用户名: 密码: 验证码:
壳聚糖—改性粉煤灰联合调理改善污泥脱水性能及机理初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对城市污泥脱水性能差,常用的调理方法成本较高、效果不理想且存在二次污染等问题,考察了低成本的改性粉煤灰与安全无毒的壳聚糖单独以及联合调理污泥以改善污泥脱水性能的效果,并对各自的作用机理进行了初步探讨。
     首先对某城市污水厂不同时期浓缩池污泥的性质进行了调查和评价,并对污泥样品的保存条件及保存过程中脱水性质的变化进行了研究,为后续的污泥调理研究奠定基础。结果表明,剩余污泥呈中性、有机质含量高、易腐化发臭、含水率高、极易被压缩且不易脱水、是一个电负性较强的稳定胶体体系;污泥样品于4℃下保存5天,其基本性质保持不变。
     采用布氏过滤实验和量筒沉降实验,以污泥比阻、过滤时间、滤饼含水率以及污泥沉降比为主要指标,从不同的角度考察分析了壳聚糖、粉煤灰改性液、改性粉煤灰3种物质单一调理、壳聚糖与粉煤灰改性液联合、壳聚糖与改性粉煤灰联合2种联合调理,共5种不同的调理方式改善污泥脱水性能的效果。结果表明,经5种调理方式调理后,污泥比阻降低、过滤时间缩短、滤饼含水率降低、污泥的沉降速度加快,脱水性能得到大大改善。采用壳聚糖调理污泥时,壳聚糖的浓度、投加量以及污泥体系的pH值均对调理效果存在影响,在最佳条件下其可将污泥比阻降低89.2%,滤饼含水率为84.5%。采用粉煤灰改性液调理污泥,改性液的投加量和反应时间对调理效果存在影响,在最佳条件下改性液可将污泥比阻降低79.5%,滤饼含水率为71.8%。采用改性粉煤灰调理污泥时,其投加量是重要的影响因素,最佳条件下改性灰可将污泥比阻降低90.4%,滤饼含水率为72.8%。采用粉煤灰改性液与壳聚糖联合调理污泥,先将污泥用改性液预处理后再采用壳聚糖调理,最佳条件下改性液与壳聚糖联合应用可将污泥比阻降低80.3%,滤饼含水率为69.1%。采用改性粉煤灰与壳聚糖联合调理污泥时,壳聚糖和改性灰的投加顺序和投加量均对调理效果存在较大的影响,在最佳条件下该方法可使污泥比阻降低98.7%,滤饼含水率为69.0%。五种调理方法均能使污泥的脱水速率和脱水程度大大提高,并且两种联合调理的效果均优于相同情况下单一调理的效果。
     文章对壳聚糖、粉煤灰改性液、改性粉煤灰、壳聚糖与粉煤灰改性液联合、壳聚糖与改性粉煤灰联合5种污泥调理方法的作用机制进行了分析和探讨。壳聚糖用于污泥调理促进脱水的机理主要是通过静电中和作用和吸附架桥作用使污泥絮体颗粒的稳定性降低,凝聚力增强,从而构建大尺寸的絮凝体使脱水性能改善;其中静电中和作用较弱,吸附架桥作用在调理中占主导地位。粉煤灰改性液调理污泥主要是通过破坏污泥絮体结构,溶解污泥中的胞外聚合物,降低污泥的电负性并释放包裹键合在污泥絮体中的水分,从而使污泥脱水性能改善。改性粉煤灰则通过静电吸附污泥絮体颗粒,降低其稳定性,同时,其可作为骨架为污泥泥饼提供持久坚固的结构,促进多孔、通透性好、低压缩性的滤饼形成,从而改善污泥的脱水性能。改性粉煤灰与壳聚糖联合调理污泥基于各自单一调理的机理,并发挥改性粉煤灰与壳聚糖之间的协同交互作用。
     最后对污泥调理过程中重金属的释放问题进行了研究。采用改性粉煤灰调理污泥存在一定的重金属释放,这一问题可通过与壳聚糖联合应用的方式降低;污泥调理会导致污泥饼中的重金属形态发生改变,并且不同的金属所受的影响不同;调理脱水后,污泥泥饼需要进一步处理方可农用。
     本研究为污泥处理提供了多种效果好、无污染、成本低、可行的调理策略,可为实际工程应用提供理论依据。
A large amount of sewage sludge is produced in municipal wastewater treatmentsystem. The sludge contains high moisture content and displays poor dewaterability,furthermore, the common methods of sludge conditioning show some disadvantages,such as high cost, unsatisfactory effectiveness, and secondary pollution. To solvethese problems, single and dual sludge conditioning with low-cost modified coal flyash and non-toxic chitosan were investigated, and the corresponding mechanismswere analysed.
     Firstly, the excess sludges from sludge thickening tank of a wastewatertreatment plant were collected in one year, and the sludge properties were evaluated.Besides, the dewaterability change of sludge samples stored in differentcircumstances were measured to optimize the sludge preservation conditions. Resultsshowed that the raw sludge was nearly neutral, high organic content, easily corrupt,high water content and high compressibility, difficult to be dewatered, and showed astable colloid system due to the strong electronegative property. The dewateringproperties of sludge samples insignificantly changed at4℃for5days.
     Buchner filtration test and cylinder settling test were conducted to measurespecific resistance to filtration (SRF), time to filter (TTF), filter cake moisture(FCM), and sludge settling ratio (SV30), and to evaluate the dewaterability of sludgeconditioned with single conditioner and dual conditioners. The single conditionerincluded chitosan, liquid for coal fly ash modification (MCFAl), and solid ofmodified coal fly ash (MCFAs). The dual conditioners included the combination ofMCFAland chitosan, and combination of MCFAsand chitosan. Results showed thatall of the sludge conditioning methods were effective. The conditioned sludgesshowed a lower SRF, a shorter TTF, a lower FCM and a smaller SV30, and thefilterability and the settleability of the sludge were improved. In the case of sludgeconditioning with chitosan, the sludge conditioning effectiveness was affected by thechitosan concentration, dosage and sludge pH. Under the optimum conditions forsingle chitosan conditioning, the sludge SRF reduced by89.2%, and filter cakemoisture was84.5%. In the case of sludge conditioning with single MCFAl, theMCFAldosage and reaction time were the important factors. Under the optimumconditions for single MCFAlconditioning, the sludge SRF reduced by79.5%, and filter cake moisture was71.8%. In the case of sludge conditioning with singleMCFAs, the MCFAsdosage was the main factor. Under the optimum conditions forsingle MCFAsconditioning, the sludge SRF reduced by90.4%, and filter cakemoisture was72.8%. In dual conditioning with MCFAland CTS, the sludge waspretreated by MCFAland then conditioned with chitosan. The highest SRF reductionwas80.3%, and filter cake moisture was69.1%. In dual conditioning with MCFAsand chitosan, the conditioning effectiveness was affected by conditioner additionsequence and dosage. Under the optimum conditions for dual MCFAsand chitosanconditioning, the sludge SRF reduced by98.7%, and filter cake moisture was69.0%.The dual conditioning was more effective than the single conditionings under thesame conditions. Furthermore, the consumption of chitosan reduced in dualconditioning.
     The mechanisms of sludge conditioning were analyzed. The mechanisms ofchitosan improving sludge dewaterability were to build bigger size flocs because ofelectrostatic neutralization and adsorption bridging, which resulted in lower colloidstability and stronger flocculation effect. Moreover, adsorption bridging played adominant role. The actions of MCFAlwere to dissolve the sludge extracellularpolymeric substances, disrupt sludge structure, reduce sludge electronegativity andrelease bound water in the sludge. The enhancement of sludge dewatering withMCFAswas caused by electrostatic neutralization and skeleton function. As skeletonbuilder, MCFAshelp to build up a more porous, permeable and rigid lattice structurein the filter cake. The mechanisms of sludge conditioning with MCFAl chitosan (orMCFAs chitosan) were based on the respective single conditioning mechanisms, andthe synergistic interaction between MCFAland chitosan (or between MCFAsandchitosan) functioned.
     The release of heavy metals in sludge conditioning process was investigated.The heavy metals were released when the sludge was conditioned with modified coalfly ash, however, this problem can be sloved through dual conditioning with MCFAand chitosan. The speciation of heavy metals in sludge cake changed after sludgeconditioning and dewatering, but the impacts of sludge conditioning were differentfor different heavy metals. The sludge filter cakes after conditioning and dewateringneed further treatment for agricultural utilization.
     This study provides a variety of effective, nonpolluting, low-cost and practical sludge conditioning, which may supply theoretical basis for sludge conditioningpractices.
引文
[1]何品晶,顾囯维,李笃中等.城市污泥处理与利用.北京:科学出版社,2003,16–18
    [2]徐强,张春敏,赵丽君.污泥处理处置技术及装置.北京:化学工业出版社,2003,1–3
    [3]赵庆祥.污泥资源化技术.北京:化学工业出版社,2002,1–17
    [4]谷晋川,蒋文举,雍毅.城市污水处理厂污泥处理与资源化.北京:化学工业出版社,2008,1–45
    [5]余杰,田宁宁,王凯军.我国污泥处理、处置技术政策探讨.中国给水排水,2005,21(8):84–89
    [6]翁焕新.污泥无害化、减量化、资源化处理新技术.北京:科学出版社,2009,5–7
    [7]花莉.城市污泥堆肥资源化与污染物控制机理研究:[浙江大学硕士学位论文].杭州:浙江大学资源与环境学院.2008,1–3
    [8]张辰,王国华,孙晓.污泥处理处置技术与工程实例.北京:化学工业出版社,2006,5–6
    [9]朱开金.污泥处理技术及资源化利用.北京:化学工业出版社,2006,1–4
    [10]Brown M J, Lester J W. Metal removal in activated sludge: The role of bacterialextracellular polymer. Water Research,1979,13(9):817–837
    [11]周少奇.城市污泥处理处置与资源化.广州:华南理工大学出版社,2002,28
    [12]李洪江,顾莹莹,赵由才.污泥资源化利用技术.北京:冶金工业出版社,2010,1–20
    [13]Kopp J, Dichtl N. Influence of the free water content on the dewaterability ofsewage sludges. Water Science Technology,2001,44(10):177–183
    [14]Kopp J, Dichtl N. Prediction of full-scale dewatering results by determining thewater distribution of sewage sludges. Water Science Technology,2000,42(9):141–149
    [15]Vesilind P A, Hsu C C. Limits of sludge dewaterability. Water Science Technology,1997,36(11):87–91
    [16]Colin F, Gazbart S. Distribution of water in sludges in relation to their mechanicaldewatering. Water Research,1995,29(8):2000–2005
    [17]Lee D J, Lee S F. Measurement of bound water content in sludge: the use ofdifferential scanning calorimetry (DSC). Journal of Chemical Technology andBiotechnology,1995,62(4):359–365
    [18]Smith J K, Vesilind P A. Dilatometric measurement of bound water in wastewatersludge. Water Research,1995,29(12):2621–2626
    [19]Vesilind P A. The role of water in sludge dewatering. Water Environment Research,1994,66(1):4–11
    [20]Smollen M. Evaluation of municipal sludge drying and dewatering with respect tosludge volume reduction. Water Science Technology,1990,22(12):153–161
    [21]Tsang K R, Vesilind P A. Moisture distribution in sludges. Water ScienceTechnology,1990,22(12):135–142
    [22]纪轩.废水处理技术问答.北京:中国石化出版社,2003,369–370
    [23]Krishnamurthy S, Viraraghanan T. Chemical conditioning for dewatering municipalwastewater sludges. Energy Sources,2005,27(1-2):113–122
    [24]姚重华.废水处理单元过程.北京:化学工业出版社,2001,121–122
    [25]Li D H, Ganczarczyk J J. Structure of activated sludge flocs. Biotechnology andBioengineering,1990,35(1):57–65
    [26]Liu H, Fang H H P. Extraction of extracellular polymeric sustances (EPS) of sludges.Journal of Biotechnollogy,2002,95(3):249–256
    [27]Urbain V, Block J C, Manem1J. Bioflocculation in activated sludge: an analyticapproach. Water Research,1993,27(5):829–838
    [28]Dignac M F, Urbain V, Rybacki D, et al. Chemical description of extracellularpolymers: implication on activated sludge floc structure. Water Science andTechnology,1998,38(8-9):45–53
    [29]Vallom J K, McLoughlm A J. Lysis as a factor in sludge flocculation. WaterResearch,1984,18(11):1523–1528
    [30]Nishikawa S, Kurryama M. Nucleic acid as a component of mucilage in activatedsludge. Water Research,1968,2(11):811–812
    [31]Goodwin J A S, Forster C F. A further examination into the composition of activatedsludge surfaces in relation to their settlement characteristics. Water Research,1985,19(4):527–533
    [32]Fr lund B, Palmgren R, Keiding K, et al. Extraction of extracellular polymers fromactivated sludge using a cation exchange resin. Water research,1996,30(8):1749–1758
    [33]Gehr R, Herry J G. Removal of extracellular material techniques and pitfalls. WaterResearch,1983,17(12):1743–1748
    [34]Dignac M F, Urbain V, Rybacki D, et al. Chemical description of extrallularpolymers: implication on activated sludge floc structure. Water Science andTechnology,1998,38(8–9):45–53
    [35]Wingender J, New T R, Flemming H C, et al. Microbial Extracellular PlymericSubstances: Characterization, Structure and Function. Berlin: Springer,1999
    [36]王红武,李晓岩,赵庆祥.胞外聚合物对活性污泥沉降和絮凝性能的影响研究.中国安全科学学报,2003,13(9):31–35
    [37]Tian Y, Zheng L, Sun D Z. Functions and behaviors of activated sludge extracellularpolymeric substances(EPS): a promising environmental interest. Journal ofEnvironmental Science,2006,18(3):420–427
    [38]Sanin F, Vesilind A. Effect of centrifugation on the remova1of extracellularpolymers and physical properties of activated sludge. Water Science and Technology,1994,30(8):117–127
    [39]杨金美,张光明,王伟.超声波强化给水污泥沉降和脱水性能的研究.环境污染治理技术与设备,2006,7(11):58–61
    [40]Saveyn H, Pauwels G, Timmerman R, et al. Effect of polyelectrolyte conditioningon the enhanced dewatering of activated sludge by application of an electric fieldduring the expression phase. Water Research,2005,39(13):3012–3020
    [41]Mikkelsen L H, Keiding K. Physico-chemical characteristics of full scale sewagesludges with implications to dewatering. Water Research,2002,36(10):2451–2462
    [42]Jin B, Wilén B M, Lant P. A comprehensive insight into floc characteristics andtheir impact on compressibility and settleability of activated sludge. ChemicalEngineering Journal,2003,95(1–3):221–234
    [43]Liu Y, Fang H H P. Influences of extracellular polymeric substances (EPS) onflocculation, settling, and dewatering of activated sludge. Critical Reviews inEnvironmental Science and Technology,2003,33(3):237–273
    [44]Ruhsing J P, Huang C, Fu G C. Effect of surfactant on alum sludge conditioning anddewatering. Water Science and Technology,2000,41(8):17–22
    [45]Legrand V. Deswelling and flocculation of gel networks: application to sludgedewatering. Water Research,1998,32(12):3662–3672
    [46]Chu C P, Lee D J. Experiment analysis of centrifugal dewatering precess ofpolyelectrolyte flocculated waste activated sludge. Water Research,2001,35(10):2377–2384
    [47]张光明,张信芳,张盼月.城市污泥资源化技术进展.北京:化学工业出版社,2006,45–69
    [48]Katz W J, Mason D G. Freezing methods used to condition activated sludge. Waterand Sewage Works,1970,32(4):110–122
    [49]黄玉成,张维佳,金秋冬,等.自然冷融法对污泥沉降及脱水性能研究.安全与环境工程,2008,15(4):43–46
    [50]简东升,朱敬平,李笃中,等.以天然气候进行污泥的冻融处理.应用基础与工程科学学报,2000,8(4):370–375
    [51]Neyens E, Baeyens J. A review of thermal sludge pre-treatment processes toimprove dewaterability. Journal of Hazardous Materials,2003,98(3):51–67
    [52]Lu G Q, Low J C F, Liu C Y, et al. New type of sludge density meter usingmicrowave for application in sewage treatment plant. Water Science and Technology,1996,30(1):53–60
    [53]Wojciechowska E. Application of microwaves for sewage sludge conditioning.Water Research,2005,39(19):4749–4754
    [54]Yu Q, Lei H Y, Yu G W, et al. Influence of microwave irradiation on sludgedewaterability. Chemical Engineering Journal,2009,155(1-2):88–93
    [55]田禹,方琳,黄君礼.微波辐射预处理对污泥结构及脱水性能的影响.中国环境科学,2006,26(4):459–463
    [56]尹小延,曾科,司琼磊.微波能对化学污泥脱水性能的影响.化工设计,2009,19(6):42–46
    [57]肖朝伦,潘峰,唐嘉丽,等.微波辐射对污泥浊度、沉降性和脱水性的影响.工业安全与环保,2012,38(8):31–34
    [58]Bougrier C, Albasi C, Delgenes J P, et al. Effect of ultrasonic, thermal and ozonepre-treatments on waste activated sludge solubilisation and anaerobicbiodegradability. Chemical Engineering and Processing: Process Intensification,2006,45(8):711–718
    [59]Na S, Kim Y U, Khim J. Physiochemical properties of digested sewage sludge withultrasonic treatment. Ultrasonics Sonochemistry,2007,14(3):281–285
    [60]Feng X. Lei H Y, Deng J C, et al. Physical and chemical characteristics of wasteactivated sludge treated ultrasonically. Chemical Engineering and Processing:Process Intensification,2008,48(1):187–194
    [61]Feng X, Deng J C, Lei H Y. Dewaterability of waste activated sludge withultrasound conditioning. Bioresource Technology,2009,100(3):1074–1081
    [62]殷绚,阙子龙,吕效平,等.超声波声强及处理时间对污泥结合水的影响.化工进展,2005,24(3):307–311
    [63]韩萍芳,殷绚,吕效平.超声波处理石化厂剩余活性污泥.化工环保,2003,23(3):133–137
    [64]薛向东,金奇庭,朱文芳,等.超声对污泥流变性及絮凝脱水性的影响.环境科学学报,2006,26(6):897–902
    [65]Xuan Y, Han P F, Lu X P, et al. A review on the dewaterability of bio-sludge andultrasound pretreatment. Ultrasonics Sonochemistry,2004,11(6):337–348
    [66]Mahmood T, Elliott A. Use of acid preconditioning for enhanced dewatering ofwastewater treatment sludges from the pulp and paper industry. Water EnvironmentResearch,2007,79(2):168–176
    [67]Chen Y G, Chen Y S, Gu G W. Influence of pretreating activated sludge with acidand surfactant prior to conventional conditioning on filtration dewatering. ChemicalEngineering Journal,2004,99(2):137–143
    [68]何文远,杨海真,顾国维.酸处理对活性污泥脱水性能的影响极其作用机理.环境污染与防治,2006,28(9):680–683
    [69]Asano, Takashi. Use of chitosan in dewatering of anaerobic sludge. Proccedings ofFirst International Conference on Chitin and Chitosan, MIT-SG-78-7, ed. R A AMuzzarelli, E R Pariser, Cambridge, USA, MIT Sea Grant Program,1987
    [70]张印堂,陈东辉,陈亮.壳聚糖絮凝剂在活性污泥调理中的应用.上海环境科学,2002,21(1):49–52
    [71]封盛,相波,邵建颖,等.改性壳聚糖对处理污泥脱水性能影响的研究.工业用水与废水,2005,36(4):62–64
    [72]Lin C F, Shien Y. Sludge dewatering using centrifuge with thermal/polymereonditioning. Water Science and Technology,2001,44(10):321–325
    [73]郭智倩,马强,程宁,等.改性硅藻土调理剩余污泥沉降性能.辽宁化工,2009,38(1):31–34
    [74]Zall J, Galil N, Rebhun M. Skeleton builders for conditioning oily sludge. Journal ofWater Pollution Control Federation,1987,59(7):699–706
    [75]Zhao Y Q. Enhancement of alum sludge dewatering capacity by using gypsum asskeleton builder. Colloids and Surfaces A: Physicochemical and EngineeringAspects,2002,211(2-3):205–212
    [76]Albertson O E, Kopper M. Fine-coal-aided centrifugal dewatering of waste activatedsludge. Journal of Water Pollution Control Federation,1983,55(2):145–156
    [77]Thapa K B, Qi Y, Clayton S A, et al. Lignite aided dewatering of digested sewagesludge. Water Research,2009,43(3):623–634
    [78]Benitez J, Rodriguez A, Suarez A. Optimization technique for sewage sludgeconditioning with polymer and skeleton builders. Water Research,1994,28(10):2067–2073
    [79]Nelson R F, Brattlof B D. Sludge pressure filtration with fly ash addition. Journal ofWater Pollution Control Federation,1979,51(5):1024–1031
    [80]Lin Y F, Jing S R, Lee D Y. Recycling of wood chips and wheat dregs for sludgeprocessing. Bioresource Technology,2001,76(2):161–163
    [81]Tenney M W, Cole G T. The use of fly ash in conditioning biological sludges forvacuum filtration, Journal of Water Pollution Control Federation,1968,40(8):281–302
    [82]杨崇豪,袁孟云,张利伟,等.中小型污水处理厂污泥脱水比阻调理剂研究.华北水利水电学院学报,2007,28(1):88–90
    [83]Huang C, Pan J R, Fu C G, et al. Effects of surfactant addition on dewatering ofalum sludges. Journal of Environmental Engineering,2002,128(12):1121–1127
    [84]鹿雯,张登峰,胡开林等.阳离子表面活性剂对污泥脱水性能的影响和作用机理.环境化学,2008,27(4):444–448
    [85]蒋波,傅佳俊,蔡伟民.阳离子表面活性剂改善污泥脱水性能的机理研究.中国给水排水,2006,22(23):59–63
    [86]吴桂标,杨海真,陈银广,等.表面活性剂对污泥沉降剂脱水性能的影响.中国给水排水,2001,17(1):68–70
    [87]Lu M C, Lin C J, Liao C H, et al. Dewatering of activated sludge by Fenton’sreagent. Advances in Environmental Research,2003,7(3):667–670
    [88]Buyukkamaci N. Biological sludge conditioning by Fenton’s reagent. ProcessBiochemistry,2004,39(11):1503–1506
    [89]周煜,张爱菊,张盼月,等.光–Fenton氧化破解剩余污泥和改善污泥脱水性能.环境工程学报,2011,5(11):2600–2604
    [90]Young P K, Kyu-Hong A, Kyu Maeng S, et al. Feasibility of sludge ozonation forstabilization and conditioning. Ozone: Science and Engineering,2003,25(1):73–80
    [91]吕凯,季文芳,韩萍芳,等.超声、臭氧处理石化污水厂剩余活性污泥研究.环境工程学报,2009,3(5):907–910
    [92]李明松.市政污泥氧化破膜深度脱水机理探讨:[湖南农业大学硕士学位论文].长沙:湖南农业大学理学院,2011,38–42
    [93]张娜,尹华,秦华明,等.微生物絮凝剂的稳定性及其对城市污水厂浓缩污泥的絮凝脱水.微生物学通报,2008,35(5):685–689
    [94]赵鑫鑫,尹华,张娜,等.微生物絮凝剂对城市污水厂浓缩污泥脱水性能的影响.工业水处理,2008,28(11):24–26
    [95]赵继红,杨劲峰,王清宁,等.微生物絮凝剂改善污泥脱水性能的研究.环境科学与技术,2009,32(11):88–90
    [96]Zhang Z Q, Xia S Q, Zhang J. Enhanced dewatering of waste sludge with microbialflocculant TJ-F1as a novel conditioner. Water Research,2010,44(10):3087–3092
    [97]周立祥,周顺桂,王世梅等.制革污泥中铬的生物脱除及其对污泥的调理作用.环境科学学报,2004,24(6):1014–1020.
    [98]宋兴伟,周立祥.生物沥浸处理对城市污泥脱水性能的影响研究.环境科学学报,2008,28(10):2012–2017
    [99]刘奋武,周立祥.不同能源物质配合及化学强化对生物沥浸法提高城市污泥脱水性能的效果,2009,29(5):974–979
    [100]刘奋武,周立祥,周俊,等.生物沥浸处理提高城市污泥脱水性能的中试研究:批式运行模式.环境科学,2011,32(7):2023–2029
    [101]刘奋武,周立祥,周俊,等.生物沥浸处理提高城市污泥脱水性能的中试研究:连续运行模式.环境科学,2011,32(10):2993–2998
    [102]宋永伟,刘奋武,周立祥.微生物营养剂浓度对生物沥浸法促进城市污泥脱水性能的影响.环境科学,2012,33(8):2786–2792
    [103]朱海凤,周立祥,王电站.生物沥浸的酸化效应对城市污泥脱水性能的影响.环境科学,2012,33(3):916–921
    [104]刘昌庚,张盼月,曾光明,等.生物淋滤—PAC与PAM联合调理城市污泥.环境科学,2010,31(9):2124–2128
    [105]肖凌鹏,张盼月,张玉璇,等.生物淋滤改善城市污泥的脱水性能.环境工程学报,2012,6(8):2793–2797
    [106]杨金美,张光明,王伟.超声波强化给水污泥沉降和脱水性能的研究.环境污染治理技术与设备,2006,7(11):58–61
    [107]殷绚,胡正猛,吕效平.超声辅助污泥脱水的研究.南京工业大学学报,2006,28(1):58–61
    [108]薛向东,金奇庭,朱文芳,等.超声预处理对污泥絮凝脱水性能的影响.中国给水排水,2006,22(9):101–105
    [109]朱书卉,许红林,韩萍芳.超声波结合复合絮凝剂强化生物污泥脱水研究及其作用机理.化工进展,2007,26(4):537–541
    [110]杨国友,石林,柴妮.生石灰与微波协同作用对污泥脱水的影响.环境化学,2011,30(3):698–702
    [111]陈银广,杨海真,吴桂标,等.表面活性剂改进活性污泥的脱水性能及其作用机理.环境科学,2000,21(5):97–100
    [112]Lee C H, Liu J C. Enhanced sludge dewatering by dual polyelectrolytesconditioning. Water Research,2000,34(19):4430–4436
    [113]Zhao Y Q, Bache D H. Conditioning of alum sludge with polymer and gypsum.Colloids and Surfaces A: Physicochemical and Engineering Aspects,2001,194(1-3):213–220
    [114]刘秉涛,娄渊知,徐菲.聚合氯化铝/壳聚糖复合絮凝剂在活性污泥中的调理作用.环境化学,2007,26(1):42–45
    [115]林红艺.城市生活污泥化学混凝脱水的研究.化工技术与开发,2010,39(8):59–63
    [116]Chang I L, Lee D J. Ternary expression stage in biological sludge dewatering.Water Research,1998,32(3):905–914
    [117]李惠英.两种高分子絮凝剂处理污水处理厂污泥的探讨.福建轻纺,2005,(2):6–10
    [118]杨兴涛,赵建伟,刘杨,等.阴离子型PAM在水厂污泥脱水中的应用.供水技术,2007,1(4):34–36
    [119]方道斌,郭睿威,哈润华,等.丙烯酰胺聚合物.北京:化学工业出版社,2006,404–409
    [120]王杰,肖锦,詹怀宇.两性高分子絮凝剂在污泥脱水上的应用研究.工业水处理,2000,20(8):28–30
    [121]曾德芳,方勇,袁继祖.新型污泥脱水絮凝剂的研制.化工环保,2006,26(4):329–332
    [122]刘立华,龚竹青.聚二甲基二烯丙基氯化铵与聚合硫酸铁复合絮凝剂对污泥的脱水性能.环境污染治理技术与设备,2006,7(7):77–82
    [123]Liu H, Fang H H P. Extraction of extracellular polymeric substances (EPS) ofsludges. Journal of Biotechnology,2002,95(3):249–256
    [124]Wang Z P, Liu L L, Yao J, et al. Effects of extracellular polymeric substances onaerobic granulation in sequencing batch reactors. Chemosphere,2006,63(10):1728–1735
    [125]周顺桂,周立祥,王世梅.嗜酸硫氧化菌株的分离及其在污泥生物脱毒中的应用.环境科学研究,2003,16(5):41–44
    [126]Anders B J, Colin W. Ferrous Sulphate Oxidation Using Thiobacillus ferrooxidans:a Review. Process Biochemistry,1995,30(3):225–236
    [127]Dignac M F, Urbain V, Rybacki D, et al. Chemical description of extracellularpolymers: implication on activated sludge floc structure. Water Science andTechnology,1998,38(8-9):45–53
    [128]Jorand F, Zartarian F, Thomas F, et al. Chemical and structural (2D) linkagebetween bacteriawithin activated sludge flocs. Water Research,1995,29(7):1639–1647
    [129]Jia X S, Furumai H, Fang H H P. Yields of biomass and extracellular polymers infour anaerobic sludges. Environmental Technology,1996,17(3):283–291
    [130]Morgan J W, Forster C F, Evison L. A comparative study of the nature ofbiopolymers extracted from anaerobic and activated sludges. Water Research,1990,24(6):743–750
    [131]Houghton J I, Stephenson T. Effect of influent organic content on digested sludgeextracellular polymer content and dewaterability. Water Research,2002,36(14):3620–362
    [132]Sato T, Ose Y. Floc forming substances extracted from activated sludge withammonium hydroxide and EDTA solutions. Water Science and Technology,1985,17(4-5):517–528
    [133]Brown M J, Laser J N. Comparison of bacterial extracellular polymers extractionmethods. Applied and Environment Microbiology,1980,40(2):179–186
    [134]Neyens E, Baeyens J, Dewil R, et al. Advanced sludge treatment affectsextracellular polymeric substances to improve activated sludge dewatering. Journalof Hazardous Materials,2004,106(2-3):83–92
    [135]Urbain V, Block J C, Manem J. Bioflocculation in activated sludge: an analyticapproach. Water Research,1993,27(5):829–838
    [136]Domingues B A. Composition, fate and transformation of extracellular polymers inwastewater and sludge treatment processes:[Cornell University Thesis (Ph. D.)]USA: Cornell University,2000,4–32
    [137]Wilén B M, Jin B, Lant P. The influence of key chemical constituents in activeatedsludge on surface and flocculating properties. Water Reseach,2003,37(9):2127–2139
    [138]Jin B, Wilén B M, Lant P. A comprehensive insight into floc characteristics andtheir impact on compressibility and settleability of activeated sludge. ChemicalEngineering Journal,2003,95(1):221–234
    [139]Beccari M, Mappelli P, Stuckey D C. A review of Soluble Microbial Product (SMP)in wasterwater treatment systems. Water Research,1999,33(14):3063–3082
    [140]Forster C F. Activated sludge surfaces in relation to the sludge volume index.Water Research,1971,5(10):861–870
    [141]Urbainetal V. Bioflocculation in actived sludge: an analystic approach. WaterResearch,1993,27(5):829–838
    [142]Liao B Q, Allen D G, Dmppo I G, et a1. Surface properties of sludge and their rolein bioflocculation and settleability. Water Research,2001,35(2):339–350
    [143]Eriksson L, Alm B. Study of flocculation mechanism by observing effects of acomplexing agent on activated sludge properties. Water Science and Technology,1991,24(7):21–28
    [144]Muzzarelli R A A, Weckx M, Fillippini O, et al. Removal of trace metal ions fromindustrial waters, nuclear effluents and drinking water, with the aid of cross-linkedNcarboxmethyl chitosan. Carbohydrate Polymers,1989,11(4):293–306
    [145]Bassi R, Prasher S O, Simpson B K. Removal of selected metal ions from aqueoussolutions using chitosan flakes. Separation Science and Technology,2000,35(4),547–560
    [146]Benguella B, Benaissa H. Cadmium removal from aqueoussolutions by chitin:kinetic and equilibrium studies. Water Research,2002,36(10):2463–2474
    [147]Jeon C, H ll W H. Chemical modification of chitosan and equilibrium study formercury ion removal. Water Research,2003,37(19):4770–4780
    [148]Divakaran R, Sivasankara Pillai V N. Flocculation of kaolinite suspensions inwater by chitosan. Water Research,2001,35(16):3904–3908
    [149]Divakaran R, Sivasankara Pillai V N. Flocculation of river silt using chitosan.Water Research,2002,36(9):2414–2418
    [150]Roussy J, Vooren M V, Guibal E. Chitosan for the coagulation and flocculation ofmineral colloids. Journal of Dispersion Science and Technology,2005,25(5):663–677
    [151]董辉,王国华,孙晓.影响污水污泥脱水性能因素的探讨.上海建设科技,2005,6:27–28
    [152]肖锦,周勤.天然高分子絮凝剂.北京:化学工业出版社,2005,133–143
    [153]郑宾国,刘军坛,崔节虎,等.粉煤灰在我国废水处理领域的利用研究.水资源保护,2007,23(3):36–38
    [154]张金山,刘烨,王林敏.我国粉煤灰综合利用现状.西部探矿工程,2008,20(9):215–217
    [155]张锦霞,潘维煜,张海霞.浅析粉煤灰处理含磷废水实验.治淮,2008,9:19–20
    [156]潘国营,周卫,王素娜.粉煤灰处理含铅废水的试验研究.煤炭工程,2008,9:77–79
    [157]赵毅,赵建海,马双忱,等.高活性吸收剂去除二氧化硫的实验研究.华北电力学报,2000,28(1):72–75
    [158]赵乐军,戴树桂,吴彩霞,等.不同添加剂改善脱水污泥填埋性能的正交试验研究.积水排水,2006,32(1):11–14
    [159]赵乐军,戴树桂,闫澍旺,等.掺添加剂改善脱水污泥填埋特性研究.中国给水排水,2005,21(2):47–49
    [160]杨崇豪,赵丽敏,刘秉涛.粉煤灰调理自来水厂排泥水污泥的比阻.中国给水排水,2005,21(11):56–58
    [161]Pengthamkeerati P, Satapanajaru T, Chularuengoaksorn P. Chemical modificationof coal fly ash for the removal of phosphate from aqueous solution. Fuel,2008,87(12):2469–2476
    [162]Zhang B H, Wu D Y, Wang C, et al. Simultaneous removal of ammonium andphosphate by zeolite synthesized from coal fly ash as influenced by acid treatment.Journal of Environmental Sciences,2007,19(5):540–545
    [163]Shanthakumar S, Singh D N, Phadke R C. Influence of flue gas conditioning on fly ashcharacteristics. Fuel,2008,87(15–16):3216–3222
    [164]Sarbak Z, Kramer-Wachowiak M. Porous structure of waste fly ashes and theirchemical modifications. Powder Technology,2002,123(1):53–58
    [165]Wang S, Boyjoo Y, Choueib A. A comparative study of dye removal using fly ash treatedby different methods. Chemosphere,2005,60(10):1401–1407
    [166]Benitez J, Rodriguez A, Suarez A. Optimization technique for sewage sludgeconditioning with polymer and skeleton builders. Water Reseasrch,1994,28(10):2067–2073
    [167]Rebhun M, Zall J, Galil N. Net sludge solids yield as an expression of filterabilityfor conditioner optimization. Journal Water Pollution Control Federation,1989,61(1):52–54
    [168]Coackley P, Jones B R S. Vacuum sludge filtration: I. Interpretation of results bythe concept of specific resistance. Sewage and Industrial Wastes.1956,28(8):963–976
    [169]王福元,吴正严.粉煤灰利用手册第二版.北京:中国电力出版社,2004,110–112
    [170]Tessier A, Campbell P G C, Bisson M. Sequentail extraction procedure for thespeciation of particualate trace metals. Analytical Chemistry,1979,51(7):844–851

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700