1977,(2):26-36.
    132.E.A.Ekimov,V.A.Sidorov,A.V.Rakhmanina,et al.Synthesis,structure,and physical properties of boron-doped diamond[J].Neorg.Mater.,2006,42:1313-1319.
    133.B.N.Mavrin,V.N.Denisov,D.M.Popova,et al.Boron distribution in the subsurface region of heavily doped Ⅱb type diamond[J].Phys.Lett.A,2008,372:3914-3918.
    134.J.P.Goss,P.R.Briddon.Theory of boron aggregates in diamond:first-principles calculations [J].Phys.Rev.B,2006,73:085204.
    135.R.Long,Y.Dai,M.Guo,et al.Effect of B-complexes on lattice structure and electronic properties in heavily boron-doped diamond[J].Diamond Relat.Mater.,2008,17:234-239.
    136.H.C.Cui,Y.C.Li,W.H.Su,et al.Study and production of the aggregate crystals of boron-skin diamond[J].Chi Lin Ta Hsueh,Tzu Jan K'o Hsueh Pao,1979,(1):77-81.
    137.S.S.Wang.Boron diamond polybloc mingled and sintered under ultra-high pressure[J].Chinese Sci.Bull.,1984,29(11):1456-1459.
    138.M.Suzuki,H.Yoshida,N.Sakuma,et al.Electrical properties of B-related acceptor in B-doped homoepitaxial diamond layers grown by wicrowave plasma CVD[J].Diamond Relat.Mater.,2004,13:198-202.
    139.N.Kohmura,K.Sudoh,K.Sato,et al.Diamond growth on the high purity iron substrate using hot-filament CVD method[J].Diamond Relat.Mater.,2005,14:283-287.
    140.S.Prawer.Ion implantation of diamond and diamond films[J].Diamond Relat.Mater.,1995,4:862-872.
    141.R.Kalish.Ion-implantation in diamond and diamond films:doping,damage effects and their applications[J].Appl.Sur.Sci.,1997,117/118:558-569.
    142.李和胜,刘宪刚,李木森,等.含硼金刚石单晶制备的研究进展[J].材料科学与工程学报,2006,24(6):944-947.
    143.关长斌,刘景丰,范克中,等.触媒合金渗硼对合成人造金刚石性能的影响[J].无机材料 学报,1994,9(1):39-43.
    144.王松顺.用含硼掺杂物石墨碳源合成金刚石的实验[J].工业金刚石,2003,(1):25-28.
    145.王松顺.含硼石墨碳源合成金刚石的效果[J].磨料磨具通讯,2005,(6):4-6.
    146.关长斌,王艳辉,董占海,等.渗硼石墨对人工合成金刚石性能的影响[J].硅酸盐学报,1993,(5):10-14.
    147.张建琼,贾晓鹏,马洪安,等.掺硼金刚石的高温高压合成[J].金刚石与磨料磨具工程,2005,(1):15-17.
    148.J.Q.Zhang,H.A.Ma,Y.P.Jiang,et al.Effects of the additive boron on diamond crystals synthesized in the system of Fe-based alloy and carbon at HPHT[J].Diamond Relat.Mater.,2007,16:283-287.
    149.J.B.Zang,Y.H.Wang,X.M.Zhang,et al.Synthesis of B-doped diamond using graphite intercalation compounds(GICs)[J].J.Mater.Process.Tech.,2002,129:454-457.
    150.罗湘捷,丁立业,刘强,等.高温高压下B_4C合成金刚石的研究[J].高压物理学报,1997,12(11):266-269.
    151.E.A.Ekimov,R.A.Sadykov,N.N.Mel'nik,et al.Diamond crystallization in the system B_4C-C[J].Inorganic Mater.,2004,40(9):932-936.
    152.Yu.V.Pleskov,Yu.E.Evstefeeva,et al.Synthetic semiconductor diamond electrodes:electrochemical characteristics of individual faces of high-temperature-high-pressure single crystals[J].Russian J.Electrochem.,2002,38(6):620-625.
    153.J.Isberg,J.Hammersberg,E.Johansson,et al.High carrier mobility in single- crystal plasma-deposited diamond[J].Science,2002,297:1670-1672.
    154.P.M.Martineau,S.C.Lawson,A.J.Taylor,et al.Identification of synthetic diamond grown using chemical vapor deposition(CVD)[J].Gems & Gemology,2004,40:2-25.
    155.J.Enlund,J.Isberg,M.Karlsson,et al.Anisotropic dry etching of boron-doped single crystal CVD diamond[J].Carbon,2005,43:1839-1842.
    156.S.S.Ho,C.S.Yan,Z.Liu,et al.Prospects for large single crystal CVD diamond[J].Industrial Diamond Rev.,2006,(1):28-30.
    157.王松顺,王民.高压下人造金刚石的渗硼实验研究[J].磨料磨具通讯,2001,(10):1-4.
    158.张清福,芶清泉,刘履华.天然金刚石形成透明硼皮金刚石的研究[J].高压物理学报,1989,(1):11-17.
    159.曹国英,陈叔鑫,李会士,等.八面体硼皮金刚石的高压合成研究[J].原子与分子物理学报,1993,1(10):2603-2608.
    160.E.A.Ekimov,V.A.Sidorov,E.D.Bauer,et al.Superconductivity in diamond[J].Nature,2004,428:542-545.
    161.李发宁,张鹤鸣,戴显英,等.宽禁带半导体金刚石[J].电子科技,2004,(7):43-49.
    162.T.Tsubota,T.Fukui,T.Saito,et al.Surface morphology and electrical properties of boron-doped diamond films synthesized by microwave-assisted chemical vapor deposition using trimethylboron on diamond(100) substrate[J].Diamond Relat.Mater.,2000,9:1362-1368.
    163.H.Ye,N.Tumity,M.Bevilacqua,et al.Electronic properties of homoepitaxial(111)highly-doped diamond films[J].J.Appl.Phys.,2008,103:054503.
    164.孙蕾,满卫东,汪建华,等.CVD金刚石薄膜半导体材料的研究进展[J].真空与低温,2008,14(3):134-139.
    165.T.Inushima,T.Matsushita,S.Ohya,et al.Hopping conduction via the excited states of boron in p-type diamond[J].Diamond Relat.Mater.,2000,9:1066-1070.
    166.宫建红,李木森,许斌,等.含硼触媒对合成的金刚石晶体结构和热稳定性的影响[J].金刚石与磨料磨具工程,2005,(1):18-21.
    167.王松顺.特殊类型含硼、氮金刚石晶体的结构、性质与应用[J].珠宝科技,2004,16(4):28-32.
    168.王光祖.硼元素对金刚石晶体性能的影响[A].人造金刚石探秘——王光祖论文集[C].杭州:浙江大学出版社,2001:35-39.
    169.关长斌,崔占全,杨雪梅.B对人造金刚石表面结构及性能的影响[J].人工晶体学报,2001,30(2):216-219.
    170.李和胜,李木森,许斌.用片状粉末冶金铁基金刚石催化剂合成金刚石[J].机械工程材料,2006,30(5):38-40.
    171.李洪岩,李木森,宫建红,等.高温高压合成含硼金刚石单晶制备工艺初探[J].材料科学与工程学报,2005,23(4):550-553.
    172.郝兆印,贾攀,卢灿华.高温高压条件下叶蜡石的相变[J].工业金刚石,2004,(2):1-6.
    173.陈天虎,王道轩,方啸虎,等.白云石内衬材料在合成金刚石密封介质中的作用[J].高压物理学报,2001,15(4):291-296.
    174.亓曾笃.导电堵头的重要性[J].工业金刚石,2004,(4):22-23.
    175.R.K.Bhaaruth,M.F.Hansen.Magnetic phase of the Fe-containing inclusions in synthetic diamond grits[J].Phys.B,2002,321:29-36.
    176.李亨德,张宏涛,覃晓康.人造金刚石的磁性对其强度及热稳定性的影响[J].金刚石与磨料磨具工程,1997,(2):2-5.
    177.向震泽,H.Schimd,陈伟恩,等.金刚石形貌电脑检测系统的研究与应用[A].中国机床工具工业协会超硬材料分会编.第四届郑州国际超硬材料及制品研讨会论文集[C].北京:机械工业出版社.2003:217-221.
    178.张世良,王明智,邢广忠.Diashape系统中金刚石晶体纯净度定义的讨论[J].金刚石与磨料磨具工程,2004,(3):17-20.
    179.H.E.Kissinger.Reaction kinetics in differential thermal analysis[J].Anal.Chem.,1957,29:1702-1706.
    180.黄漫,唐明强,罗锡裕.金刚石工业用粉末材料的研究与发展[J].粉末冶金工业,2005,15(4):33-39.
    181.徐燕军,陈东凯.合成金刚石用水雾化粉末触媒的研究[J].粉末冶金工业,2008,18(4):12-15.
    182.H.M.Strong.Early diamond making at General Electric[J].Am.J.Phys.,1989,57(9):794-802.
    183.秦杰明,马红安,任国仲,等.用纯铁粉末触媒合成工业金刚石[J].金刚石与磨料磨具工程,2004,(5):1-4.
    184.李木森,姚章映,公志光,等.铁基合金催化剂及其制备方法[P].中国专利:ZL00110864.6,2003-05-28.
    185.秦杰明,马红安,郑有进,等.铁触媒表面的氧化铁包覆层对金刚石形核的影响[J].超硬材料工程,2005,17(5):24-28.
    186.田彬,许斌,李和胜.氧含量测定方法及在人造金刚石用触媒质量控制中的应用[J].山东大学学报(工学版),2008,38(5):117-120.
    187.王盘鑫.粉末冶金学[M].北京:冶金工业出版社,2003.
    188.赵新明,徐骏,朱学新,等.气雾化和水雾化制备合成金刚石用FeNi30粉末触媒的差异[A].中国机床工具工业协会超硬材料分会编.第五届郑州国际超硬材料及制品研讨会[C].北京:海洋出版社,2008:133-137.
    189.白文翔,严恩峰,肖西卫.片状和粉状触媒合成金刚石的实验研究[J].探矿工程(岩土钻掘工程),2005,(1):54-55.
    190.关长斌.触媒合金高温渗碳对人工合成金刚石的影响[J].人工晶体学报,1992,21(1):59-63.
    191.易建宏.含碳粉末触媒的制备及其金刚石合成研究[J].地质与勘探,1999,35(6):80-82.
    192.徐燕军,尹翔.水雾化粉末状触媒中固溶碳对金刚石合成影响初探[J].金刚石与磨料磨具工程,2008,(2):41-45.
    193.黄培云.粉末冶金原理[M].北京:冶金工业出版社,1982.
    194.郭栋,周志德.金属粉末轧制[M].北京:冶金工业出版社,1984.
    195.P.Guigon,O.Simon.Roll press design-influence of force feed systems on compaction[J].Powder Tech.,2003,130(1-3):41-48.
    196.R.K.Dube.Metal strip via roll compaction and related powder metallurgy routes[J].Int.Mater.Rev.,1990,35(5):253-291.
    197.周志德.金属粉末轧制[J].粉末冶金工业,2001,11(1):72-75.
    198.刘明俊,夏伟,周照耀,等.金属粉末轧制工艺及其数值模拟[J].机械设计与制造,2006,(12):122-124.
    199.张忠伟,王凌云,黄光胜,等.金属带材粉末轧制的研究[J].轻合金加工技术,2005,33(4):4-8.
    200.王俊君,刘明俊,周照耀,等.金属粉末轧制工艺及装置研究[J].现代制造工程,2006,(11):83-86.
    201.Y.Yu,P.C.Arnold.The influence of screw feeders on bin flow patterns[J].Powder Tech.,1996,88(1):81-87.
    202.O.Simon,P.Guigon.Correlation between powder packing properties and roll press compact heterogeneity[J].Powder Tech.,2003,130(1):257-264.
    203.果世驹.粉末烧结理论[M].北京:冶金工业出版社,1998.
    204.缪炯.碳、铜、镍含量对铁基粉末冶金材料性能和尺寸变化的影响[J].粉末冶金工业,2005,15(3):10-14.
    205.姜一平,马红安,郭伟力,等.高温高压下用氧化硼添加剂合成金刚石[J].超硬材料工程,2005,17(6):29-31.
    206.李和胜,孟雪,李木森.采用不同含硼化合物合成Ⅱb型金刚石的试验研究[J].金刚石与 磨料磨具工程,2007,(2):9-13.
    207.刘强,罗湘捷,丁立业.B_4C与合金触媒体系合成金刚石的反应机理探讨[J].原子与分子物理学报,1998,15(2):240-244.
    208.臧建兵,李爱武,王艳辉,等.含硼金刚石的合成与性能[J].金刚石与磨料磨具工程,2003,(6):19-21.
    209.A.T.Collins.Spectroscopy of defects and transition metals in diamond[J].Diamond Relat.Mater.,2000.9:417-423.
    210.L.W.Yin,N.W.Wang,Z.D.Zou,et al.Formation and crystal structure of metallic inclusions in a HPHT as-grown diamond single crystal[J].Appl.Phys.A,2000,71:473-476.
    211.Y.X.Liu,L.M.Xiao,L.W.Long.Entrapment of inclusions in diamond crystals growth from Fe-Ni-C system[J].J.Mater.Sci.Tech.,2002,18(2):171-172.
    212.贾晓鹏.金刚石合成的溶剂理论及当今行业热点问题的探讨[J].中国超硬材料(特刊),2001,(3):1-11.
    213.李和胜,亓永新,李木森.包裹体作用下的人造金刚石单晶的破裂[J].超硬材料工程,2008,20(3):1-4.
    214.李余增.热分析[M].北京:清华大学出版社,1987.
    215.李和胜,李木森.采用六方氮化硼合成Ⅱb型金刚石单晶的试验研究[J].超硬材料工程,2006,18(4):1-6.
    216.W.Kaiser,W.L.Bond.Nitrogen,a major impurity in common type Ⅰ diamond[J].Phys.Rev.,1959,115:857-863.
    217.G.Davies.Charge states of the vacancy in diamond[J].Nature,1977,269:98-500.
    218.张健琼,马红安,臧传义,等.添加剂硼对纯铁粉末触媒合成金刚石的影响[J].金刚石与磨料磨具工程,2005,(5):4-6.
    219.J.Kaneko,C.Yonezawa,Y.Kasugai,et al.Determination of metallic impurities in high-purity type Ⅱa diamond grown by high-pressure and high-temperature synthesis using neutron activation analysis[J].Diamond Relat.Mater.,2000,9:2019-2023.
    220.W.Q.Liu,H.A.Ma,X.L.Li,et al.Effects of additive AI on the HPHT diamond synthesis in an Fe-Mn-C system[J].Diamond Relat.Mater.,2007,16:1486-1489.
    221.S.S.Li,X.P.Jia,C.Y.Zang,et al.Effects of Al and Ti/Cu on synthesis of type-Ⅱa diamond crystals in Ni_(70)Mn_(25)Co_5-C system at HPHT[J].Chin.Phys.Lett.,2008,25(10):3801-3804.
    222.李和胜,李木森.添加剂铜对铁基触媒合成金刚石的影响[J].金刚石与磨料磨具工程,2007,(5):1-4.
    223.彭放,罗湘捷,邓小清,等.高温高压下Ni_(70)Mn_(25)Co_5+Cu触媒对合成金刚石成核的影响[J].金刚石与磨料磨具工程,2003,(3):49-52.
    224.T.D.Varfolomeeva,L.A.Ivanov,A.V.Tsvyashchenko,et al.Role of the electron structure in the process of transfer of graphite into diamond[J].Sverk.Mater.,1986,8:6-8.
    225.S.K.Singhal,H.Kanda.Temperature dependence of growth of diamond from a Cu-C system under high pressure[J].J.Cryst.Growth,1995,154:297-302.
    226.A.V.Andreyevl,H.Kanda.Diamond formation and wettability in a Mg-Cu-C system under high pressure and high temperature[J].Diamond Relat.Mater.,1997,6:28-32.
    227.H.Sumiya,N.Toda,S.Satoh.Growth rate of high-quality large diamond crystals[J].J.Cryst.Growth,2002,237-239:1281-1285.
    228.臧传义,黄国锋,胡强,等.在NiMnCo-Cu-C体系中生长宝石级金刚石单晶[J].人工晶体学报,2008,37(3):598-601.
    229.张小福,卢安贤,肖卓豪,等.金刚石的高温化学稳定性研究[J].金刚石与磨料磨具工程,2006,(4):8-11.
    230.A.Tsuzuki,S.J.Hirano,S.Naka.Influence factors for diamond formation from several starting carbons[J].J.Mater.Sci.,1985,20:2260-2264.
    231.李和胜,李木森.我国人造金刚石用石墨材料的研究[J].材料导报,2007,21(2):43-46.
    232.李和胜,李木森.采用非石墨材料合成金刚石的研究进展[J].炭素技术,2006,25(6):28-34.
    233.A.V.Palnichenko,A.M.Jonas,J.C.Charlier,et al.Diamond formation by thermal activation of graphite[J].Nature,1999,402:162-165.
    234.李和胜,李木森.人造金刚石用石墨性能的研究[J].超硬材料工程,2007,19(1):13-18.
    235.J.Maire,J.Meting.Graphitization of soft carbons[J].Chem.Phys.Carbon,1970,6:125-131.
    236.钱崇梁,周桂芝,黄启忠.XRD测定碳素材料的石墨化度[J].中南工业大学学报,2001,32(3):285-288.
    237.王绍斌,田卫东,谢明星.碳源石墨结构对金刚石合成的影响[J].矿冶工程,2002,(1):85-88.
    238.A.Tsuzuki,S.Hirano,S.Naka.Effects of crystallinity of starting carbons on diamond formation in presence of nickel under high pressure and high temperature condition[J].J.Mater.Sci.,1984,19:1153-1158.
    239.A.L.Skury,G.S.Bobrovnitchii,S.N.Monteiro.Effect of the graphite perfection on the HP-HT diamond synthesis in a Ni-Mn-C system[J].Diamond Relat.Mater.,2004,13:1725-1730.
    240.谢有赞,贺美珍,刘志祥,等.碳源的石墨化度、气孔率与金刚石合成的关系[J].珠宝科技,2004,16(3):5-7.
    241.缪树良.人造金刚石用石墨[A].中国机床工具工业协会超硬材料分会编.第四届郑州国际超硬材料及制品研讨会论文集[C].北京:机械工业出版社,2003:200-204.
    242.李蘅,李毅,徐文忻,等.某些产地叶蜡石传压介质材料研究[J].非金属矿,2004,27(5):19-22.
    243.李瑞,马红安,尹斌华,等.基于ANSYS/LS-DYNA的叶蜡石传压性能的有限元分析[J].吉林大学学报(工学版),2008,38(2):292-297.
    244.郭港,安军宏,刘晓慧,等.六面顶压机与叶蜡石块匹配模型的研究与验证[A].中国机床工具工业协会超硬材料分会编.第五届郑州国际超硬材料及制品研讨会[C].北京:海洋出版社.2008:91-95.
    245.亓曾笃.金刚石生产的加热方式[J].超硬材料与宝石,2002,14(4):26-28.
    246.李和胜,宫建红,王美,等.采用片状铁基触媒借鉴粉末工艺合成金刚石[J].人工晶体学报,2007,36(3):573-577.
    247.邓福铭,刘瑞平,李学为,等.Φ38mm腔体粉末触媒工艺合成高品质金刚石的研究[J].超硬材料工程,2005,17(3):7-10.
    248.谢明星,陈立舫,阮锦彪,等.大腔体粉末块与片状块合成金刚石的对比[J].矿冶工程,2003,23(5):83-85.
    249.李和胜,李木森.铁基触媒合成金刚石的压力功率动态匹配工艺研究[J].山东大学学报(工学版),2006,36(6):1-5.
    250.王光祖.金刚石晶体的V形生长区[A].人造金刚石探秘——王光祖论文集[C].杭州:浙江大学出版社,2001:234-239.
    251.M.Ya.Katsai,Yu.N.Sakovich.Determination of the PT-region of spontaneous formation of diamond in the Mn-Ni-graphite system[J].Sverk.Mater.,1989,11:15-19.
    252.郝兆印,陈宇飞,邹广田.人工合成金刚石[M].长春:吉林大学出版社,1996.
    253.鲁伟员,寇自力,姚勇.压力、功率梯度对金刚石性能的影响[J].金刚石与磨料磨具工程,2006,(1):36-38.
    254.唐敬友,谷岩,董庆东.二次暂停分段加压金刚石合成工艺探讨[J].金刚石与磨料磨具工程,2000,(6):4-6.
    255.Z.Y.Hao,Y.X.He,Y.F.Chen.Relation between reerystallized graphite and diamond growth[J].J.Crystal Growth,1994,135:370-373.
    256.王绍斌,李启泉,王伟江,等.采用非恒压力和非恒功率加热技术合成金刚石的工艺探讨[J].金刚石与磨料磨具工程,2002,(4):35-38.
    257.刘建设,汪曙光,刘冰.金刚石压机增压器和超高压泵的使用现状[A].中国机床工具工业协会超硬材料分会编.第四届郑州国际超硬材料及制品研讨会论文集[C].北京:机械工业出版社.2003:263-265.
    258.陈亦工,潘微.超高压油泵[P].中国专利:CN2641313,2004-09-15.
    259.陈亦工,杨晓枫,陈开发,等.六面顶压机功率、温度、压力自动控制系统[J].金刚石与磨料磨具工程,2001,(6):28-32.
    260.陈亦工,张力,杨晓枫,等.嵌入式微处理器在行业专用设备中的应用[A].中国机床工具工业协会超硬材料分会编.第四届郑州国际超硬材料及制品研讨会论文集[C].北京:机械工业出版社,2003:251-255.
    261.王光祖,院兴国.超硬材料[M].郑州:河南科学技术出版社,1996.
    262.林克英,潘勇,侯书恩,等.人造金刚石的提纯技术[J].金刚石与磨料磨具工程,2005,(5):77-79.
    263.方啸虎.超硬材料技术与标准[M].北京:中国建材工业出版社,1998.
    264.段晓昆.利用处理合成金刚石触媒的废液回收镍盐[J].电镀与环保,1995,15(6):25-27.
    265.郑隆鳌.从触媒合金的酸洗废液中萃取回收硝酸和分离锰、钴和镍[J].武汉教育学院学报,1996,15(6):13-16.
    266.何家成.氨法回收人造金刚石酸洗废液中的镍、锰、钴[J].中国物质再生,1997,(6):10-12.
    267.刘爱贤,柳云琪,邱广敏,等.人造金刚石酸洗废液的回收和利用[J].石油大学学报(自然科学版),1998,22(1):100-102.
    268.王秦生,陈方平,王书琴.金刚石触媒合金快速电解法的改进[J].矿产保护与利用,1997, (4):51-54.
    269.刘恒胜,姜燕冬,余绍平.快速电解去除金刚石触媒的工艺研究[J].新技术新工艺,1998,(1):34-35.
    270.赵月秋,胡跃华,李华,等.人造金刚石快速电解提纯工艺研究[J].湖南冶金,1998,(5):5-7.
    271.方伟才.含铁新触媒电解法提纯新工艺[J].超硬材料与工程,1996,(4):20-21.
    272.李小东.气相氧化法提纯人造金刚石的新工艺设计与评价[J].安徽化工,2006,(5):17-19.
    273.黄世谋,冯红丽,陈晓玲.人造金刚石提纯工艺摇床工作状态的研究[J].三门峡职业技术学院学报,2003,1(2):73-76.
    274.王保国,陈亚芳.金刚石与石墨的物理分离技术研究[J].安徽化工,2003,(1):27-29.
    275.陶家荣.金刚石选矿厂重介质选矿的介质损耗及其降低措施[J].非金属矿,1997,(5):55-57.
    276.宋志昌.粉状触媒合成金刚石提纯新方法[J].金刚石与磨料磨具工程,2004,(3):36-38.
    277.李和胜,李木森,周贵德.针对铁基触媒的金刚石提纯工艺[J].金刚石与磨料磨具工程,2006,(5):62-65.
    278.罗中平.金刚石新型提纯和分选设备的应用研究[A].第四届郑州国际超硬材料及制品研讨会论文集[C].北京:机械工业出版社,2003:259-262.
    279.R.Abbaschian,H.Zhu,C.Clarke.High pressure-high temperature growth of diamond crystals using split sphere apparatus[J].Diamond Relat.Mater.,2005,14:1916-1919.
    280.李尚升,臧传义,马红安,等.优质Ⅱb型宝石级金刚石大单晶的高温高压合成[J].超硬材料工程,2008,20(4):1-3.
    281.宫建红.含硼金刚石单晶的微观结构、性能与合成机理研究[D].济南:山东大学,2006:41-49.
    282.L.W.Yin,M.S.Li,J.J.Cui,et al.Atom force microscopy study on HTHP as-grown diamond single crystals[J].Appl.Phys.A,2001,73:653-657.
    283.G Hoogers,B.Lesiak-Orlowska,D.A.King.Diffusion on a stepped surface:H and D on Rh {332}[J].Surf.Sci.,1995,327:47-52.
    284.M.Uwaha,Y.Saito,M.Sato.Fluctuations and instabilities of steps in the growth and sublimation of crystals[J].J.Crystal Growth,1995,146:164-170.
    285.F.C.Frank.Growth perfection of crystals[M].Berlin:Wiley,1958.
    286.H.Kanda,M.Akaishi,N.Setaka,et al.Surface structure of synthetic diamonds[J].J.Mater.Sci.,1980,16:2743-2746.
    287.C.Y.Zang,G.F.Huang,H.A.Ma,et al.Surface structure of large synthetic diamonds by high temperature and high pressure[J].Chin.Phys.Lett.,2007,24(10):2991-2993.
    288.李和胜,宫建红,郑克芳,等.高温高压下Fe-Ni-C-B系合成Ⅱb型金刚石单品[J].北京科技大学学报,2007,29(2):112-118.
    289.H.S.Li,Y.X.Qi,J.H.Gong,et al.High-pressure synthesis and characterization of thermal-stable boron-doped diamond single crystals[J].Int.J.Refract.Metal.H.,2009,27:564-570.
    290.H.Maeta,N.Matsumoto,K.Haruna,et al.The characterization of synthetic and natural single crystal diamonds by X-ray diffraction[J].Phys.B,2006,376-377:283-287.
    291.H.M.Zhang,C.Y.Zang,X.L.Li,et al.HPHT synthesis of micron grade boron-doped diamond single crystal in Fe-Ni-C-B systems[J].Chin.Phys.Lett.,2008,25(7):2667-2668.
    292.S.A.Solin,A.K.Ramdas.Raman spectrum of diamond[J].Phys.Rev.B,1970,1:1687-1698.
    293.M.Yoshikawa,Y.Moil,M.Maegewa,et al.Raman scattering from diamond particles[J].Appl.Phys.Lett.,1993,62:3114-3116.
    294.D.Kirillov,G.J.Reynolds.Line widths ofphonon line of natural and synthetic diamond[J].Appl.Phys.Lett.,1994,63:1641-1643.
    295.S.Khasawinah,G.Popovici.Raman and FrlR study of neutron irradiated CVD diamond[J].Diamonds Elec.Appl.,1996,416:223-227.
    296.R.J.Zhang,S.T.Lee,Y.W.Lam.Characterization of heavily boron-doped diamond films[J].Diamond Relat.Mater.,1996,5:1288-1294.
    297.C.Y.Li,B.Li,X.Y.Lv,et al.Superconductivity in heavily boron-doped diamond films prepared by electron assisted chemical vapor deposition method[J].Chin.Phys.Lett.,2006,23(10):2856-2858.
    298.A.N.Utyuzh,Y.A.Timofeev,A.V.Rakhmanina.Effect of boron impurity on Raman spectrum of synthetic diamond[J].Inorg.Mater.,2004,40:926-931.
    299.A.C.Ferrari,J.Robertson.Raman spectroscopy in carbons:from nanotubes to diamond[M].London:The Royal Society,2004.
    300.杨志军,彭明生,苑志中.天然金刚石的定向红外光谱研究[J].矿物学报,2001,21: 393-396.
    301.H.Kim,R.Vogelgesang,A.K.Ramdas,et al.Electronic Raman and infrared spectra of acceptors in isotopically controlled diamonds[J].Phys.Rev.B,1998,57:15315-15327.
    302.E.Gheeraert,A.Deneuville,J.Mambou.Boon-related infra-red absorption in homoepitaxial diamond films[J].Diamond Relat.Mater.,1998,7:1509-1512.
    303.G.Davies.Decomposing the IR absorption spectra of diamonds[J].Nature,1981,290:40-41.
    304.K.Hyunjung,R.Vogelgesang,A.K.Ramdas.Infrared and Raman spectroscopy of acceptor-bound holes:boron acceptors in isotopically controlled "Blue" diamonds[J].Phys.State Solid,1998,210:451-457.
    305.杨志军,彭明生,谢先德.金刚石的微区显微红外光谱分析及其意义[J].岩矿测试,2002,21:161-165.
    306.H.Sumiya,N.Toda,Y.Nishibayashi,et al.Crystalline perfection of high purity synthetic diamond crystal[J].J.Crystal Growth,1997,178:485-494.
    307.P.Hohenberg,W.Kohn.Inhomogeneous electron gas[J].Phys.Rev.,1964,136:B864-B 871.
    308.W.Kohn,L.J.Sham.Self-consistent equations including exchange and correlation effects [J].Phys.Rev.,1965,140:A1133-A1138.
    309.L.Hendin,B.I.Lundqust.Explicit local exchange-correlation potentials[J].J.Phys.C:Solid State Phys.,1971,4:2064-2083.
    310.U.V.Barth.L.Hendin.A local exchange-correlation potential for the spin-polarized case:I [J].J.Phys.C:Solid State Phys.,1972,5:1629-1642.
    311.S.H.Vosko,L.Wilk,M.Nusair.Accurate spin-dependent electron liquid correlation energies for local spin density calculations:a critical analysis[J].Can.J.Phys.,1980,58:1200-1211.
    312.J.P.Perdew,Y.Wang.Accurate and simple density functional for the electronic exchange energy:generalized gradient approximation[J].Phys.Rev.B,1986,33:8800-8802.
    313.J.P.Perdew.Density-functional approximation for the correlation energy of the inhomogeneous electron gas[J].Phys.Rev.B,1986,33:8822-8824.
    314.M.D.Segall,Philip.J.D.Lindan,M.J.Probert,et al.First-principles simulation:ideas, illustrations and the CASTEP code[J].J.Phys.:Condens.Matter,2002,14:2717-2744.
    315.V.Milman,B.Winkler,J.A.White,et al.Electronic structure,properties,and phase stability of inorganic crystals:a pseudopotential plane-wave study[J].Int.J.Quan.Chem.,2000,77:895-910.
    316.D.Vanderbilt.Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J].Phys.Rev.B,1990,41:7892-7895.
    317.J.P.Perdew,K.Burke,M.Ernzerhof.Generalized gradient approximation made simple[J].Phys.Rev.Lett.,1996,77:3865-3868.
    318.H.J.Monkhorst,J.D.Pack.Special points for Brillouin-zone integrations[J].Phys.Rev.B,1976,13:5188-5192.
    319.B.G.Pfrommer,M.Cote,S.G.Louie,et al.Relaxation of crystals with the quasi-Newton method[J].J.Comp.Phys.,1997,131:233-240.
    320.X.Blase,Ch.Adessi,D.Connetable.Role of the dopant in the superconductivity of diamond [J].Phys.Rev.Lett.,2004,93:237004.
    321.N.Tokuda,T.Saito,H.Umezawa,et al.The role of boron atoms in heavily boron-doped semiconducting homoepitaxial diamond growth-study of surface morphology[J].Diamond Relat.Mater.,2007,16:409-411.
    322.刘党库,唐敬友,卢瑞喜,等.石墨粉中添加含硼化合物合成金刚石的颜色与热稳定性[J].金刚石与磨料磨具工程,2007,(1):39-43.
    323.V.D.Blank,M.S.Kuznetsov,S.A.Nosukhin,et al.The influence of crystallization temperature and boron concentration in growth environment on its distribution in growth sectors of type Ⅱb diamond[J].Diamond Relat.Mater.,2007,16:800-804.
    324.V.P.Poliakov,A.A.Ermolaev,A.I.Laptev,et al.The influence of boron compounds'particles(TiB_2,BN~(cub)) on the thermal stability and the mechanical strength of synthesized carbonado after heating[J].Diamond Relat.Mater.,2001,10:2024-2029.
    325.H.J.Queisser.Modem Crystallography Ⅲ:Crystal Growth[M].Berlin:Springer,1984.
    326.唐敬友,卢喜瑞,祖义忠.硼含量对合成金刚石颜色和热稳定性的影响[J].西南科技大学学报,2007,22(3):1-5.
    327.R.Kravets,M.Vanecek,C.Piccirillo,et al.A quantitative study of the boron acceptor in diamond by Fourier-transform photocurrent spectroscopy[J].Diamod Relat.Mater.,2004, 13:1785-1790.
    328.杨宗庆.人造金刚石和CBN晶体生长过程实时研究的评述[J].磨料磨具与磨削,1986,(6):20-23.
    329.许斌,李木森,宫建红,等.人造金刚石金属包膜的研究进展[J].人工晶体学报,2002,31(2):75-79.
    330.李丽,许斌,李木森,等.人造金刚石单晶生长机理的金属包膜研究进展[J].人工晶体学报,2006,35(5):992-997.
    331.许斌.金属包膜的微观结构及其在高温高压合成金刚石中的作用[D].济南:山东大学,2003.
    332.李丽.高温高压金刚石生长机理的价电子理论及热力学分析[D].济南:山东大学,2008.
    333.余瑞璜.固体与分子经验电子理论[J].科学通报,1978,23(4):217-224.
    334.张瑞林.固体与分子经验电子理论[M].长春:吉林科学技术出版社,1993.
    335.程开甲,程淑玉.界面和间界面边界条件的重要作用[J].稀有金属材料工程,1998,27(4):189-193.
    336.L.Li,B.Xu,M.S.Li.Analysis of the carbon source for diamond crystal growth[J].Chin.Sci.Bull.,2008,53(6):937-942.
    337.许斌,宫建红,李丽,等.Fe_3C型碳化物与人造金刚石晶面价电子结构分析[J].硅酸盐学报,2006,34(6):656-661.
    338.李丽,许斌,宫建红,等.高温高压合成金刚石中触媒的价电子结构分析[J].高压物理学报,2006,20(4):372-378.
    339.宫建红,许斌,李木森.人造金刚石金属包覆膜内γ-(FeNi)(111)与Fe_3C(004)晶面上原子匹配关系与电子密度分析[J].自然科学进展,2005,15(5):591-596.
    340.崔建军,许斌,李木森,等.铁基触媒中的初生渗碳体与金刚石单晶的合成[J].金刚石与磨料磨具工程,2005,(4):1-4.
    341.崔建军,许斌,李木森,等.铁基触媒中金刚石单晶的生长对初生渗碳体的消耗[J].人工晶体学报,2006,35(4):363-367.
    342.R.H.Wentorf.Some studies of diamond growth rates[J].J.Phys.Chem.,1971,75:1833-1837.
    343.F.P.Bundy.Melting of graphite at very high pressure[J].J.Chem.Phys.,1963,38:618-630.
    344.H.M.Strong,R.E.Hanneman.Crystallization of diamond and graphite[J].J.Chem.Phys.,1967,46:3668-3676.
    345.W.Li,T.Kodama,M.Wakatsuki.Formation of diamond by decomposition of SiC[A].In:Trzeciakowski W A ed.High Pressure Science and Technology,1995.Singapore:World Scientific Publishing Co Pte Ltd,1996:222-224.
    346.王勇,刘鹏,李木森,等.新型碳源和触媒合成金刚石的研究[J].金刚石与磨料磨具工程,2002,(1):14-16.
    347.李洪岩.金刚石单晶合成工艺与触媒和金属包膜的结构及高温高压热力学[D].济南:山东大学,2006.
    348.李和胜,崔建军,李木森.铁基触媒组织结构对合成金刚石的影响[J].材料工程,2008,(6):57-59.
    349.胡赓祥,钱苗根.金属学[M].上海:上海科学技术出版社,1980.
    350.李和胜,亓永新,崔建军,等.触媒组织中碳化物的含量与金刚石的生长[J].材料热处理学报,2008,29(4):21-24.
    351.李和胜,亓永新,宫建红,等.含硼金属包覆膜的物相结构与含硼金刚石的生成[J].超硬材料工程,2008,20(1):1-4.
    352.许斌,李木森,尹龙卫,等.铁基触媒合成金刚石形成的金属包膜的组织结构[J].硅酸盐学报,2003,31(5):470-475.
    353.B.Xu,M.S.Li,J.J.Cui,et al.An investigation of a thin metal film covering on HPHT as-grown diamond from Fe-Ni-C system[J].Mater.Sci.Eng.A,2005,396:352-359.
    354.Yu.Pal'yanov,Yu.Borzdov,I.Kupriyanov,et al.High-pressure synthesis and characterization of diamond from a sulfur-carbon system[J].Diamond Relat.Mater.,2001,10:2145-2152.
    355.丁立业,罗湘捷.金刚石生长的高压熔体中碳的输运及其影响[J].高压物理学报,1994,8(2):146-151.
    356.张克从.晶体生长[M].北京:科学出版社,1981.
    357.姚连增.晶体生长基础[M].合肥:中国科技大学出版社,1995.
    358.J.W.Gibbs.On the equilibrium of heterogeneous substances[A].The collected works of J.Willard Gibbs'[M].New Haven:Yale University press,1957.
    359.W.K.Burton,N.Cabrera,F.C.Frank.Role of dislocations in crystal growth[J].Nature, 1949,163:398-399.
    360.闵乃本.实际晶体的生长机制[J].人工晶体学报,1992,21(3):217-219.
    361.亓永新,李木森,宫建红,等.金刚石的金属包覆膜的FESEM研究[J].金刚石与磨料磨具工程,2006,(3):8-10.
    362.P.K.Tyagi,A.Misra,K.N.Narayanan,et al.Step growth in single crystal diamond grown by microwave plasma chemical vapor deposition[J].Diamond Relat.Mater.,2006,15:304-308.
    363.L.W.Yin,M.S.Li,B.Xu,et al.Step bunching behavior on(111) surface of diamond single crystal[J].Chem.Phys.Lett.,2002,357:498-504.
    364.张敏平,陈建,杨洪新.金刚石(001)表面台阶结构的第一原理研究[J].河南师范大学学报(自然科学版),2008,36(5):43.
    365.V.Turkevich,T.Okada,W.Utsumi,et al.Kinetics of diamond sponstaneous crystallization from the melt of the Fe-Al-C system at 6.5GPa[J].Diamond Relat.Mater.,2002,11:1769-1773.
    366.L.W.Yin,M.S.Li,Z.Y.Hao,et al.Cellular interface in diamond crystals from a Fe-Ni-C system at high temperature and high pressure[J].Chem.Phys.Lett.,2002,360:167-174.
    367.张克从,张乐漶.晶体生长科学与技术[M].北京:科学出版社,1997.
    368.尹龙卫.高温高压下Fe-Ni-C系中金刚石的形核长大机制及晶体缺陷分析[D].济南:山东大学.2001.
    369.W.K.Burton,N.Cabrera,F.C.Frank.The growth of crystals and the equilibrium structure of their surfaces[M].Philosophical Transactions of the Royal Society of London,1951.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700