用户名: 密码: 验证码:
遥感结合地面观测的毛竹林碳水通量监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林生态系统碳水通量观测和模型模拟是森林碳水循环监测研究的主要方向之一,该研究有利于准确地评估森林生态系统碳水通量和编制森林固碳经营管理措施以应对气候变化,丰富森林可持续经营内涵。极端天气事件对森林造成的干扰已经成为森林碳水通量模型模拟中的重要组成部分,给精准监测碳水通量带来很大不确定性。与其他森林类型相比,竹林具有显著的蒸腾和固碳潜力,其生物学特征及受干扰程度具有明显的差异。由于缺乏针对竹林生态系统的长期观测站点,冠层尺度竹林生态系统碳水循环特征有待研究。结合安吉县毛竹林生态系统通量塔地面观测、卫星遥感影像(Landsat TM和MODIS)和再分析数据(Modern-Era Retrospective Analysis for Research and Applications, MERRA)等数据集,该文定量分析了毛竹(Phyllostachys edulis)林生态系统碳通量变化特征及其与环境和生物因子的关联性:构建了适合毛竹林生态系统的碳水通量监测模型,实现站点尺度向区域尺度上推;着重揭示了干旱和冰雪灾害等自然干扰对毛竹林生态系统碳水通量的影响。该研究为评价毛竹林生态系统对区域碳水平衡的贡献提供参考依据、为区域尺度碳水通量精准监测及空间分析提供方法、为制定应对气候变化的毛竹林固碳经营管理措施提供参考资料。该文得出的结果和结论主要包括以下几个方面:
     (1)根据湍流稳态测试、方差相似性关系和能量平衡闭合分析对通量塔观测数据质量评价,结果表明:站点观测的湍流通量数据满足常通量层假设,符合涡度相关技术的基本要求,数据质量相对较可靠;垂直风速和温度归一化的标准差是大气稳定度的普适函数;适宜的夜间通量摩擦风速u*界限值为0.24~0.33m s-1;能量闭合程度为71%,夜间能量平衡闭合程度较差,降水和异质性地形是引起本站点能量不闭合的主要原因。
     (2)对2011年毛竹林生态系统碳通量观测数据进行校正、插补和组分分解,结果表明:对于生态系统呼吸(Re)通量组分,基于夜间数据和基于白天数据的2种插补方法差异性较大,表明通量塔Re数据存在较大的不确定性;2011年毛竹林年生态系统净交换量(NEE)、总初级生产力(GPP)和Re分别为417.5gCm-2y-1、1899.7gCm-2y-1和-1482.2gCm-2y-1.NEE在10:00~11:00达到最高峰,午后的NEE略低于上午。毛竹林固碳能力较强,四季均表现为碳汇。
     (3)采用通量塔观测数据对基于遥感的Penman-Monteith蒸散模型(RS-PM)和光能利用率模型(EC-LUE)进行参数化,建立了毛竹林生态系统蒸发散(ET)和GPP监测模型,并以MODIS和MERRA数据为驱动变量,估算安吉县毛竹林ET和GPP,结果表明:与通量塔观测结果相比,最优模型估算的8天ET和GPP平均值相对均方根误差(RMSEr)分别为22.35%和17.96%;考虑GPP饱和效应有助于提高EC-LUE模型精度,RMSEr从32.79%降低到17.96%。
     (4)碳通量各组分与环境和生物因子相关性分析结果表明:GPP与温度(T)相关性最高(P<0.01),依次为叶面积指数(LAI)>归一化植被指数(NDVI)>水蒸气压差(VPD)>光合有效辐射(PAR)>土壤含水量(SVWC); PAR、LAI和VPD是NEE的主要影响因子(P<0.01);Re与T相关性最高,其次为NDVI和LAI(P<0.01)。建议将LAI和NDVI引入区域尺度毛竹林生态系统Re估算模型中。
     (5)将整个干旱过程分成开始期、干旱期和恢复期3个阶段,分析了干旱对毛竹林生态系统NEE、GPP和Re的影响,结果表明:干旱显著地改变环境因子与GPP、NEE和Re的相关性;在干早期不同阶段,起关键作用的环境因子发生变化;综合VPD和SVWC能较好地表征干旱对碳通量的影响;动态线性回归模型模拟结果表明干旱降低了GPP和NEE,两者降低量分别为12.7%和44.8%,但对Re影响较少,可见减少了固碳能力和增加了碳排放量。将VPD和SVWC引入EC-LUE模型中,能提高干旱期GPP估算精度。
     (6)利用2004-2011年安吉县毛竹林ET和GPP分布图,分析了2008年冰雪灾害对毛竹林生态系统ET和GPP的影响以及地形与冰雪灾害影响程度的关系,结果表明:冰雪灾害降低了毛竹林生态系统年GPP和ET,平均GPP减少量为0.17gC m-2d-1;处于小年期的毛竹林GPP和ET受冰雪灾害的影响程度稍高于大年毛竹林;GPP受冰雪灾害影响程度与地形的关联度高于ET,海拔和坡度与GPP降低量呈正相关关系。
Forest ecosystem carbon and water fluxes modeling is one of the main directions of the forest carbon cycle monitoring research. This research is helpful to accurately assess the contribution of forest ecosystem to global carbon and water balance and to make forest carbon planning for mediating climate change. Forest disturbances by extreme weather events cause large uncertainties in carbon and water flux estimates and become an important part of forest carbon and water fluxes modeling. Compared with other forest types, bamboo forest has significant transpiration and carbon sequestration potential and its biological characteristics are special. It is intensively managed by farmers. Due to the lack of long-term observation site in bamboo forest ecosystem, bamboo forest ecosystem carbon and water cycle in the canopy scale was rarely reported. Therefore, combined the flux observation tower of Moso bamboo forest ecosystem in Anji county, Landsat Thematic Mapper (TM), MODerate resolution Imaging Spectroradiometer (MODIS) data, and Modern Era Retrospective-Analysis for Research and Applications (MERRA), this study quantitatively analyzed variations of Moso bamboo(Phyllostachys edulis) forest ecosystem carbon and water fluxes and their correlations with environmental and biological factors; Models for carbon and water fluxes were built and used to scale site-based fluxes up to regional-based fluxes; Effects of snow damages and drought on Moso bamboo forest ecosystem carbon and water fluxes were also analyzed. Results from this study were a reference for evaluating the contribution of Moso bamboo forest ecosystem to the regional carbon and water balance, provided methods for accurately estimating carbon and water fluxes in regional scale, and presented reference data for making Moso bamboo forest carbon planning for mediating climate change. Results and conclusions are mainly included in the following aspects:
     (1) Quality of turbulent flux measurements of Moso bamboo forest flux tower was evaluated using steady state test, Monin-Obukhov similarity function, and energy balance closure. Results showed that:COt flux measurements are met with the constant flux layer hypothesis and basic requirements of eddy covariance technique; Standard deviates of vertical wind speed and temperature normalized by a scaling velocity or temperature are universal functions of atmospheric stability; Minimum values of friction velocity for each seasonal nocturnal flux are between0.24and0.33m s-1; Energy balance closure is relatively low with value of71%due to precipitation and heterogeneous terrain, especially for nocturnal period.
     (2) Correction, gap-filling and flux partitioning were implemented to carbon flux measurements of Moso bamboo forest in2011. Results showed that, for the ecosystem respiration (Re), there is significant difference between night-based method and daytime-based method, implying huge uncertainty in Re; Net ecosystem exchange (NEE), gross primary productivity (GPP) and Re in2011were417.5g C m-2y-1,1899.7g C m-2y-1, and-1482.2g C m-2y-1. NEE reaches its peak at10:00-11:00, and it is slightly lower in the afternoon than in the morning. Moso bamboo forest has strong ability in carbon sequestration and is a carbon sink in each season.
     (3) The eddy covariance (EC) data collected from the Anji flux tower were used in this study to calibrate and validate the remote sensing-driven Penman-Monteith (RS-PM) and Eddy Covariance Light Use Efficiency (EC-LUE) models, and the models driven by the MODIS and MERRA datasets were used to estimate the evapotranspiration (ET) and GPP of Moso bamboo forest in Anji county. Results showed that the relative root mean square error of ET and GPP estimates were22.35%and17.96%compared with measurements, respectively; The saturation effect of GPP was taken into account in the EC-LUE model, which played an important role in improving the model performance with relative root mean square error reduced from32.79%to17.96%.
     (4) Correlation analysis between carbon flux components and environmental and biological factors showed that the correlation between GPP and temperature (T) was the highest (P<0.01), followed by Leaf Area Index (LAI)> Normalized Difference Vegetation Index (NDVI)> Vapor Pressure Deficit (VPD)> Photosynthetically Active Radiation (PAR)> Soil Volumetric Water Content (SVWC); PAR, LAI, and VPD were main control factors for NEE (P<0.01); Correlation between Re and T was the highest, followed by NDVI, LAI (P<0.01). LAI and NDVI can serve as inputs to model for estimating regional Re.
     (5) The whole drought period was divided into beginning phase, drought phase and recovery phase. The influences of drought on NEE, GPP and Re were analyzed. Results showed that the correlations between environmental factors and GPP, NEE and Re were significantly changed due to drought effect; Key control factors for the carbon flux were different in each phase of drought; Combined VPD and soil moisture content can be used to well describe occurrence and influence of drought; Simulation results from the dynamic linear regression model showed that the decreases in GPP and NEE caused by drought were12.7%and44.8%, respectively. Sensitivity of Re to drought was lower than those of GPP and NEE. Re did not decrease during drought period. The accuracy of GPP estimates during drought period was improved when VPD and SVWC were inputted into the EC-LUE model.
     (6) The impacts of ice storm on GPP and ET of Moso bamboo forests and their relationships with terrain factors were analyzed based on ET, GPP and digital elevation data from2004to2011. Results showed that the early2008ice storm caused a slight decrease in annual ET and GPP, and this ice storm decreased annual mean GPP by0.17g C m-2d-1; Ice storm damage effects on ET and GPP for the off-year were slightly greater than those for the on-year; Relationships between decreases in GPP and terrain factors were more significant than those between decreases in ET and terrain factors. The correlations between decreases in GPP and altitude and slope were positive.
引文
陈先刚,张一平,张小全,等.过去50年中国竹林碳储量变化[J].生态学报,2008,28(11):5218-5227.
    杜华强,周国模,徐小军.竹林生物量碳储量遥感定量估算[M].北京:科学出版社,2012:1-184.
    高培军,桂仁意,黄坚钦,等.毛竹雨雪冰冻灾害主要影响因子的回归分析[J].福建林学院学报,2010,30(2):165-168.
    顾峰雪,于贵瑞,温学发,等.干旱对亚热带人工针叶林碳交换的影响[J].植物生态学报,2008,32(5):1041-1051.
    国家林业局.第六次全国森林资源调查主要结果(1999-2003)[EB/OL]. http://cfdb.forestry.gov.cn: 443/showpdf.action.2006-09-28.
    黄朝法,曾宏达,刘菊容,等.冰雪灾害造成森林乔木层C贮量损失评估与分析——以福建省长汀县为例[J].亚热带资源与环境学报,2009,4(2):60-67.
    黄启民,杨迪蝶,高爱新,等.不同条件下毛竹光合作用的研究[J].竹类研究,1989,8(2):8-18.
    江泽慧.发展低碳经济做大做强竹产业[EB/OL]. http://finance.qq.com/a/20100727/002297.htm. 2010-07-27.
    李意德,吴仲民,曾庆波,等.尖峰岭热带山地雨林生态系统碳平衡的初步研究[J].生态学报,1998,18(4):371-378.
    李正才,傅懋毅,徐德应.竹林生态系统与大气二氧化碳减量[J].竹了研究汇刊,2003,22(4):1-6.
    李正泉,于贵瑞,温学发,等.中国通量观测研究网络(ChinaFLUX)能量平衡闭合状况的评价[J].中国科学D辑地球科学,2004,34(增刊Ⅱ):46-56.
    林华.雨雪冰冻灾害对毛竹林的影响及恢复技术研究综述[J].世界竹藤通讯,2008,6(3):40-43.
    林琼影,胡剑,温国胜,等.天目山毛竹叶冬季光合作用日变化规律[J].福建林学院学报,2008,28(1):61-64.
    林琼影,陈建新,杨淑贞,等.毛竹气体交换特征[J].浙江林学院学报,2008,25(4):522-526.
    刘恩斌,周国模,姜培坤,等.生物量统一模型构建及非线性偏最小二乘辩识——以毛竹为例[J].生态学报,2009,29(10):5561-5569.
    马泽清,王辉民,王绍强,等.雨雪冰冻灾害对中亚热带人工林的影响——以江西省千烟洲为例[J].植物生态学报,2010,34(2):204-212.
    裘福庚.毛竹林大小年及其控制[J].竹子研究汇刊,1984,3(2):62-69.
    阮宏华,姜志林,高苏铭.苏南丘陵主要森林类型碳循环研究—含量与分布规律[J].生态学杂志,1997,16(6):17-21.
    苏文会,范少辉,张文元,等.冰冻雪灾对黄山区毛竹林的损害及影响因字[J].林业科学,2008,44(11):42-49.
    王介民,王维真,奥银焕,等.复杂条件下湍流通量的观测与分析[J].地球科学进展,2007,22(8):791-797.
    温学发,于贵瑞,孙晓敏,等.复杂地形条件下森林植被湍流通量测定分析[J].中国科学D辑地球科学,2004,34(增刊Ⅱ):57-66.
    温学发.中亚热带红壤丘陵人工林生态系统CO2观测及其季节动态特征[D].北京:中国科学院研究生院,2005:1-166.
    徐小军.基于LANDSAT TM影像毛竹林地上部分碳储量估算研究[D].杭州:浙江林学院,2009:1-107.
    尹新华,翁益明,董云富,等.毛竹受雨雪冰冻危害的受损特点[J].浙江林学院学报,2008,25(6):823-827.
    于贵瑞,孙晓敏,等著.陆地生态系统通量观测的原理与方法[M].北京:高等教育出版社,2006:1-506.
    张军辉,韩士杰,孙晓敏,等.冬季强风条件下森林冠层/大气界面开路涡动相关CO2净交换通量的UU*修正[J].中国科学D辑地球科学,2004,34(增刊Ⅱ):77-83.
    张军辉,于贵瑞,韩士杰,等.长白山阔叶红松林通量季节和年际变化特征及控制机制[J].中国科学D辑地球科学,2006,36(增刊Ⅰ):60-69.
    张利阳,温国胜,王圣杰,等.毛竹光响应模型适用性分析[J].浙江农林大学学报,2011,28(2):187-193.
    张依慈,毛燕军.降水异常偏少干旱灾情严重2011年春季(2011年3-5月)浙江天气与气候[J].浙江气象,2011,32(3):47-48.
    赵志平,邵全琴,黄麟.2008年南方特大冰雪冻害对森林损毁的NDVI响应分析——以江西省中部山区林地为例[J].地球信息科学学报,2009,11(4):535-540.
    周国模.毛竹林生态系统中碳储量、固定及其分配与分布的研究[D].杭州:浙江大学,2006:1-149.
    周国模,姜培坤,徐秋芳.竹林生态系统中碳的固定与转化[M].北京:科学出版社,2010:1-214.
    周国模,姜培坤.毛竹林的碳密度和碳贮量及其空间分布[J].林业科学,2004,40(6):20-24.
    周国模,刘恩斌,刘安兴,等.Weibull分布参数辨识改进及对浙江毛竹林胸径年龄分布的测度[J].生态学报,2006b,26(9):2918-2926.
    周国模,刘恩斌,施拥军,等.基于最小尺度的浙江省毛竹生物量精确估算[J].林业科学,2011,47(1):1-5.
    周国模,吴家森,姜培坤.不同管理模式对毛竹林碳贮量的影响[J].北京林业大学学报,2006a,28(6):51-55.
    周国模,徐建明,吴家森,等.毛竹林集约经营过程中土壤活性有机碳库的演变[J].林业科学,2006c,42(6):124-128.
    周文伟,童晓青,周仁爱,等.安吉银坑坞毛竹林长期跟踪调查分析[J].浙江林业科技,2012,32(2):6-11.
    竺肇华.中国热带地区竹藤发展[M].北京:中国林业出版社,2001.
    Anderson MC, Norman JM, Meyers TP, et al. An analytical model for estimating canopy transpiration and carbon assimilation fluxes based on canopy light-use efficiency[J]. Agricultural and Forest Meteorology,2000,101(4):265-289.
    Anthoni P M, Unsworth M H, Law B E, et al. Seasonal differences in carbon and water vapor exchange in young and old-growth ponderosa pine ecosystems[J]. Agricultural and Forest Meteorology,2002,111(3):203-222
    Aubinet M, Chermanne B, Vandenhaute M, et al. Long-term carbon dioxide exchange above a mixed forest in the Belgian Ardennes[J]. Agricultural and Forest Meteorology,2001,108(4):293-315.
    Aubinet M, Grelle A, Ibrom A, et al. Estimates of the annual net carbon and water exchange of forests: the Euroflux methodology[J]. Advance in Ecological Research,2000,30:113-175.
    Aussenac G. Interactions between forest stands and microclimate:Ecophysiological aspects and consequences of silviculture[J]. Annals of Forest Science,2000,57(3):287-301.
    Bahn M, Rodeghiero M, Anderson-Dunn M, et al. Soil respiration in European grasslands in relation to climate and assimilate supply[J]. Ecosystems,2008,11(8):1352-1367.
    Baldocchi D, Falge E, Gu L H, et al. FLUXNET:A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities[J]. Bulletin of the American Meteorological Society,2001,82(11):2415-2434.
    Baldocchi D. Breathing of the terrestrial biosphere:lessons learned from a global network of carbon dioxide flux measurement systems[J]. Australian Journal of Botany,2008,56 (1):1-26.
    Barr A G, Black T A, Hogg E H, et al. Interannual variability in the leaf area index of a boreal Aspen-Hazelnut forest in relation to net ecosystem production[J]. Agricultural and Forest Meteorology,2004,126(3):237-255.
    Barr A G, Griffis T J, Black T A, et al. Comparing the carbon balances of boreal and temperate deciduous forest stands[J]. Canadian Journal of Research,2002,32(5):813-822.
    Bates B C, Kundzewicz W, Wu S, et al. Climate change and water. In:Technical Paper VI of the Intergovernmental Panel on Climate Change[M]. IPCC Secretariat, Geneva,2008:210..
    Beaudet M, Brisson J, Messier C, et al. Effect of a major ice storm on understory light conditions in an old-growth Acer-Fagus forest:Pattern of recovery over seven years[J]. Forest Ecology and Management,2007,242(2):553-557.
    Bernier P Y, Bartlett P, Black T A, et al. Drought constraints on transpiration and canopy conductance in mature aspen and jack pine stands[J]. Agricultural and Forest Meteorology,2006,140(1): 64-78.
    Black TA, den Hartog G, Neumann HH, et al. Annual cycles of water vapor and carbon dioxide fluxes in and above a boreal aspen forest[J]. Global Change Biology,1996,2(3):219-229.
    Blanken P D, Black T A, Neumann H H, et al. Turbulence flux measurements above and below the overstory of a boreal aspen forest[J]. Boundary-Layer Meteorology,1998,89(1):109-140.
    Bonal D, Bosc A, Ponton S, et al. Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana[J]. Global Change Biology,2008,14 (8):1917-1933.
    Bonan G B. Forests and climate change:forcings, feedbacks, and the climate benefits of forests[J]. Science,2008,320(5882):1444-1449.
    Bragg D C, Shelton M G, Zeide B. Impacts and management implications of ice storms on forests in the southern United States[J]. Forest Ecology and Management,2003,186(1):99-123.
    Breda N, Granier A, Aussenac G. Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt.) Liebl.)[J]. Tree Physiology,1995,15(5): 295-306.
    Brohan P, Kennedy J J, Harris I, et al. Uncertainty estimates in regional and global observed temperature changes:A new data set from 1850[J]. Journal of Geophysical Research: Atmospheres,2006,111(D12).
    Cao M, Woodward F 1. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change[J]. Nature,1998,393(6682):249-252.
    Chen J, Jonsson P, Tamura M, et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter[J]. Remote sensing of Environment,2004, 91(3):332-344.
    Chen W J, Black T A, Yang P C, et al. Effects of climatic variability on the annual carbon sequestration by a boreal aspen forest[J]. Global Change Biology,1999,5(1):41-53.
    Chiesi M, Chirici G, Barbati A, et al. Use of BIOME-BGG to simulate Mediterranean forest carbon stocks[J]. iForest-Biogeosciences and Forestry,2011,4(1):121.
    Ciais P, Reichstein M, Viovy N, et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003[J]. Nature,2005,437(7058):529-533.
    Cleugh H A, Leuning R, Mu Q, et al. Regional evaporation estimates from flux tower and MODIS satellite data[J]. Remote Sensing of Environment,2007,106(3):285-304.
    Cramer W, Kicklighter D W, Bondeau A, et al. Comparing global models of terrestrial net primary productivity (NPP):overview and key results[J]. Global Change Biology,1999,5(S1):1-15.
    Cui K, He C. Zhang J, et al. Temporal and spatial profiling of internode elongation-associated protein expression in rapidly growing culms of bamboo[J]. Journal of Proteome Research,2012,11(4): 2492-2507.
    Desai A R, Richardson A D, Moffat A M, et al. Cross-site evaluation of eddy covariance GPP and RE decomposition techniques[J]. Agricultural and Forest Meteorology,2008,148(6):821-838.
    Desai A R, Bolstad P V, Cook B D, et al. Comparing net ecosystem exchange of carbon dioxide between an old-growth and mature forest in the upper Midwest, USA[J]. Agricultural and Forest Meteorology,2005,128(1):33-55.
    Du H, Zhou G, Fan W, et al. Spatial Heterogeneity and Carbon Contribution of Aboveground Biomass of Moso Bamboo by Using Geostatistical Theory[J]. Plant Ecology,2010a, 207(1):131-139.
    Du H, Cui R, Zhou G, et al. The responses of Moso Bamboo (Phyllostachys heterocycla var pubescens) forest aboveground biomass to Landsat TM spectral reflectance and NDVI[J]. Acta Ecologica Sinica,2010b,30(5):257-263.
    DUking R, Gielis J, Liese W. Carbon Flux and Carbon Stock in a Bamboo Stand and their Relevance for Mitigating Climate Change Bamboo Science and Culture[J]. The Journal of the American Bamboo Society,2011,24(1):1-7.
    Ewel K C, Cropper. Jr W P, Gholz H L. Soil CO2 evolution in Florida slash pine plantations. Ⅱ. Importance of root respiration[J]. Canadian Journal of Forest Research,1987,17(4):330-333.
    Falge E, Baldocchi D, Olson R, et al. Gap filling strategies for defensible annual sums of net ecosystem exchange[J]. Agricultural and forest meteorology,2001,107(1):43-69.
    Food and Agriculture Organization of the United Nations. Global Forest Resources Assessment 2010: Main Report[M]. Food and Agriculture Organization of the United Nations,2010.
    Farquhar G D, von Caemmerer S, Berry J A. Models of photosynthesis!J]. Plant Physiology,2001, 125(1):42-45.
    Fisher J B, Tu K P, Baldocchi D D. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites[J]. Remote Sensing of Environment,2008,112(3):901-919.
    Fisher R A, Williams M, COSTA D, et al. The response of an Eastern Amazonian rain forest to drought stress:results and modelling analyses from a throughfall exclusion experiment[J]. Global Change Biology,2007,13(11):2361-2378.
    Foken T, Wichura B. Tools for quality assessment of surface-based flux measurements[J]. Agricultural and Forest Meteorology,1996,78(1):83-105.
    Foroutan-pour K, Dutilleul P, Smith D L. Inclusion of the fractal dimension of leafless plant structure in the Beer-Lambert law[J]. Agronomy Journal,2001,93(2):333-338.
    Gaumont-Guay D, Black T A, Barr A G, et al. Biophysical controls on rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand[J]. Tree Physiology,2008,28(2): 161-171.
    Gilmanov T G, Verma S B, Sims P L, et al. Gross primary production and light response parameters of four Southern Plains ecosystems estimated using long-term CO2-flux tower measurements[J]. Global Biogeochemical Cycles,2003,17(2).
    Glickman T S. Glossary of Meteorology (2nd ed.)[M]. American Meteorological Society, Boston, USA,2000.
    Goldstein A H, Hultman N E, Fracheboud J M, et al. Effects of climate variability on the carbon dioxide, water, and sensible heat fluxes above a ponderosa pine plantation in the Sierra Nevada (CA)[J]. Agricultural and Forest Meteorology,2000,101(2):113-129.
    Goulden M L, Munger J W, Fan S M, et al. Measurements of carbon sequestration by long-term eddy covariance:Methods and a critical evaluation of accuracy [J]. Global change biology,1996, 2(3):169-182.
    Graf A, Weihermiiller L, Huisman JA, et al. Comment on "Global Convergence in the Temperature Sensitivity of Respiration at Ecosystem Level" [J]. Science,2011,331(6022):1265.
    Granier A, Reichstein M, Breda N, et al. Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year:2003[J]. Agricultural and Forest Meteorology,2007,143 (1):123-145.
    Gu L, Baldocchi D, Wofsy S, et al. Response of a Deciduous Forest to the Mount Pinatubo Eruption: Enhanced Photosynthesis[J]. Science,2003,299(5615):2035-2038.
    Gu Y, Belair S, Mahfouf J F, et al. Optimal interpolation analysis of leaf area index using MODIS data[J]. Remote sensing of environment,2006,104(3):283-296.
    Hagen S C, Braswell B H, Linder E, et al. Statistical uncertainty of eddy flux-based estimates of gross ecosystem carbon exchange at Howland Forest, Maine[J]. Journal of Geophysical Research, 2006, 111(D8):D08S03.
    Heinsch F A, Zhao M, Running S W, et al. Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations[J]. Geoscience and Remote Sensing, IEEE Transactions on,2006,44(7):1908-1925.
    Hilker T, Coops N C, Hall F G, et al. A modeling approach for upscaling gross ecosystem production to the landscape scale using remote sensing data[J]. Journal of Geophysical Research,2008, 113(G3):G03006.
    Hollinger D Y, Kelliher F M, Byers J N, et al. Carbon Dioxide Exchange between an Undisturbed Old-Growth Temperate Forest and the Atmosphere[J]. Ecology,1994,75(1):134-150.
    Hollinger D Y, Aber J, Dail B, et al. Spatial and temporal variability in forest-atmosphere CO2 exchange[J]. Global Change Biology,2004,10(10):1689-1706.
    Hooper MC, Arii K, Lechowicz MJ. Impact of a major ice storm on an old-growth hardwood forest[J]. Canadian Journal of Botany,2001,79(1):70-75.
    Horn J E, Schulz K. Identification of a general light use efficiency model for gross primary production[J]. Biogeosciences,2011,8(4):999-1021.
    Howard D M, Howard P J A. Relationships between CO2 evolution, moisture content and temperature for a range of soil types[J]. Soil Biology and Biochemistry,1993,25(11):1537-1546.
    Huang Q M. The research about biomass and photosynthesis of bamboo (Ph. pubescens)[J]. Bamboo Production and Utilization, Proceedings of the Project Group P,1986,5:7-21.
    Hunter 1 R, Wu J. Bamboo biomass[J]. International Network for Bamboo and Rattan (INBAR),2002, 11.
    Ibrom A, Oltchev A, June T, et al. Variation in photosynthetic light-use efficiency in a mountainous tropical rain forest in Indonesia[J]. Tree physiology,2008,28(4):499-508.
    Irland L C. Ice storms and forest impacts[J]. Science of the Total Environment,2000,262(3): 231-242.
    Irvine J, Law BE, Kurpius MR. Coupling of canopy gas exchange with root and rhizosphere respiration in a semi-arid forest[J]. Biogeochemistry,2005,73 (1):271-282.
    Irvine J, Law BE, Martin JG, et al. Interannual variation in soil CO2 efflux and the response of root respiration to climate and canopy gas exchange in mature ponderosa pine[J]. Global Change Biology,2008,14(12):2848-2859.
    Isagi Y, Kawahara T, Kamo K, et al. Net production and carbon cycling in a bamboo Phyllostachys pubescens stand[J]. Plant Ecology,1997,130(1):41-52.
    Isagi Y. Carbon stock and cycling in a bamboo Phyllostachys bambusoides stand[J]. Ecological Research,1994,9(1):47-55.
    Jarvis A J, Stauch V J, Schulz K, et al. The seasonal temperature dependency of photosynthesis and respiration in two deciduous forests[J]. Global Change Biology,2004,10(6):939-950.
    Ju W, Chen J M, Black T A, et al. Modelling multi-year coupled carbon and water fluxes in a boreal aspen forest[J]. Agricultural and Forest Meteorology,2006,140(1):136-151.
    Ju W, Wang S, Yu G, et al. Modeling the impact of drought on canopy carbon and water fluxes for a subtropical evergreen coniferous plantation in southern China through parameter optimization using an ensemble Kalman filter[J]. Biogeosciences,2010,7(3):845-857.
    June T, Evans J R, Farquhar G D. A simple new equation for the reversible temperature dependence of photosynthetic electron transport:a study on soybean leaf[J]. Functional plant biology,2004, 31(3):275-283.
    Kaimal J C, Finnigan J. Atmospheric boundary layer flows:their structure and measurement[M]. New York:Oxford University Press.1994:1-304.
    Kleinhenz V, Midmore D J. Aspects of bamboo agronomy[J]. Advances in agronomy,2001,74: 99-153.
    Onozawa Y, Chiwa M, Komatsu H, et al. Rainfall interception in a moso bamboo (Phyllostachys pubescens) forest[J]. Journal of forest research,2009,14(2):111-116.
    Komatsu H, Onozawa Y, Kume T, et al. Stand-scale transpiration estimates in a Moso bamboo forest: II. Comparison with coniferous forests[J]. Forest Ecology and Management,2010,260(8): 1295-1302.
    Kull O, Broadmeadow M, Kruijt B, et al. Light distribution and foliage structure in an oak canopyfJ]. Trees-Structure and Function,1999,14 (2):55-64.
    Kume T, Onozawa Y, Komatsu H, et al. Stand-scale transpiration estimates in a Moso bamboo forest:(I) applicability of sap flux measurements[J]. Forest Ecology and Management,2010, 260(8):1287-1294.
    Korner C. Leaf diffusive conductances in the major vegetation types of the globe[M]//Ecophysiology of photosynthesis. Springer Berlin Heidelberg,1994:463-490.
    Lafon C W, Graybeal D Y, Orvis K H. Patterns of ice accumulation and forest disturbance during two ice storms in southwestern Virginia[J]. Physical Geography,1999,20(2):97-115.
    Lasslop G, Reichstein M, Papale D, et al. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach:critical issues and global evaluation[J]. Global Change Biology,2010a,16(1):187-208.
    Lasslop G, Reichstein M, Detto M, et al. Comment on Vickers et al:self-correlation between assimilation and respiration resulting from flux partitioning of eddy-covariance CO2 fluxes[J]. Agricultural and Forest Meteorology,2010b,150(2):312-314.
    Law BE, Ryan MG, Anthoni PM. Seasonal and annual respiration of a ponderosa pine ecosystem[J]. Global Change Biology,1999,5 (2):169-182.
    Law BE, Thornton PE, Irvine J, et al. Carbon storage and fluxes in ponderosa pine forests at different developmental stages[J]. Global Change Biology,2001,7 (7):755-777.
    Law B. Carbon dynamics in response to climate and disturbance:recent progress from multi-scale measurements and modeling in AmeriFlux[M]//Plant responses to air pollution and global change. Springer Japan,2005:205-213.
    Lee X, Fuentes J D, Staebler R M, et al. Long-term observation of the atmospheric exchange of CO2 with a temperate deciduous forest in southern Ontario, Canada[J]. Journal of Geophysical Research:Atmospheres,1999,104(D13):15975-15984.
    Lee X. On micrometeorological observations of surface-air exchange over tall vegetation[J]. Agricultural and Forest Meteorology,1998,91(1):39-49.
    Leuning R. Modeling stomatal behavior and photosynthesis of eucalyptusgrandis[J]. Australian Journal of Plant Physiology,1990,17(2):159-175.
    Li R, Werger M J A, During H J, et al. Carbon and nutrient dynamics in relation to growth rhythm in the giant bamboo Phyllostachys pubescens[J]. Plant and Soil,1998,201(1):113-123.
    Li Y, Zhou O, Jiang P, et al. Carbon Accumulation and Carbon Forms in Tissues During the Growth of Young Bamboo (Phyllostachys pubescens) [J]. Botanical Review,2011,77(3):278-286.
    Li Z L, Tang B H, Wu H, et al. Satellite-derived land surface temperature:Current status and perspectives[J]. Remote Sensing of Environment,2013,131:14-37.
    Li Z Q, Yu G R, Wen X F, et al. Energy balance closure at ChinaFLUX sites[J]. Science in China Ser. D Earth Sciences,2005,48(Supp Ⅱ):51-62.
    Liang S, Zheng T, Liu R, et al. Estimation of incident photosynthetically active radiation from Moderate Resolution Imaging Spectrometer data[J]. Journal of Geophysical Research: Atmospheres,2006,111(D15).
    Liese W. Anatomy and utilisation of bamboos[J]. Eur. Bamboo Soc. J.1995,6:5-12.
    Liese W. Bamboo as carbon sink-fact or fiction?[J]. Journal of Bamboo and Rattan,2009,8(3/4): 103-114.
    Likens G E, Dresser B K, Buso D C. Short-term temperature response in forest floor and soil to ice storm disturbance in a northern hardwood forest[J]. Northern Journal of Applied Forestry,2004, 21(4):209-219.
    Lin YM, Peng ZQ, Lin P. Dynamics of leaf mass, leaf area and element retranslocation efficiency during leaf senescence in Phyllostachys pubescens[J]. Acta Botanica Sinica,2004, 46:1316-1323.
    Liu J, Jiang P, Wang H, et al. Seasonal soil CO2 efflux dynamics after land use change from a natural forest to Moso bamboo plantations in subtropical China[J]. Forest Ecology and Management, 2011,262(6):1131-1137.
    Liu Q, Edwards N T, Post W M, et al. Temperature-independent diel variation in soil respiration observed from a temperate deciduous forest[J]. Global Change Biology,2006,12(11): 2136-2145.
    Liu R, Liang S, He H, et al. Mapping incident photosynthetically active radiation from MODIS data over China[J]. Remote Sensing of Environment,2008,112(3):998-1009.
    Lloyd J, Taylor J A. On the temperature dependence of soil respiration[J]. Functional Ecolgy,1994, 8(3):315-323.
    Lobovikov M, Ball L, Guardia M, et al. World bamboo resources:a thematic study prepared in the framework of the global forest resources assessment 2005[M]. FAO,2007:1-87.
    Lou Y, Li Y, Buckingham K, et al. Bamboo and climate change mitigation[M]. Beijing:INBAR, 2010.
    Mahadevan P, Wofsy S C, Matross D M, et al. A satellite-based biosphere parameterization for net ecosystem CO2 exchange:Vegetation Photosynthesis and Respiration Model (VPRM)[J]. Global Biogeochemical Cycles,2008,22(2):GB2005.
    Mahecha M D, Reichstein M, Carvalhais N, et al. Global Convergence in the Temperature Sensitivity of Respiration at Ecosystem Level[J]. Science,2010,329(5993):838-840.
    Massman W J, Lee X. Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges[J]. Agricultural and Forest Meteorology,2002,113(1):121-144.
    McCallum I, Wagner W, Schmullius C, et al. Satellite-based terrestrial production efficiency modeling[J]. Carbon Balance Management,2009,4(8):1-14.
    McCarthy H R, Oren R, Kim H S, et al. Interaction of ice storms and management practices on current carbon sequestration in forests with potential mitigation under future CO2 atmosphere[J]. Journal of Geophysical Research:Atmospheres,2006,111(D15).
    Medlyn B E. Comment on "Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009" [J]. Science,2011,333(6046):1093.
    Meehl G A, Stocker T F, Collins W D, et al. Global climate projections[M]. Climate change,2007: 747-845.
    Meir P, Metcalfe DB, Costa AC, et al. The fate of assimilated carbon during drought:impacts on respiration in Amazon rainforests[J]. Philosophical Transactions of the Royal Society B,2008, 363(1498):1849-1855.
    Melesse A M, Hanley R S. Artificial neural network application for multi-ecosystem carbon flux simulation[J]. Ecological Modelling,2005,189(3-4):305-314.
    Michaelis L, Menten M L. Die kinetik der invertinwirkung[J]. Biochem. z,1913,49(333-369):352.
    Migliavacca M, Reichstein M, Richardson A D, et al. Semiempirical modeling of abiotic and biotic factors controlling ecosystem respiration across eddy covariance sites[J]. Global change biology, 2011,17(1):390-409.
    Migliavacca M, Meroni M, Busetto L, et al. Modeling gross primary production of agro-forestry ecosystems by assimilation of satellite-derived information in a process-based model[J]. Sensors, 2009,9(2):922-942.
    Millward A A, Kraft C E. Physical influences of landscape on a large-extent ecological disturbance: the northeastern North American ice storm of 1998[J]. Landscape Ecology,2004,19(1):99-111.
    Moffat A M, Papale D, Reichstein M, et al. Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes[J]. Agricultural and Forest Meteorology,2007,147(3): 209-232.
    Moncrieff J B, Malhi Y, Leuning R. The propagation of errors in long-term measurements of land-atmosphere fluxes of carbon and water[J]. Global Change Biology,1996,2(3):231-240.
    Monin A S, Obukhov A M. Basic laws of turbulent mixing in the surface layer of the atmosphere[J]. Contrib. Geophys. Inst. Acad. Sci. USSR,1954,24(151):163-187.
    Monteith J L. Evaporation and environment. The state and movement of water in living organisms[C]. Symposium of the society of experimental biology, Vol.19. Cambridge:Cambridge University Press,1964:205-234.
    Mu Q, Heinsch F A, Zhao M, et al. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data[J]. Remote Sensing of Environment,2007,111(4): 519-536.
    Mu Q, Zhao M, Running S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment,2011,115(8):1781-1800.
    Myneni R B, Williams D L. On the relationship between FAPAR and NDVI[J]. Remote Sensing of Environment,1994,49(3):200-211.
    Noormets A, Chen J, Crow T R. Age-dependent changes in ecosystem carbon fluxes in managed forests in northern Wisconsin, USA[J]. Ecosystems,2007,10(2):187-203.
    Noormets A, McNulty S G, DeForest J L, et al. Drought during canopy development has lasting effect on annual carbon balance in a deciduous temperate forest[J]. New Phytologist,2008,179(3): 818-828.
    Norman J M, Garcia R, Verma S B. Soil surface CO2 fluxes and the carbon budget of a grassland[J]. Journal of Geophysical Research:Atmospheres,1992,97(D17):18845-18853.
    Olthof I, King D J, Lautenschlager R A. Mapping deciduous forest ice storm damage using Landsat and environmental data[J]. Remote Sensing of Environment,2004,89(4):484-496.
    Olthof I, King D J, Lautenschlager R A. Overstory and understory leaf area index as indicators of forest response to ice storm damage[J]. Ecological Indicators,2003,3(1):49-64.
    Papale D, Reichstein M, Aubinet M, et al. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique:algorithms and uncertainty estimation[J]. Biogeosciences,2006,3:571-583.
    Parker W C. The effect of ice damage and post-damage fertilization and competition control on understory microclimate of sugar maple (Acer saccharum Marsh) stands[J]. The Forestry Chronicle,2003,79(1):82-90.
    Parr J, Sullivan L, Chen B, et al. Carbon bio-sequestration within phytoliths of economic bamboo species[J]. Global Change Biology,2009,16(10):2661-2667.
    Peters W, Krol MC, van der Werf GR, et al. Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations[J]. Global Change Biology,2010,16 (4):1317-1337.
    Pilegaard K, Hummelshoj P, Jensen N O, et al. Two years of continuous CO2 eddy-flux measurements over a Danish beech forest[J]. Agricultural and Forest Meteorology,2001,107(1): 29-41.
    Potter CS, Randerson JT, Field CB, et al. Terrestrial Ecosystem Production:a Process Model Based on Global Satellite and Surface Data[J]. Global Biogeochemical Cycles,1993,7(4):811-841.
    Raich J W & Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus Series B,1992,44B(2):81-99.
    Reichstein M, Tenhunen J, Roupsard O, et al. Inverse modeling of seasonal drought effects on canopy CO2/H2O exchange in three Mediterranean ecosystems[J]. Journal of Geophysical Research: Atmospheres,2003,108(D23).
    Reichstein M, Falge E, Baldocchi D, et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration:review and improved algorithm[J]. Global Change Biology,2005,11(9):1424-1439.
    Reichstein M, Papale D, Valentini R, et al. Determinants of terrestrial ecosystem carbon balance inferred from European eddy covariance flux sites[J]. Geophysical Research Letters,2007,34 (1):L01402.
    Reichstein M, Rey A, Freibauer A, et al. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices[J]. Global Biogeochemical Cycles,2003,17(4).
    Reichstein M, Tenhunen J, Roupsard O, et al. Inverse modeling of seasonal drought effects on canopy CO2/H2O exchange in three Mediterranean ecosystems[J]. Journal of Geophysical Research-Atmospheres,2003,108 (D23):4726.
    Reichstein M, Tenhunen J D, Roupsard O, et al. Ecosystem respiration in two Mediterranean evergreen Holm Oak forests:drought effects and decomposition dynamics[J]. Functional Ecology,2002,16(1):27-39.
    Reichstein M, Tenhunen JD, Roupsard O, et al. Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites:revision of current hypotheses? [J]. Global Change Biology,2002,8 (10):999-1017.
    Richardson A D, Hollinger D Y. Statistical modeling of ecosystem respiration using eddy covariance data:maximum likelihood parameter estimation, and Monte Carlo simulation of model and parameter uncertainty, applied to three simple models[J]. Agricultural and Forest Meteorology, 2005,131(3):191-208.
    Richardson A D, Braswell B H, Hollinger D Y, et al. Comparing simple respiration models for eddy flux and dynamic chamber data[J]. Agricultural and Forest Meteorology,2006,141(2):219-234.
    Ruimy A, Kergoat L, Bondeau A. Comparing global models of terrestrial net primary productivity (NPP):Analysis of differences in light absorption and light-use efficiency[J]. Global Change Biology,1999,5(S1):56-64.
    Running S W, Coughlan J C. A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes[J]. Ecological Modelling,1988,42(2):125-154.
    Running SW, Hunt ERJ. Generalization of a forest ecosystem process model for other biomes, Biome-BGC, and an application for global scale models In:Ehleringer JR, Field CB (eds) Scaling physiological processes:leaf to globe[M]. Academic, San Diego,1993:141-158.
    Running S W, Baldocchi D D, Turner D P, et al. A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data[J]. Remote Sensing of Environment,1999,70(1):108-127.
    Ryan MG, Law BE. Interpreting, measuring, and modeling soil respiration[J]. Biogeochemistry,2005, 73(1):3-27.
    Sachs L. Angewandte Statistik:Anwendung Statistischer Methoden[M]. Springer, Berlin.1996.
    Samanta A, Costa M H, Nunes EL, et al. Comment on "Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009" [J]. Science,2011, 333(6046):1093.
    Savage K, Davidson E A, Richardson A D, et al. Three scales of temporal resolution from automated soil respiration measurements[J]. Agricultural and Forest Meteorology,2009,149(11): 2012-2021.
    Schwalm C R, Williams C A, Schaefer K, et al. Assimilation exceeds respiration sensitivity to drought:A FLUXNET synthesis[J]. Global Change Biology,2010,16(2):657-670.
    Sellers P J. Canopy reflectance, photosynthesis, and transpiration, Ⅱ The role of biophysics in the linearity of their interdependence[J]. Remote sensing of Environment,1987,21(2):143-183.
    Shi Y J, Xu X J, Du H Q, et al. Remote sensing monitoring of a bamboo forest based on BP neural network[J]. Frontiers of Forestry in China,2009,4(3):363-367.
    Sims DA, Rahman AF, Cordova VD, et al. Midday values of gross CO2 flux and light use efficiency during satellite overpasses can be used to directly estimate eight-day mean flux[J]. Agricultural and Forest Meteorology,2005,131(1):1-12.
    Singh RK, Liu S, Tieszen LL, et al. Estimating seasonal evapotranspiration from temporal satellite images[J]. Irrigation Science,2012,30(4):303-313.
    Smith W H. Ice and forest health[J]. Northern Journal of Applied Forestry,2000,17(1):16-19.
    Song C, Katul G, Oren R, et al. Energy, water, and carbon fluxes in a loblolly pine stand:Results from uniform and gappy canopy models with comparisons to eddy flux data[J]. Journal of Geophysical Research:Biogeosciences,2009,114(G4).
    Stoy P C, Katul G G, Siqueira M, et al. An evaluation of models for partitioning eddy covariance-measured net ecosystem exchange into photosynthesis and respiration[J]. Agricultural and Forest Meteorology,2006,141(1):2-18.
    Sun Y, Gu L, Dickinson R E, et al. Forest greenness after the massive 2008 Chinese ice storm: integrated effects of natural processes and human intervention[J]. Environmental Research Letters,2012,7(3):035702.
    Tang Z, Chambers J L, Guddanti S, et al. Thinning, fertilization, and crown position interact to control physiological responses of loblolly pine[J]. Tree Physiology,1999,19(2):87-94.
    Taylor C J, Pedregal D J, Young P C, et al. Environmental time series analysis and forecasting with the Captain toolbox[J]. Environmental Modelling & Software,2007,22(6):797-814.
    Tian H, Chen G, Zhang C, et al. Century-scale responses of ecosystem carbon storage and flux to multiple environmental changes in the southern United States[J]. Ecosystems,2012,15(4): 674-694.
    Tjoelker M G, Oleksyn J, Reich P B. Modelling respiration of vegetation:evidence for a general temperature-dependent Q10[J]. Global Change Biology,2001,7(2):223-230.
    Tripathi SK & Singh KP. Culm recruitment, dry matter dynamics and carbon flux in recently harvested and mature bamboo savannas in the Indian dry tropics[J]. Ecological Research,1996, 11(2):149-164.
    Van der Molen M K, Dolman A J, Ciais P, et al. Drought and ecosystem carbon cycling[J]. Agricultural and Forest Meteorology,2011,151(7):765-773.
    van der Werf GR, Morton DC, DeFries RS, et al. Estimates of fire emissions from an active deforestation region in the southern Amazon based on satellite data and biogeochemical modeling[J]. Biogeosciences,2009,6 (2):235-249.
    Van Dyke O. A literature review of ice storm impacts on forests in Eastern North America, in Technical Report 112[M]. Ontario Ministry of Natural Resources Southcentral Sciences Section, 1999:1-29.
    van Wijk M T, van Putten B, Hollinger D Y, et al. Comparison of different objective functions for parameterization of simple respiration models[J]. Journal of Geophysical Research: Biogeosciences,2008,113(G3).
    Van't Hoff, J H. Lectures on Theoretical and Physical Chemistry Part Ⅰ Chemical Dynamics (translated by R A Lehfeldt)[M]. Edward Arnold, London.1898:224-229.
    Vetter, M, Churkina, G, Jung, M, et al. Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly using seven models[J]. Biogeosciences,2008,5(2):561-583.
    Vickers D, Thomas C, Martin J, et al. Self-correlation between assimilation and respiration resulting from flux partitioning of eddy-covariance CO2 fluxes[J]. Agricultural and Forest Meteorology, 2009,149(9):1552-1555.
    Wang Y P, Leuning R, Cleugh H A, et al. Parameter estimation in surface exchange models using nonlinear inversion:how many parameters can we estimate and which measurements are most useful?[J]. Global Change Biology,2001,7(5):495-510.
    Webb E K, Pearman G I, Leuning R. Correction of flux measurements for density effects due to heat and water vapour transfer[J]. Quarterly Journal of the Royal Meteorological Society,1980, 106(447):85-100.
    Weeks B C, Hamburg S P, Vadeboncoeur M A. Ice storm effects on the canopy structure of a northern hardwood forest after 8 years[J]. Canadian Journal of Forest Research,2009,39(8): 1475-1483.
    Wilczak J M, Oncley S P, Stage S A. Sonic Anemometer Tilt Correction Algorithms[J]. Boundary-Layer Meteorology,2001,99(1):127-150.
    Wilson K B, Hanson P J, Baldocchi D D. Factors controlling evaporation and energy partitioning beneath a deciduous forest over an annual cycle[J]. Agricultural and Forest Meteorology,2000, 102(2):83-103.
    Wilson K, Goldstein A, Falge E, et al. Energy balance closure at FLUXNET sites[J]. Agricultural and Forest Meteorology,2002,113(1):223-243.
    Wofsy S C, Goulden M L, Munger J W, et al. Net exchange of CO2 in a mid-latitude forest[J]. Science,1993,260(5112):1314-1317.
    World Meteorological Organization. General meteorological standards and recommended practices, Appendix A WMO Technical Regulations[M]. WMO-No.49.1988.
    Xiao JF, Zhuang QL, Baldocchi DD, et al. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data[J]. Agricultural and Forest Meteorology,2008,148(11):1827-1847.
    Xiao JF, Zhuang QL, Law BE, et al. Assessing net ecosystem carbon exchange of US terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations[J]. Agricultural and Forest Meteorology,2011,151(1):60-69.
    Xiao X, Zhang Q, Braswell B, et al. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data[J]. Remote Sensing of Environment, 2004,91(2):256-270.
    Xu X J, Zhou G M, Du H Q, et al. Bamboo forest change and its effect on biomass carbon stocks:a case study of Anji county, Zhejiang province, China[J]. Journal of Tropical Forest Science,2012, 24(3):426-435.
    Xu X, Du H, Zhou G, et al. Estimation of Aboveground Carbon Stock of Moso Bamboo (Phyllostachys heterocycla var pubescens) Forest with a Landsat Thematic Mapper Image[J]. International Journal of Remote Sensing,2011,32(5):1431-1448.
    Young P C. Nonstationary time series analysis and forecasting[J]. Progress in Environmental Science, 1999,1:3-48.
    Young P. Recursive and en-bloc approaches to signal extraction[J]. Journal of Applied Statistics, 1999,26(1):103-128.
    Yuan W, Liu S, Yu G, et al. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data[J]. Remote Sensing of Environment,2010, 114(7):1416-1431.
    Yuan W, Liu S, Zhou G, et al. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes[J]. Agricultural and Forest Meteorology,2007,143(3):189-207.
    Zhang J H, Han S J, Yu G R. Seasonal variation in carbon dioxide exchange over a 200-year-old Chinese broad-leaved Korean pine mixed forest[J]. Agricultural and Forest Meteorology,2006, 137(3):150-165.
    Zhang Y, Rossow W B, Lacis A A, et al. Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets:Refinements of the radiative transfer model and the input data[J]. Journal of Geophysical Research:Atmospheres,2004,109(D19).
    Zhao M, Running S W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009[J]. Science,2010,329(5994):940-943.
    Zhao M, Running S W. Response to comments on "Drought-induced reduction in global terrestrial net primary production from 2000 through 2009"[J]. Science,2011,333(6046):1093-1093.
    Zhao M, Heinsch F A, Nemani R R, et al. Improvements of the MODIS terrestrial gross and net primary production global data set[J]. Remote sensing of Environment,2005,95(2):164-176.
    Zhou B, Li Z, Wang X, et al. Impact of the 2008 ice storm on moso bamboo plantations in southeast China[J]. Journal of Geophysical Research:Biogeosciences,2011,116(G3).
    Zhou G, Jiang P, Mo L. Bamboo:a Possible Approach to the Control of Global Warming[J]. International Journal of Nonlinear Sciences & Numerical Simulation,2009,10(5):547-550.
    Zhou G, Xu J, Jiang P. Effect of Management Practices on Seasonal Dynamics of Organic Carbon in Soils Under Bamboo Plantations[J]. Pedosphere,2006,16(14):525-531.
    Zhou G, Xu X, Du H, et al. Estimating Aboveground Carbon of Moso Bamboo Forests Using the k Nearest Neighbors Technique and Satellite Imagery[J]. Photogrammetric Engineering and Remote Sensing,2011 b,77(11):1123-1131.
    Zhu Y, Ju W, Zhou Y. Impacts of ice storm on forest gross primary productivity detected using multi-source remote sensing data[C]//Geoinformatics,2011 19th International Conference on. IEEE,2011:1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700