用户名: 密码: 验证码:
含硼金刚石单晶的微观结构、性能与合成机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含硼金刚石(即Ⅱb型金刚石)是一类特殊的金刚石,在抗氧化性、耐热性和化学惰性方面都优于普通金刚石。尤其是电学性能方面,含硼金刚石具有优良的半导体性能,可以在更高温度和恶劣环境下正常工作,是一种有发展前途的高温、大功率半导体材料。随着现代化工业的飞速发展,含硼金刚石在各个行业都显示出巨大的应用前景,因此受到金刚石生产者和使用者的广泛关注。我国虽然已进入人造金刚石大国之列,但是国内的金刚石主要以中、低档次的磨料级产品为主,与国际上处于垄断地位的美国G.E.公司、南非DeBeers公司和德国Winter公司等企业的先进技术水平相比还有很大差距。因此,研究开发新型的优质金刚石单晶具有重要的现实意义。
     本文以粉末冶金铁基金刚石催化剂为基础,以硼铁粉作为供硼剂,制备了用于合成含硼金刚石单晶的新型铁基含硼片状催化剂,以石墨为碳源,在高温高压条件下合成了两种含硼量不同的金刚石单晶。利用金刚石形貌测量系统(Diashape)、扫描电镜(SEM)、原子力显微镜(AFM)、透射电镜(TEM)、拉曼光谱(Raman),红外光谱(IR)、X射线衍射仪(XRD)和场发射扫描电子显微镜(FESEM)等表征方法,对普通金刚石、含硼金刚石含硼金刚石表面金属包膜的表面形貌和结构进行了系统的检测和分析;用静压强度仪、冲击韧性测量仪、差热分析仪(DSC)和自制的电阻—温度测量系统对含硼金刚石和普通金刚石的性能参数进行了比较和分析,结合余氏理论和程氏理论对金刚石与碳化物的电子结构和界面电子密度进行了计算分析,并用计算的结果结合相关的实验数据探讨了金刚石的形核与长大方式。
     含硼金刚石的颜色因触媒中硼含量的不同而呈灰黑色或不透明的黑色,触媒中硼含量越高金刚石颜色越深,晶形主要以八面体居多。EPMA研究表明,金刚石表面硼元素的浓度随着触媒中硼含量的增加而增加:研究还表明同一类型金刚石的(111)晶面上硼元素浓度高于(100)晶面。XRD的实验结果表明金刚石中硼浓度越高,(111)晶面越发达。
The boron-doped diamond, so-called Ⅱb type diamond, processes many wonderful properties such as oxidation-resistance, impact-resistance, stable chemical character and excellent semiconductor performance. So it shows exciting application in many industry fields, and especially in the electronic field. Although a large number of diamond single crystals are produced every year, the homemade diamond is mainly low-valent and the quality can not compare with that of diamond produced by several monopolized companies, such as G.E., DeBeers and Winter. Therefore it is of great significance to synthesize and investigate the excellent boron-doped diamond single crystal.
    In the present paper, boron-undoped diamond and boron-doped diamonds were synthesized by using different boron-doped Fe-based alloy catalysts with different composition produced by powder metallurgy. The morphology and structure of the undoped diamond, boron-doped diamond and metallic film surrounding diamond were studied by means of diamond shape measurement system (Diashape), Scanning electron microscope (SEM), Atom force microscope (AFM), Transmission electron microscope (TEM), Raman spectrum (Raman), Infrared ray (IR), X-ray diffraction (XRD) and Field emission scanning electron microscopy (FESEM). Meanwhile the character performances of the two kinds of diamonds were measured by static strength measurement, (thermal) impact toughness measurement, different thermal analysis (DTA) and homemade resistance-temperature measurement system. The nucleation and growth mechanism of the diamond were discussed according to the experimental results and carbide-diamond interface electron structures calculated via Empirical Electron theory (EET) and Thomas-Fermi-Dirac-Cheng (TFDC).
    The boron-doped diamonds are gray or even opaque black dependent on the boron concentration in diamond and their crystal shape is mainly
引文
1. F.P.Bundy, H.T.Hall, H.M.Strong, Man-made diamond. Nature, 176(1955): 51~55
    2.谈耀麟.工业金刚石技术发展水平与发展趋势.超硬材料与宝石(特辑),4(2002):35~38
    3.王光祖,刘庆选.国外人造金刚石工业的建立与发展.超硬材料与工程,1(1999):1~6
    4. R.J.Caveney. Diamond research: past, present and future. J. Hard Mater. 5 (1994):23~29
    5. E.Klugmann and M.Polowczyk. Semiconduction diamond as material for high temperature thermistors. Mat.Res.Innovat.4 (2000): 45~48
    6.党冀萍.高温半导体器件的研究现状.半导体情报.31(1994):46~56
    7. F.Lansdale. In: Physical properties of diamond, Claredon, Oxford, 1965
    8. J. E. Field(ed.), The Properties of Diamond, Academic Press, New York, 1979.
    9. N. V. Novikov and A.A.Shulzhenko. New superhard materials and their industrial application. Sverkhtverdye Materialy. 9(1987):8~14
    10.刘广志.人造金刚石工业在我国迅猛崛起.中国工程科学,2(2000):31~33
    11.中国机械工业年鉴编辑委员会.中国磨料磨削工业年鉴.北京:机械工业出版社.1999:23~28
    12. M. N. Yoder. Diamond in the USA. Diamond and Related Materials, 2(1993): 59~64
    13.宋健民.钻石合成.台北:全华科技图书有限公司.(1989):7~2~7~8
    14.郑周.硼元素对人造金刚石单晶氧化速度的影响.高压物理学报.6(1992):1~6
    15.王松顺,王民.含硼T641石墨合成金刚石的耐热性研究.碳素.1(1995):38~42
    16.张清福,苟清泉.天然金刚石形成透明硼皮金刚石的研究.高压物理 学报.3(1989):11~15
    17. R. M. Chrenko. Boron, the dominant acceptor in semiconducting diamond. Physical review B, 7(1973): 4560~4567
    18. Rinat F. Mamin and Takashi Inushima. Conductivity in boron-doped diamond. Physical review B, 63(2001): 3201~3204
    19. J. Isberg, J. Hammersberg, Single crystal diamond for electronic applications, Diamond and Related Materials, 13(2004): 320~324
    20. Ekimov E A, Sidorovl V A, Bauer E D. Superconductivity in diamond. Nature, 2004, 428: 542-545
    21.郭志猛,宋月清,陈宏霞.超硬材料与工具.冶金工业出版社,(1996)
    22.方啸虎,郑日升,洪涛.当前国际国内超硬材料动态分析,超硬材料工程,1(2005):46~50
    23.王光祖,郭留希,赵清国.高速发展的中国超硬材料,金刚石与磨料磨具工程,6(2003):66~69
    24.王光祖,人造金刚石合成技术开拓创新的50年.金刚石与磨料磨具工程,6(2004):73~77
    25. Rossini, F. D., Jessup, R.S. Heat and free energy of formation of carbon dioxide, and of transition between graphite and diamond. United States Bureau of Standards-Journal of Research, 21(1938): 491~513
    26. Sumiya, H., S.Satoh and K.Tsuji, 31st High Pressure Conf. Japan, programme and abstracts, 1990: 48~49 (in Japanese.)
    27. S.Satoh and H. Sumiya, The Review of High Pressure Science and Technology, 2(1993):315
    28. Sumiya, H.; Satoh, S. High-pressure synthesis of high-purity diamond crystal. Diamond and Related Materials, 5(1996): 1359~1365
    29. Sumiya, H.; Toda, N. High-Quality Large Diamond Crystals New Diamond and Frontier Carbon Technology, 2000, 10(5): 233~251
    30. Sumiya, H.; Toda, N., Development of high-quality large-size synthetic diamond crystals. SEI Technical Review, 60(2005): 10~16
    31.王光祖,汪静,陶刚.不断发展的金刚石合成与应用技术.超硬材料 与宝石,3(2002):1~4
    32.秦宇,院兴国,中国超硬材料及其制品的进出口态势——中国人造金刚石40周年回顾,金刚石与磨料磨具工程,6(2003):70~74
    33. Jamieson, J.C. Crystal structures of high pressure modifications of elements and certain compounds Progress report. Metallurgical Society Conferences, 22(1963): 201~228
    34.周刚,爆轰法合成超分散金刚石的机理研究,北京理工大学博士学位论文,1996
    35. L. Chow and D. Zhow. Chemical vapor deposition of novel materials. Thin Solid Film, 2000, 368: 193~197
    36. T. Anthony. The chemical vapor deposition of diamond: A discussion of reported techniques and mechanisms. Diamond ARI Seminar. 1987
    37. M. Seiichino. Development of diamond techniques at low pressure. Thin Solid Film, 368(2000): 231~235
    38.王传新,汪建华,满卫东.金刚石薄膜异质外延的研究进展.真空与低温.2(2002):71~76
    39. X. Jiang, C. P. Clages and R. Zachai. Epitaxial diamond thin film on (001) silicon substrates. Appl. Phys. Lett., 26(1993): 698~673
    40.匡同春,王晓初,刘正义.金刚石薄膜涂层刀具的研究进展与应用现状.硬质合金.1(1999):41~50
    41. J C Angus, Y Wang, M Sunkara. Metastable Growth of Diamond and Diamond-Like Phases, Annual Review of Materials Science, August 21(1991): 221~248
    42.方啸虎.超硬材料科学与技术.北京:中国建材工业出版社,1998
    43. Bundy F.P., J.Chem.Phys., 38(1963): 631~636
    44.苟清泉.高温高压下石墨变金刚石的结构转化机理.吉林大学学报.2(1974):52~63
    45. A.A. Giardini, J. A. Kohn and D.W. Eckart. Am. Mineral. 46 (1961): 976~983
    46. R.H. Wentorf. Some studies of diamond growth rates. J. Phys. Chem. 12(1971):1833~1837
    47. X. Yan, H. Kanda, T. Ohsawa, and S. Yamaoka. Behaviour of graphite-diamond conversion using Ni-Cu and Ni-Zn alloys as catalyst-solvent. Mater. Sci. Eng. 25(1990): 1555~1589
    48. Y. A. Kocherzhinskii. Phase equilibrium diagrams and diamond production. Sverkhtverdye Materialy., 10(1988): 34~38
    49. G. M. Kimstach, A. A. Urtaev and T. D. Molodtsova. Metallographic study of diamond sinters. Sverkhtverdye Materialy., 13(1991): 26~28
    50. R. J. Caveney. Limits to quality and size of diamond and cubic boron nitride synthesized under high pressure, high temperature conditions. Mater. Sci. Eng. B11(1992): 197~205
    51.沈主同.新型超硬材料探索中的新动向.金刚石与磨料磨具工程.1(1998):5~10
    52.沈主同.人造金刚石晶体生长机制的探讨.物理,6(1977):243~250
    53.张克丛.晶体生长.北京:科学出版社,1981
    54.张克丛,张乐惠.晶体生长科学与技术(下册).北京:科学出版社,1997
    55. S. Naka, A. Tsuzuki and S. I. Hirano. Diamond formation and behavior of carbides in several 3d-transition metal-graphite systems. Journal of Materials Science. 19(1984): 259~262
    56. L. W. Yin, M. S. Li, B. Xu, and Y. J. Cui. Interface Instability of diamond at high temperature and high pressure. Chin. Phys. Lett. 19 (2002): 419~421
    57. J. Sung. Graphite→diamond transition under high pressure: A kinetics approach J. Mater. Sci. 35 (2000): 6041~6054
    58. E. Pavel, G. Baluta, D. Barb and D. P. Lazar. The nature of the metallic inclusions in synthetic diamond crystals synthesized at ~5.5Gpa in Fe-C system. Solid State Communication. 76(1990): 531~533
    59. H. P. Bovenkerk, F. P. Bundy, H. T. Hall, H. M. Strong, and R. H. Wentorf. Preparation of diamond. Nature, 184(1959): 1094~1098
    60.郝兆印,陈宇飞,邹广田.人工合成金刚石.长春:吉林大学出版社, 1996
    61.尹庆平.金刚石的起源与合成.珠宝科技,10(2004):44~50
    62.臧建兵,黄浩,赵玉成.含掺杂的金刚石,金刚石与磨料磨具工程,1(2002):16~18
    63.苟清泉.含硼黑金刚石的结构与合成机理及其特殊性能的探讨.人造金刚石.2(1977):26~36
    64. Yin, L.-W., Li, M.-S., Gong, Z.-G., Microstructure of high-pressure synthesized diamonds under rapid quenching and electron irradiation. Applied Physics A: Materials Science and Processing, (2003): 1079~1084
    65. Yin, L.-W. Li, M.-S., Li, F.-Z. Defect formation in diamond single crystals grown from the Fe-Ni-C system at high temperature and high pressure Materials Research Bulletin, 13(2001): 2283~2288
    66. Yin, L.-W., Li, M.-S., Hao, Z.-Y. Inclusions related to catalyst and medium for transmitting pressure in diamond single crystals grown at high temperature and high pressure from the Fe-C system Journal of Physics D: Applied Physics, 12(2001): L57~L60
    67.臧建兵,李爱武,王艳辉.含硼金刚石的合成与性能,金刚石与磨料磨具工程,6(2003):22~24
    68.张健琼,贾晓鹏,马红安.掺硼金刚石的高温高压合成,金刚石与磨料磨具工程,1(2005):15~17
    69.宫建红,李木森,许斌.含硼触媒对合成的金刚石晶体结构和热稳定性的影响,金刚石与磨料‘磨具工程,1(2005):18~21
    70.张健琼,马红安,臧传义.添加剂硼对纯铁粉末触媒合成金刚石的影响,金刚石与磨料磨具工程,5(2005):7~9
    71.李荣斌.金刚石n型和p型掺杂研究.上海交通大学博士论文,2004
    72.王松顺.黑色含硼金刚石的合成,碳素.2(2000):34~37.
    73.罗湘捷,定立业,刘强等.高温高压下B_4C合成金刚石的研究,高压物理学报11(1997):266~169.
    74.王松顺.用含硼T641石墨炭源合成含硼氮金刚石晶体的结构、性质与应用效果,碳素.1(2001):39~41.
    75.关长斌,赵品,杨书舫,Ni_(70)Mn_(25)Co_5合金固体渗硼研究,热加工工艺,4(1995):34~35
    76.苟清泉,曹国英,丁立业.透明硼皮金刚石的高压合成研究,高压物理学报.1(1989):25~30.
    77.黄浩,利用石墨层间化合物合成含硼金刚石,燕山大学硕士论文,2004
    78. Z. T. Shen, L. J. Wang, G. X. Sun and W. J. Wang. The Formation Mechanism of Synthetic Diamond at High Pressure. Physica. 1986, 139: 642~644
    79.孙江,李君峰,耿大全.人造金刚石触媒材料的研究现状.金属功能材料.,2(1996):41~46
    80. T.D. Varfolomeeva, L. A. Ivanov, A. V. Tsvyashchenko, and E. N. Yakovlev. Role of the electron structure of metals in the process of transfer of graphite into diamond. Sverkhtverdye Materialy., 4(1986): 6~8
    81. H. Kanda, M. Akaishi, and S. Yamaoka. New catalysts for diamond growth under high pressure and high temperature. Appl. Phys. Lett., 6 (1994): 784~786
    82.谭新才,张沪,彭大暑.人造金刚石用触媒材料回顾与展望.矿冶工程,3(1995):65~70
    83.郝兆印.石墨、催化剂合金的选择.工业金刚石.1(1996):6~9
    84.山东大学粉末冶金铁基金刚石催化剂课题组.鉴定材料之三:技术报告.济南:山东大学,2000.
    85.方啸虎.合成金刚石的研究与应用.地质出版社,1996
    86.郭永存,金刚石的人工合成与应用,科学出版社,1984
    87.仲维卓,华素坤,晶体生长形态学,北京:科学出版社,1999
    88.闵乃本.晶体生长的物理基础.上海:上海科学技术出版社,1982
    89.王光祖.金刚石形核规律的分析与探讨.磨料磨具通讯.8(1998):1~4
    90.王雅玫,何斌等.钻石.中国地质大学出版社,1997
    91. Simon C. Lawson and Hisao Kanda, Cathodoluminescence from high-pressure synthetic and chemical-vapor-deposited diamond, J.Appl.Phys. 1995,77(4): 1729~1734
    92.贺义兴,郝兆印,王德荣.压力变化对再结晶石墨的影响.高压物理学报.1994,8(3):162~167
    93. Yin., L.-W., Zou, Z.-D., Li, M.-S., Structural imperfections in synthetic diamond single crystals prepared by the HPHT method, Applied Physics A: Materials Science and Processing, 4(2000): 457~459
    94. H. Kanda, M. Akaishi and S. Yamaoka. J. Crystal Growth. 106(1990): 471
    95. Yin, L.-W., Li, M.-S., Cui, J.-J., Atom force microscopy study on HTHP as grown diamond single crystals Applied Physics A: Materials Science and Processing, 5(2001): 653~657
    96. Hoogers, G.; Lesiak, Orlowska, B.; King, D.A. Diffusion on a stepped surface: H and D on Rh{332}. Surface Science, 327(1995): 47~52
    97. Uwaha, Makio; Saito, Yukio; Sato, Masahide, Fluctuations and instabilities of steps in the growth and sublimation of crystals. Journal of Crystal Growth, 146(1995): 164~170
    98. F.C.Frank, Growth perfection of crystals, Wiley, Berlin,1958
    99.关长斌,崔占全,杨雪梅.B对人造金刚石表面结构及性能的影响,人工晶体学报,2(2002):216~219
    100.程光煦,拉曼布里渊散射原理及应用,北京:科学出版社,2001
    101.E.B.小威尔逊著,胡皆汉译,分子振动,红外和拉曼振动光谱理论北京:科学出版社,1985
    102. Thompson, Charles A.; Reynolds, Jeffery S.; Raman spectroscopic studies of diamond in interlaid, Optics Letters, 20(1995): 1195
    103. Chen, Kuei-Hsien, Lai Yen-Liang; Chen, Li-Chyong, High-temperature Raman study in CVD diamond. Thin Solid Films, 270(1995): 143~147
    104. Wang, W. N., Fox, N.A., May, P.W. Laser Raman studies of polycrystalline and amorphic diamond films, Phy.a Sta. Sol. (A) Applied Research, 154(1996): 255~268
    105. Khasawinah, S.; Popovici, G.; Raman and FTIR study of neutron irradiated CVD diamond, Diamonds for Electronic Applications, 416 (1996): 223~227
    106. Vogelgesang, R.; Ramdas, A. K.; Brillouin and Raman scattering in natural and isotopically controlled diamond, Physical Review B: Condensed Matter, 54 (1996): 3989
    107.李俊清,物质结构导论,中国科学技术大学出版社:1990
    108. Niwase, K., Tanaka, T., Kakimoto, Y., Ishihara, K.. Raman spectra of graphite and diamond mechanically milled with agate or stainless steel ball-mill, Materials Transactions, 36 (1995): 282~288
    109. Niwase, K.; Tanaka, T.. Raman spectra of graphite and Characterization of diamond-like carbon by Raman spectroscopy and optical constants Ⅲ-Nitride, SiC and Diamond Materials for Electronic Devices, 423 (1996): 699~704
    110. Bergman, L., Nemanich, R.J. Raman and photoluminescence analysis of stress state and impurity distribution in diamond thin films, Journal of Applied Physics, 78 (1995): 6709~6719
    111.杨志军,彭明生,苑执中.天然金刚石的定向红外光谱研究.矿物学报,21(2001):393~396
    112.杨志军,彭明生,谢先德.金刚石的微区显微红外光谱分析及其意义.岩矿测试,21(2002):161~165
    113.苑执中,杨志军,彭明生.金刚石的品格畸变,矿物岩石地球化学通报,21(2002):114~116
    114. Hyunjung Kim, R. Vogelgesang, A. K. Ramdas. Infrared and Raman Spectroscopy of Acceptor-Bound Holes: Boron Acceptors in Isotopically Controlled "Blue" Diamonds, physical state solid, 210 (1998):451~457
    115. Turov, Yu.V.; Khusid, B.M., Voroshnin, L.G. Structure formation under sintering of powder iron-boron carbide composite. Poroshkovaya Metallurgiya, 6 (1991): 25-31
    116. Himmel,C.J.; Bettles, M.V.. Swain. Crushing strength of diamond grits, Journal of hard materials, 1(1990): 108~120
    117.李发宁,张鹤鸣,戴显英.宽禁带半导体金刚石.电子科技,7(2004):43~49
    118. Davis. P.R, Fish. M.L and Wright, D.N. An indicator system for saw grit. Industrial Diamond Review. 156 (1996):78~87
    119.韩志华,刘景丰.关于人造金刚石冲击韧性的探讨.金刚石与磨料磨具工程,1(1998):16~18
    120.王松顺.硼氮金刚石晶体的结构、性质与应用.磨料磨具通讯,1(2003):1~5
    121.熊湘君等.金刚石热稳定性研究.地质与勘探,35(1 999):62~65
    122. De Beers Industrial Diamonds Division. Introduction of New Products, 1998: 11
    123. Iacovangelo, C.D. Thermal stability of metallized CVD diamond. Thin Solid Films, 286 (1996): 264~269
    124. Yury G. Gogotsi, Andreas Kailer, Klaus G. Nickel.Transformation of diamond to graphite. Nature, 401 (1999): 663~664
    125.减建兵等.金刚石热稳定性的几个方面的影响因素的探讨.金刚石与磨料磨具工程,101(1997):5~7
    126.杨南如.无机非金属材料测试方法,武汉工业大学出版社,1990
    127. F. P. Bundy, W. A. Bassett, M. S. Weathers. The pressure-temperature phase and transformation diagram for carbon: updated through 1994. Carbon, 34 (1996): 141~153
    128.胡国荣,刘业翔等.化学镀膜金刚石的高温耐蚀性研究.金刚石与磨料磨具工程,116(2000):3~6
    129.余家国,程蓓,叶晓川.人造金刚石在空气中的热稳定性研究.无机材料学报,12(1997):739~743
    130. R.Anthony,Y. Meng, Stresses generated by inhomogeneous distributions of inclusions in diamonds, Diamond Related Materials.6 (1997): 120-129
    131.刘恩科,朱秉升,罗晋升.半导体物理学(M),北京国防工业出版社,1994:96~102
    132. Kiyota, Hideo; Okushi, Hideyo; Ando, Toshihiro. Electrical properties of a Schottky barrier formed on a homoepitaxially grown diamond (001) film. Diamond and Related Materials, 5 (1996): 715~722
    133. Deguchi M, Kitabatake M, Hirao T, Electrical properties of boron~doped diamond films prepared by microwave plasma chemical vapor depositi.on. Thin solid films, 1~2 (1996):267~270
    134. Babak Sadigh, Thomas J. Lenosky, Large enhancement of boron solubility in silicon due to biaxial stress. Appl. Phys. Lett., 25 (2002): 4738~4740.
    135.冯楚德.合成金刚石时形成的金属~碳薄膜的显微观察.硅酸盐学报.11(1983):105~111
    136.林清英,朱衍勇,张燕征.金属包膜的显微分析.钢铁研究学报,11(1999):51~54
    137. B. Xu, M. S. Li and L. W. Yin. Microstructures of metallic film and diamond growth from Fe~Ni~C system. Chinese Science Bulletin., 47(2002): 1258~1263
    138.林清英,孙江.人造金刚石包膜的显微观察.金刚石与磨料磨具工程.6(1997):10~13
    139.林清英,孙江.人造金刚石包膜的进一步显微观察.超硬材料与工程.4(1997):16~19
    140.李劲风,郑铁铮,严戍衡.包覆膜对金刚石生长过程的作用研究.矿冶工程.18(1998):67~69
    141.许斌,宫建红,李木森.铁基金属包膜内Fe_3C的行为与高温高压金刚石单晶生长.金属学报,41(2005):1101~1105
    142.许斌,李木森,宫建红.Fe基金属包膜的M(o)ssbauer参量及其在金刚石合成中的催化作用.金属学报,,40(2005):810~814
    143.张建安,刘树桢.金刚石合成中某些现象的分析与研究.中国有色金属学报.6(1996):136~139
    144.何煦初,周劭弼,俞航.人造金刚石的遗传学说.湖南冶金,7(1997):16~19
    145.王秦生.金刚石触媒的电子结构和晶格结构与催化活性的关系.郑州国际超硬材料及制品研讨会.郑州:郑州三磨所,1998
    146.姚连增,晶体生长基础,北京:中国科学技术出版社,1995
    147.许斌.金属包膜的微观结构及其在高温高压合成金刚石中的作用.山东大学博士论文,2003
    148. A.A. Putyatin, O.V. MakarovaandK. N. Semenenko. Interaction in the Fe-C S.ystem at High Pressures and Temperature. Sverkhtverdye Materialy. 11 (1989): 1~7
    149.孙江,陈嘉砚,杨淑泉.生成金刚石时触媒的结构研究.超硬材料与工程.4(1996):14~19
    150.邓小清,唐敬友,孟川民.过剩压法合成金刚石的表面特征与体缺陷的形成原因分析.人工晶体学报,5(2003):524~527
    151.张瑞林.固体与分子经验电子理论.长春:吉林科学技术出版社,1993
    152.余瑞璜.固体与分子经验电子理论.科学通报,23(1978):217~224
    153.程开甲,程淑玉.论材料科学的理论基础.自然科学进展.6(1996):12~19
    154.程开甲,程淑玉.TFD模型和余氏理论对材料设计的应用.自然科学进展,3(1993):417~432
    155.程开甲,程淑玉.界面和间界面边界条件的重要作用.稀有金属材料与工程.4(1998):189~193
    156.邵美成.鲍林规则与键价理论.北京:高等教育出版社,1993
    157.刘志林,孙振国,李志林.奥氏体/马氏体异相界面的电子密度.科学通报.22(1995):2240~2246
    158.刘志林.合金价电子结构与成分设计.长春:吉林科学技术出版社,1990
    159.孙振国,李志林,刘志林.合金异相界面的电子密度的计算方法.科学通报,24(1995):2219~2223
    160.刘志林,孙振国,李志林.奥氏体/马氏体异相界面的电子密度.科学通报.22(1995):2240~2246
    161.刘志林,孙振国,李志林.余氏理论和程氏理论在合金研究中的应用.自然科学进展,2(1998):150~157
    162.刘志林,李志林,刘伟东.界面电子结构与界面性能.北京:科学出版社,2002
    163. L. E. Shterenberg, V. N. Slesarev, I. A. Kors.unskaya and D. S. Kamenetskaya. The experimental study of the interaction between the melt, carbides and diamond in the iron-carbon system at high pressure. High Temperature High Pressure. 7 (1975): 517~522

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700