用户名: 密码: 验证码:
阶层多孔材料的制备机理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阶层多孔材料(Hierarchically porous materials)是一种孔尺寸呈梯度分布的多孔材料,其孔结构上同时分布有大孔、介孔和微孔,构成独特的梯度多孔结构,并拥有优越的孔表面特性以及块体状的外观形貌,有望克服目前粉末、薄膜状多孔材料存在的孔径分布单一、物质快速输送与高表面活性不兼容、多孔材料使用不方便等诸多问题,并在分离、吸附、过滤、催化等重要领域展现出广阔的应用前景,已成为多孔材料的研究热点。
     本文在综合论述阶层多孔材料研究现状的基础上,首先系统研究了竹炭的炭化、二次活化及光催化材料改性等,分析了炭化工艺、二次活化参数、负载光催化材料对竹炭孔道结构、孔表面特性、吸附功能的影响机制,制备出兼具品字形直通大孔、细胞壁上分布介孔和微孔的阶层多孔竹炭材料。然而,受竹材物质特性的限制,阶层多孔竹炭存在大孔非三维连续贯通、微孔及介孔数量不易控制的缺点。为此,课题进一步开展三维连续贯通的阶层多孔材料制备的研究。选取无机化合物磷酸铝(AIPO4)和二氧化钛(TiO2)为研究对象,采用溶胶-凝胶伴随相分离制备AIPO4和TiO2阶层多孔材料,分析了相分离诱导剂、溶剂、凝胶促进剂对两个系统的溶胶-凝胶转化与相分离过程的影响特征,揭示溶胶-凝胶转化与相分离协同控制机制,制备出三维贯通大孔、骨架上分布介孔和微孔、外观呈块体形状的AIPO4和TiO2阶层多孔材料,并实现大孔孔径尺寸、微孔及介孔数量等孔结构及表面特性可控;课题的研究为阶层多孔材料在多功能长效吸附、高效负载催化、高效液相色谱等领域的应用拓展奠定重要基础。
     论文的创新点在于:(1)开展了竹炭的二次活化和光催化材料改性制备阶层多孔竹炭研究,不仅提高了品字形大孔孔径,增加了细胞壁上的介孔和微孔的数量,而且借助光催化材料实现大孔孔道重构,使竹炭比表面积高达767m2/g;(2)开展了溶胶-凝胶伴随相分离制备阶层多孔A1P04材料研究,借助环氧丙烷(PO)不可逆开环反应快速增加体系pH实现溶胶-凝胶转化,以及聚氧化乙烯(PEO)诱导体系发生Spinodal相分离,得到Φ1.5cm×1cm的三维连续贯通AIPO4阶层多孔块体材料,其大孔尺寸约2~5μm,介孔约10~12nm,经水热处理后多孔材料的比表面积达到282m2/g;(3)以廉价工业试剂TiOSO4为原料,乙二醇为螯合剂,甲酰胺为凝胶促进剂,通过溶胶-凝胶转化及相分离的协同控制,制备得到三维贯通多孔结构Φ1.3cm×0.8cm的TiO2阶层多孔块体材料,其大孔尺寸约1~5μm,介孔约3~4nm,其比表面积达228m2/g,为低成本制备阶层多孔Ti02块体材料提供重要参考。
Hierarchically porous materials are a gradient distribution of porous materials, which have macropores, mesopores and micropores. They have the superior pore surface characteristics as well as the morphology of the monolith. They are expected to overcome the disadvantges of powders and thin films, because of the pore structure of powders and thin film only have single pore size and can not allow fluid or liquid through smoothly. Hierarchically porous materials can be used in separation, adsorbent, and filtration, catalytic and other areas.
     This thesis introduced the current situation of hierarchically porous materials. Carbonization and activation of bamboo charcoal and loading photocatalytic materials are systemly studied, bamboo charcoal owns macro and meso and micropores, but it shows un-continuous structure and the amount of meso and micropores are not easily controlled. So we studied how to make co-continuous pore structure. Hierarchically porous AIPO4and TiO2monolith via epoxide-mediated sol-gel process accompanied by phase separation are prepared. The influence of phase separation inducers, solvent and gelation to sol gel system are stuied. The mechanisms of sol gel and phase separation are analysised; monoliths with co-continuous macropores and meso and micropores structure are prepared. The size of mcaropores can be controlled by the amount of phase separation inducer. The results of this thesis would be favor to application in adsorbent, catalysis and high performance liquid chromatography area.
     The innovation of thesis includes three points:(1) Carrying out a kind of method which is bamboo charcoals'secondary activation and photocatalytic materials modified charcoal. Through this we not only to improve the large pore size, but also increase the number of the cell wall of mesopore and micropore. With photocatalytic material to modity macroporous pore, the surface area can get reach to767m2/g;(2) AlPO4monolithic gels with well-defined bicontinuous macropores and mesopores structured skeletons have been prepared via the sol-gel process in the presence of PO and PEO, and the micro-and mesotextures of the gel skeletons have been tailored by utilizing high-temperature hydrothermal aging treatment as a post-gelation process. AlPO4monolith with Φ1.5cm×1cm,the size of macropores are about2~5μm, the size of mesopores are about10~12nm, the surface are can get reach to282m/g;(3) Monolithic macroporous titanium dioxide (TiO2) derived from ionic precursors has been successfully prepared via the sol-gel route accompanied by phase separation in the presence of formamide (FA) and ethylene glycol (EG). The addition of FA promotes the gelation, whereas PVP enhances the polymerization-induced phase separation, EG acts as a chleating agent. Appropriate choice of the starting compositions allows the production of cocontinuous macroporous TiO2monoliths in large dimensions, and controls the size of macropores. TiO2monolith with01.5cm×0.8cm, the size of macropores are about1~5μm, the size of mesopores are about3~4nm, the surface are can get reach to228m2/g. the sources of metal are inexpensive and this would be a low cost method for largely application
引文
[1]Su B, Sanchez C, Yang X. Hierarchically structured porous materials[M]. Wiley-VCH,2012.
    [2]Rouquerol J, Avnir D, Fairbridge C W, et al. Recommendations for the Characterization of Porous Solids[J]. Pure and Applied Chemistry.1994,66(8):1739-1758.
    [3]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanism[J]. Nature.1992,359(6397):710-712.
    [4]Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science.1998,279(5350):548-552.
    [5]刘培生,马晓明.多孔材料检测方法[M].冶金工业出版社,2006.
    [6]陈永.多孔材料制备与表征[M].中国科学技术大学出版社,2010.
    [7]周达飞,唐颂超.高分子材料成型加工(第二版)[M].中国轻工业出版社,2006.
    [8]Lai C, Huang Y, Wu P, et al. Rapid Fabrication of Cylindrical Colloidal Crystals and Their Inverse Opals[J]. Journal of the Electrochemical Society.2010,157(3):P23-P27.
    [9]Sun J H, Shan Z P, Maschmeyer T, et al. Synthesis of bimodal nanostructured silicas with independently controlled small and large mesopore sizes[J]. Langmuir.2003,19(20):8395-8402.
    [10]Sel O, Kuang D B, Thommes M, et al. Principles of hierarchical meso- and macropore architectures by liquid crystalline and polymer colloid templating[J]. Langmuir.2006,22(5): 2311-2322.
    [11]Kuang D B, Brezesinski T, Smarsly B. Hierarchical porous silica materials with a trimodal pore system using surfactant templates[J]. Journal of the American Chemical Society.2004,126(34): 10534-10535.
    [12]Okabe A, Niki M, Fukushima T, et al. A simple route to bimodal mesoporous silica via tetrafluoroborate ion-mediated hydrophobic transformation of template micellar surface[J]. Journal of Materials Chemistry.2005,15(13):1329-1331.
    [13]Sun X, Zheng C, Qiao M, et al. Bioinspired synthesis of hierarchical macro-mesoporous titania with tunable macroporous morphology using cell-assemblies as macrotemplates[J]. Chemical Communications.2009(31):4750-4752.
    [14]戴嘉璐,郭兴忠,杨辉,等.竹炭微结构的研究[J].材料科学与工程学报.2007,25(5).
    [15]张文标.竹炭、竹醋液的生产与应用[M].北京:中国林业出版社,2006.
    [16]郭兴忠,张玲洁,杨辉,等.竹炭/电气石复合材料的远红外性能分析[J].中国陶瓷工业.2010,17(1).
    [17]徐明双,李青山,马印,等.竹炭研究新进展[J].材料导报.2010,24(z1).
    [18]纪锐琳,朱义年,佟小薇,等.竹炭包膜尿素在土壤中的氨挥发损失及其影响因素[J].桂林工学院学报.2008,28(1).
    [19]刘辉利,佟小薇,朱义年,等.土壤固氮吸附试验研究[J].安徽农业科学.2008,36(4).
    [20]徐亦钢,石利利.竹炭对2,4.二氯苯酚的吸附特性及影响因素研究[J].农村生态环境.2002,18(1).
    [21]张启伟,王桂仙.竹炭对溶液中铅(Ⅱ)离子的吸附行为研究[J].丽水学院学报.2005,27(5).
    [22]张江南,吴凌,黄正宏,等.一维纳米炭/竹炭的制备及其对pb2+的吸附[J].离子交换与吸附.2009,25(3).
    [23]Zhang J N, Huang Z H, Lv R, et al. Effect of Growing CNTs onto Bamboo Charcoals on Adsorption of Copper Ions in Aqueous Solution[J]. Langmuir.2009,25(1):269-274.
    [24]王桂仙,张启伟.竹炭对溶液中Zn2+的吸附行为研究[J].生物质化学工程.2006,40(3).
    [25]张启伟,王桂仙.竹炭对饮用水中氟离子的吸附条件研究[J].广东微量元素科学.2005,12(3).
    [26]张启伟,王桂仙.竹炭对溶液中汞(Ⅱ)离子的吸附行为研宄[J].林业科学.2006,42(9).
    [27]王桂仙,张启伟.竹炭对溶液中铬(Ⅵ)的吸附特性研究[J].广东微量元素科学.2007,14(1).
    [28]张启伟.王桂仙.竹炭对水相中镉(Ⅱ)的吸附行为及机理[J].沈阳化工学院学报.2009,23(1).
    [29]张启伟,王桂仙.竹炭对苯酚吸附的热力学及动力学参数的研究[J].生物质化学工程.2008,42(2).
    [30]朱江涛,黄正宏,康飞宇,等.活性竹炭对苯酚的吸附动力学[J].新型炭材料.2008,23(4).
    [3]]王桂仙,王慕华,张启伟,等.竹炭对苯胺的吸附特性[J].林业科学.2008,44(3).
    [32]周培国,罗舒君,张齐生.载铁竹炭处理含磷废水的研究[J].水处理技术.2010,36(2).
    [33]戴嘉璐,郭兴忠,傅晓建,等.掺氮TiO2溶胶改性竹炭的制备及其性能研究[J].稀有金属材料与工程.2008,37(Z2).
    [34]毛爱丽.载银纳米二氧化钛抗菌竹炭的制备工艺和性能研究[D].中南大学,2008.
    [35]罗锡平,傅深渊,周春晖,等.纳米二氧化钛改性竹炭光催化降解2,4-二氯苯酚的研究[J].浙江林学院学报.2007,24(5).
    [36]朱江涛,黄正宏,康飞宇,等.活性竹炭负载TiO2及其对苯酚的吸附降解[J].世界竹藤通讯.2009,"".(5).
    [37]张丽敏,陈清松,李晓燕,等.竹炭.ZnO复合材料的制备及对苯酚的光催化降解作用[J].林产化学与工业.2009.29(1).
    [38]周建斌,叶汉玲,张合玲,等.生物改性竹炭对污水净化效果的研究[J].世界竹藤通讯.2009,(5).
    [39]张玲洁,郭兴忠,傅晓建.掺铁纳米TiO2溶胶改性竹炭研究[J].稀有金属材料与工程.2010, 39:240-244.
    [40]王云燕,陈清松,赖寿莲,等.竹炭-壳聚糖复合吸附剂的制备及其性能[J].福建林学院学报.2006,26(4).
    [41]陈清松,张丽敏,丁富传,等.竹炭与阳离子型聚丙酰胺絮凝剂协同处理城市生活污水研究[J].中山大学学报(自然科学版).2009,48(z2).
    [42]张文标,宋海桐,方小龙,等.竹炭负载氯化钙复合干燥剂的研究[J].林产工业.2009,36(3).
    [43]李国德,武士威,李娜,等.竹炭/聚乙烯醇缩甲醛复合材料的制备[J].矿冶.2009,18(2).
    [44]张锋.竹炭基固体磺酸催化剂的制备、结构表征和性能研究[D].湖南师范大学,2008.
    [45]李巧玲.聚苯胺/竹炭复合材料的制备及其性能研究[D].福建师范大学,2008.
    [46]马建伟,王慧,罗启仕,等.电动力学-新型竹炭联合作用下土壤镉的迁移吸附及其机理[J].环境科学.2007,28(8).
    [47]马建伟,王慧,李瑞瑞,等.电动力学-竹炭吸附联合修复工艺对高岭土中镉的去除[J].环境化学.2007,26(5).
    [48]翁荔丹.竹炭/聚氨酯泡沫塑料复合材料的制备及性能研究[D].福建师范大学,2007.
    [49]郑木霞.竹炭/胶乳海绵复合材料的制备及性能研究[D].福建师范大学,2008.
    [50]刘焕荣,江泽慧,任海青,等.竹炭吸附性能及其利用研究进展[J].竹子研究汇刊.2009,28(2).
    [51]江泽慧,任海青,费本华,等.竹炭及SiC陶瓷材料的结构与性能[J].新型炭材料.2006,21(1).
    [52]张东升,江泽慧,任海青,等.竹炭微观构造形貌表征[J].竹子研究汇刊.2006,25(4).
    [53]江泽慧,张东升,费本华,等.炭化温度对竹炭微观结构及电性能的影响[J].新型炭材料.2004,19(4).
    [54]Nakanishi K, Soga N. Phase Separation in Gelling Silica-Organic Polymer Solution:Systems Containing Poly(sodium styrenesulfonate)[J]. Journal of the American Ceramic Society.1991,74(10): 2518-2530.
    [55]Konishi J, Fujita K, Nakanishi K, et al. Alkoxy-derived multiscale porous TiO2 gels probed by ultra-small-angle X-ray scattering and small-angle X-ray scattering[J]. Journal of Sol-Gel Science and Technology.2008,46(1):63-69.
    [56]Hasegawa G, Kanamori K, Nakanishi K, et al. Facile Preparation of Hierarchically Porous TiO2 Monoliths[J]. Journal of the American Ceramic Society.2010,93(10):3110-3115.
    [57]Konishi J, Fujita K, Nakanishi K, et al. Sol-gel synthesis of macro-mesoporous titania monoliths and their applications to chromatographic separation media for organophosphate compounds[J]. Journal of Chromatography A.2009,1216(44):7375-7383.
    [58]Konishi J, Fujita K, Nakanishi K, et al. Monolithic TiO2 with controlled multiscale porosity via a template-free sol-gel process accompanied by phase separation[J]. Chemistry of Materials.2006, 18(25):6069-6074.
    [59]Konishi J. Fujita K, Nakanishi K, et al. Macroporous morphology induced by phase separation in sol-gel systems derived from titania colloid[J]. Continuous Nanophase and Nanostructured Materials. 2004,788:391-396.
    [60]Konishi J, Fujita K, Oiwa S, et al. Crystalline ZrO2 monoliths with well-defined macropores and mesostructured skeletons prepared by combining the alkoxy-derived sol-gel process accompanied by phase separation and the solvothermal process[J]. Chemistry of Materials.2008,20(6):2165-2173.
    [61]Tokudome Y, Fujita K, Nakanishi K, et al. Synthesis of monolithic Al2O3 with well-defined macropores and mesostructured skeletons via the sol-gel process accompanied by phase separation[J]. Chemistry of Materials.2007,19(14):3393-3398.
    [62]Tokudome Y, Fujita K, Nakanishi K, et al. Sol-gel synthesis of macroporous YAG from ionic precursors via phase separation route[J]. Journal of the Ceramic Society of Japan.2007,115(1348): 925-928.
    [63]Kido Y, Nakanishi K, Miyasaka A, et al. Synthesis of Monolithic Hierarchically Porous Iron-Based Xerogels from Iron(Ⅲ) Salts via an Epoxide-Mediated Sol-Gel Process[J]. Chemistry of Materials.2012,24(11):2071-2077.
    [64]Hasegawa G. Ishihara Y, Kanamori K, et al. Facile Preparation of Monolithic LiFePO4/Carbon Composites with Well-Defined Macropores for a Lithium-Ion Battery[J]. Chemistry of Materials.2011, 23(23):5208-5216.
    [65]Tokudome Y, Miyasaka A, Nakanishi K, et al. Synthesis of hierarchical macro/mesoporous dicalcium phosphate monolith via epoxide-mediated sol-gel reaction from ionic precursors[J]. Journal of Sol-Gel Science and Technology.2011,57(3):269-278.
    [66]Flory P J. Thermodynamics of High Polymer SolutionsfJ]. The Journal of Chemical Physics. 1942,10(1):51-61.
    [67]Huggins M L. Some Properties of Solutions of Long-chain Compounds[J]. The Journal of Physical Chemistry.1942,46(1):151-158.
    [68]Huggins M L. The Viscosity of Dilute Solutions of Long-Chain Molecules. IV. Dependence on Concentration[J]. Journal of the American Chemical Society.1942,64(11):2716-2718.
    [69]Nakanishi K. Pore Structure Control of Silica Gels Based on Phase Separation[J]. Journal of Porous Materials.1997,4(2):67-112.
    [70]Scott R L. The Thermodynamics of High Polymer Solutions.4. Phase Equilibria in the Ternary System-Polymer Liquid-1 Liquid-2[J]. Journal of Chemical Physics.1949,17(3):268-279.
    [71]Scott R L. The Thermodynamics of High Polymer Solutions.5. Phase Equilibria in the Ternary System-Polymer-1 Polymer-2 Solvent[J]. Journal of Chemical Physics.1949,17(3):279-284.
    [72]郑子樵.材料科学基础[M].中南大学出版社,2005.
    [73]潘金生,仝健民,田民波.材料科学基础[M].清华大学出版社,2011.
    [74]Nunez O, Nakanishi K, Tanaka N. Preparation of monolithic silica columns for high-performance liquid chromatography[J]. Journal of Chromatography A.2008,1191(1-2):231-252.
    [75]Chankvetadze B, Yamamoto C, Kamigaito M, et al. High-performance liquid chromatographic enantioseparations on capillary columns containing monolithic silica modified with amylose tris(3,5-dimethylphenylcarbamate)[J]. Journal of Chromatography A.2006,1110(1-2):46-52.
    [76]Chankvetadze B, Kubota T, Ikai T, et al. High-performance liquid chromatographic enantioseparations on capillary columns containing crosslinked polysaccharide phenylcarbamate derivatives attached to monolithic silica[J]. Journal of Separation Science.2006,29(13):1988-1995.
    [77]Hasegawa G, Morisato K, Kanamori K, et al. New hierarchically porous titania monoliths for chromatographic separation media[J]. Journal of Separation Science.2011,34(21):3004-3010.
    [78]Miyazaki S, Miah M Y, Morisato K, et al. Titania-coated monolithic silica as separation medium for high performance liquid chromatography of phosphorus-containing compounds [J]. Journal of Separation Science.2005,28(1):39-44.
    [79]马晓明,刘培生.多孔材料检测方法[M].北京:冶金工业出版社,2006.
    [80]汤云晖.介孔材料的小角度X射线衍射实验条件研究[J].分析测试学报.2009,28(3):365-367.371.
    [81]徐祖耀,黄本立,鄢国强.材料表征与检测技术手册[M].北京:化学工业出版社,2009.
    [82]赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005.
    [83]Donohue M D, Aranovich G L. Classification of Gibbs adsorption isotherms[J]. Advances in Colloid and Interface Science.1998,76-77(0):137-152.
    [84]何余生,李忠,奚红霞,等.气固吸附等温线的研究进展[J].离子交换与吸附.2004.20(4):376-384.
    [85]Collet F, Bart M, Serres L, et al. Porous structure and water vapour sorption of hemp-based materials[J]. Construction and Building Materials.2008,22(6):1271-1280.
    [86]周建斌.竹炭环境效应及作用机理的研究[D].南京林业大学,2005.
    [87]张文标,钱新标,马灵飞,等.不同炭化温度的竹炭对重金属离子的吸附性能[J].南京林业大学学报(自然科学版).2009,33(6).
    [88]张东升,江泽慧,邓丛静,等.炭化温度对竹炭粉粒电磁波吸收性能的影响研究[J].材料导报.2010,24(24):5-8.
    [89]蔡琼,黄正宏,康飞宇,等.超临界水和水蒸气活化制备酚醛树脂基活性炭的对比研究[J].新型炭材料.2005,20(2):7.
    [90]程乐明,姜炜,张荣,等.超临界水活化褐煤制取活性炭[J].新型炭材料.2007,22(3):7.
    [91]乔文明,宋燕,尹圣昊,等.通过再活化浸渍金属盐的活性炭来发展中孔结构[J].新型炭材料.2005,20(3):7.
    [92]吴明铂,郑经堂,陆安慧,等.由CO2作活化剂制活性炭织物的孔结构和吸附性能研究[J].新型炭材料.1999,14(2).
    [93]Fan Y, Wang B, Yuan S, et al. Adsorptive removal of chloramphenicol from wastewater by NaOH modified bamboo charcoal[J]. Bioresource Technology.2010,101(19):7661-7664.
    [94]Ahmad A A, Hameed B H. Effect of preparation conditions of activated carbon from bamboo waste for real textile wastewater[J]. Journal of Hazardous Materials.2010,173(1-3):487-493.
    [95]Asada T, lshihara S, Yamane T, et al. Science of bamboo charcoal:Study on carbonizing temperature of bamboo charcoal and removal capability of harmful gases[J]. Journal of Health Science. 2002,48(6):473-479.
    [96]陆安慧,申文忠,郑经堂KOH二次活化制备富含中孔的PAN-ACF[J].新型炭材料.2001,16(3):5.
    [97]王妹先,王成扬,陈明鸣,等KOH活化法制备双电层电容器用高性能活性炭[J].新型炭材料.2010,25(4).
    [98]王鲜,毕于铁,任洪波,等.块状TiO2气凝胶的溶胶-凝胶过程及结构[J].强激光与粒子束.2010,22(10).
    [99]邓忠生,张哲,翁志农,等TiO2-SiO2复合半导体气凝胶制备及光催化活性研究[J].功能材料与器件学报.2000,6(1):6.
    [100]李轩科,刘朗,沈士德,等.溶胶-凝胶法制备二元炭质-TiO2气凝胶前驱体[J].新型炭材料.2000,15(2):3.
    [101]Rajesh Kumar S, Suresh C, Vasudevan A K, et al. Phase transformation in sol-gel titania containing silica[J]. Materials Letters.1999,38(3):161-166.
    [102]张敬畅,曹维良,于定新,等.超临界流体干燥法制备纳米级TiO2的研究[J].无机材料学报.1999,14(1).
    [103]Kelly S, Pollak F H, Tomkiewicz M. Raman spectroscopy as a morphological probe for TiO2 aerogels[J]. Journal of Physical Chemistry B.1997,101(14):2730-2734.
    [104]Swider K E, Merzbacher C I, Hagans P L, et al. Synthesis of ruthenium dioxide titanium dioxide aerogels:Redistribution of electrical properties on the nanoscale[J], Chemistry of Materials.1997,9(5): 1248-1255.
    [105]陈一民,赵大方,洪晓斌,等SiO2-TiO2复合气凝胶制备研究[J].材料导报.2005,19(z1):3.
    [106]沈伟韧,贺飞,赵文宽,等.超临界干燥法制备TiO2气凝胶[J].催化学报.1999,20(3):3.
    [107]陈麟,朱建,杨俊,等.非钛醇盐溶胶-凝胶法制备高光活件纳米晶TiO2气凝胶[J].催化学 报.2006,27(4):3.
    [108]叶钊,张汉辉.纳米TiO2光催化剂防团聚的光谱研究[J].光谱学与光谱分析.2003,23(3):4.
    [109]任志凌,袁磊,杨睿戆,等.碳气凝胶复合TiO2光催化降解甲苯研究[J].能源环境保护.2010,24(1).
    [110]姜国伟,周亚松.溶胶凝胶和超临界干燥法制备纳米TiO2粉体[J].石油大学学报(自然科学版).2001,25(6):4.
    [111]伏宏彬,金灿,夏平,等.钛硅复合气凝胶的制备工艺与光催化能力研究[J].无机盐工业.2009,41(11):3.
    [112]李学伟,李垚,张赛镭,等.稻壳灰制备掺杂TiO2硅气凝胶研究[J].稀有金属材料与工程.2007,36(z1):3.
    [113]Zhang J, Zhao D S, Wang J L, et al. Photocatalytic oxidation of dibenzothiophene using TiO2/bamboo charcoal[J]. Journal of Materials Science.2009,44(12):3112-3117.
    [114]胡久刚.TiO2气凝胶常压干燥法制备、改性及光催化性能研究[D].中南大学,2009.
    [115]Danjo Y, Kikuchi I, Ino Y, et al. Support effect of Pd/AlPO4 catalyst in hydrogen storage of organic hydride method in the presence of CO[J]. Reaction Kinetics Mechanisms and Catalysis.2012, 105(2):381-389.
    [116]Lertjiamratn K, Praserthdam P, Arai M, et al. Modification of acid properties and catalytic properties of AlPO4 by hydrothermal pretreatment for methanol dehydration to dimethyl ether[J]. Applied Catalysis a-General.2010,378(1):119-123.
    [117]Javid M. Characterization of amorphous AlPO4 surface sites[J]. Journal of the Chemical Society of Pakistan.2006,28(4):323-326.
    [118]Fujii R, Seki M, Shinoda J, et al. High activity of Pt/AlPO4 catalyst for selective catalytic reduction of nitrogen monoxide by propene in excess oxygen[J]. Chemistry Letters.2003,32(8): 764-765.
    [119]Rigutto M S, Vanbekkum H. Vanadium site in VAPO-5 characterization and catalytic properties in liquid-phase alkene epoxidation and benzylic oxidation[J]. Journal of Molecular Catalysis.1993, 81(1):77-98.
    [120]Tian D, Yan W, Cao X, et al. Morphology changes of transition-metal-substituted aluminophosphate molecular sieve AlPO4-5 crystals[J]. Chemistry of Materials.2008,20(6): 2160-2164.
    [121]Kimura T. Surfactant-templated mesoporous aluminophosphate-based materials and the recent progress[J]. Microporous and Mesoporous Materials.2005,77(2-3):97-107.
    [122]Campelo J M, Jaraba M, Luna D, et al. Effect of phosphate precursor and organic additives on the structural and catalytic properties of amorphous mesoporous AlPO4 materials[J]. Chemistry of Materials.2003,15(17):3352-3364.
    [123]Tian B Z, Liu X Y, Tu B, et al. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs[J]. Nature Materials.2003.2(3):159-163.
    [124]Kimura T, Sugahara Y, Kuroda K. Synthesis and characterization of lamellar and hexagonal mesostructured aluminophosphates using alkyltrimethylammonium cations as structure-directing agents[J]. Chemistry of Materials.1999,11(2):508-518.
    [125]Chary K V R, Kishan G, Ramesh K, et al. Synthesis, characterization, and catalytic properties of vanadium oxide catalysts supported on AlPO4[J]. Langmuir.2003,19(11):4548-4554.
    [126]Tiemann M, Froba M. Mesostructured aluminophosphates synthesized with supramolecular structure directors[J]. Chemistry of Materials.2001,13(10):3211-3217.
    [127]Mishra T, Parida K M, Rao S B. Transition metal promoted AlPO4 catalyst 2. The catalytic activity of M0.05Al0.95PO4 for alcohol conversion and cumene cracking/dehydrogenation reactions[J]. Applied Catalysis a-General.1998,166(1):115-122.
    [128]Ashtekar S, Barrie P J, Hargreaves M, et al. An FT-Raman study of the template-framework interaction in AlPO4-based molecular sieves[J], Angewandte Chemie-International Edition in English. 1997,36(8):876-878.
    [129]Cabello J A, Campelo J M, Garcia A, et al. Knoevenagel condensation in the heterogeneous phase using AlPO4-Al3O3 as a new catalyst[J]. Journal of Organic Chemistry.1984,49(26):5195-5197.
    [130]Wilson S T, Lok B M, Messina C A, et al, Aluminophosphate molecular-sieves-a new class of microporous crystalline inorganic solids[J]. Journal of the American Chemical Society.1982,104(4): 1146-1147.
    [131]Itoh M, Takehara M, Saito M, et al. NOx reduction Activity over Phosphate-supported Platinum Catalysts with Hydrogen under Oxygen-rich Condition[M].3rd International Congress on Ceramics, 2011:18.
    [132]Chang Q, He H, Zhao J, et al. Bactericidal activity of a Ce-promoted Ag/AlPO4 catalyst using molecular oxygen in water[J]. Environmental Science & Technology.2008,42(5):1699-1704.
    [133]Machida M, Murakami K, Hinokuma S, et al. AlPO4 as a Support Capable of Minimizing Threshold Loading of Rh in Automotive Catalysts[J]. Chemistry of Materials.2009,21(9):1796-1798.
    [134]Gash A E, Tillotson T M, Satcher J H, et al. New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors[J]. Journal of Non-Crystalline Solids. 2001,285(1-3):22-28.
    [135]Gash A E, Tillotson T M. Satcher J H, et al. Use of epoxides in the sol-gel synthesis of porous iron(Ⅲ) oxide monoliths from Fe(Ⅲ) salts[J]. Chemistry of Materials.2001.13(3):999-1007.
    [136]Itoh H, Tabata T. Kokitsu M. et al. Preparation of SiO2-Al2O3 gels from tetraethoxysilane and aluminum-chloride-a new sol-gel method using propylene-oxide as a gelation promoter[J]. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi-Journal of the Ceramic Society of Japan.1993,101(9): 1081-1083.
    [137]Kimura M, Sakai R, Sato S, et al. Sensing of Vaporous Organic Compounds by TiO2 Porous Films Covered with Polythiophene Layers[J]. Advanced Functional Materials.2012,22(3):469-476.
    [138]Schattauer S, Reinhold B, Albrecht S, et al. Influence of sintering on the structural and electronic properties of TiO2 nanoporous layers prepared via a non-sol-gel approach[J]. Colloid & Polymer Science.2012:1-12.
    [139]Shieh D, Lin Y, Yeh J, et al. N-doped, porous TiO2 with rutile phase and visible light sensitive photocatalytic activity[J]. Chemical Communications.2012,48(19):2528-2530.
    [140]Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results[J]. Chemical Reviews.1995,95(3):735-758.
    [141]Jiang P, Lin H, Xing R, et al. Synthesis of multifunctional macroporous-mesoporous TiO2-bioglasses for bone tissue engineering[J]. Journal of Sol-Gel Science and Technology.2012, 61(2):421-428.
    [142]Kimling M C, Caruso R A. Sol-gel synthesis of hierarchically porous TiO2 beads using calcium alginate beads as sacrificial templates[J]. Journal of Materials Chemistry.2012,22(9):4073-4082.
    [143]Wang X, Yu J C, Ho C, et al. Photocatalytic Activity of a Hierarchically Macro/Mesoporous Titania[J]. Langmuir.2005,21(6):2552-2559.
    [144]Yu J, Yu J C, Leung M K P, et al. Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania[J]. Journal of Catalysis.2003, 217(1):69-78.
    [145]Caruso R A, Giersig M, Willig F, et al. Porous "Coral-like" TiO2 Structures Produced by Templating Polymer Gels[J]. Langmuir.1998,14(22):6333-6336.
    [146]Holland B T, Blanford C F, Stein A. Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids[J]. Science.1998,281(5376):538-540.
    [147]Imhof A, Pine D J. Ordered macroporous materials by emulsion templating[J]. Nature.1997, 389(6654):948-951.
    [148]Hasegawa G, Kanamori K, Nakanishi K, et al. Facile Preparation of Hierarchically Porous TiO2 Monoliths[J]. Journal of the American Ceramic Society.2010,93(10):3110-3115.
    [149]高如琴,郑水林,刘月,等.硅藻土基多孔陶瓷的制备及其对孔雀石绿的吸附和降解[J].硅酸盐学报.2008,36(1).
    [150]肖万生,陈晋阳,翁克难,等.长白山硅藻土热处理相变及方英石形成机制探讨[J].矿物学报.2005,25(1):20-26.
    [151]李红涛,刘建学.高效远红外辐射陶瓷的研究现状及应用[J].现代技术陶瓷.2005,26(2):24-26,29.
    [152]王振节,叶大年AlPO4高温高压相变研究[J].地质科学.1990.
    [153]李家驹.陶瓷工艺学[M].北京:中国轻工业出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700