用户名: 密码: 验证码:
BODIPY-肼新荧光标记试剂及其测定羰基化合物分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生命科学、环境科学、材料科学的发展,对分析方法的灵敏度和选择性提出了新的要求。高效液相色谱(HPLC)是到目前为止人类掌握的对复杂混合物分离能力最强、分析范围最广的工具之一。然而,由于一些样品中被测组分含量极低或其本身某些物理、化学性质的限制,导致很多化合物不能被灵敏检出或不能直接用于液相色谱分析,因而限制了HPLC的适用范围。化学衍生法是借助化学反应将待测组份接上某种特定基团,从而改善检测方法的灵敏度和选择性以及改善分离效果的方法。由于荧光检测的灵敏度比紫外检测一般要高1-3个数量级,现已成为色谱分离中最常用的超灵敏检测方法之一;因此将荧光试剂的化学衍生法与高效液相色谱-荧光检测(HPLC-FD)相结合实现对被测组分的高效分离与灵敏检测,是提高分析方法的灵敏度和改善分析方法的选择性的重要手段。因而开发性能优异的荧光衍生试剂在色谱分析中具有重要地位。
     羰基化合物在环境、生物体中广泛存在。环境中的某些挥发性醛酮化合物威胁到人类的健康;生物体的某些羰基化合物含量虽少,但却对生命活动有重要影响。因而开展环境、生物体系中的羰基化合物分析具有重要意义。二氟化硼-二吡咯甲烷(BODIPY)是一类具有较高的荧光量子产率(典型0.6-1.0)和摩尔吸光系数(一般60000-80000 M-1cm-1)的荧光团,其荧光强度对PH以及溶剂不敏感,窄的吸收、发射带宽等综合荧光性能已优于荧光素、四甲基罗丹明、得克萨斯红等染料。并且通过结构设计可以调节该染料的荧光量子产率和发射波长。1,3,5,7-四甲基取代的BODIPY,其荧光激发波长在490nm左右,与商业化的氩离子激光器波长(488 nm)相匹配。基于上述思想,本论文设计在1,3,5,7-四甲基取代的BODIPY母核上引入肼功能团,开发用于测定羰基化合物的荧光衍生试剂和建立新的HPLC-FD测定羰基化合物的分析方法。本论文的主要研究内容如下:
     (1)设计、合成了以丙酰肼和丁酰肼为反应基团,以1,3,5,7-四甲基取代的BODIPY为荧光团的两种新型标记羰基的荧光试剂:1,3,5,7-四甲基-8-丙酰肼-二氟化硼-二毗咯甲烷(BODIPY-丙酰肼)和1,3,5,7-四甲基-8-丁酰肼-二氟化硼-二吡咯甲烷(BODIPY-丁酰肼)。并对它们的结构进行了表征并对合成方法进行了探讨。
     (2)对所合成的两种BODIPY-肼试剂(1,3,5,7-四甲基-8-丙酰肼-二氟化硼-二吡咯甲烷和1,3,5,7-四甲基-8-丁酰肼-二氟化硼-二吡咯甲烷)及其与模型醛的衍生产物的荧光性质进行了较系统研究,讨论了各种因素对试剂及其衍生产物荧光性质的影响。实验发现,开发出来的两种BODIPY肼试剂及其与醛(酮)的衍生产物具有相同的荧光激发光谱和荧光发射光谱(λex/λem=495nm/505nm),而且与羰基化合物的衍生产物荧光量子产率高(>0.90),光稳定性好、荧光强度受pH值影响小。这些荧光性质表明开发出来的两种BODIPY肼试剂是一类优秀的羰基化合物衍生试剂,可以进一步用于HPLC-FD。
     (3)分别以1,3,5,7-四甲基-8-丙酰肼-二氟化硼-二吡咯甲烷(BODIPY-丙酰肼)和1,3,5,7-四甲基-8-丁酰肼-二氟化硼-二吡咯甲烷(BODIPY-丁酰肼)为柱前荧光衍生试剂用于高效液相色谱分离荧光检测甲醛、乙醛、丙醛、丁醛、戊醛、已醛、庚醛、辛醛、壬醛、癸醛、十一醛、十二醛等十二种脂肪醛。通过对衍生条件和分离条件进行优化,建立了测定脂肪醛的HPLC-FD的新方法。衍生反应以H3PO4作催化剂,在60℃时试剂与脂肪醛30min内反应完全,生成稳定的衍生产物。采用C18柱分离衍生产物,以含20%THF乙腈和pH6.5的HCOOH-NH3的缓冲溶液为流动相作梯度洗脱,在λex/λem=490nm/510nm下荧光检测,衍生物在17分钟内得到较好的分离。试剂BODIPY-丙酰肼测定脂肪醛的线性范围为0.01-2.00μmolL-1,检测限为0.23-0.78nmol L-1。相对标准偏差值(R.S.D),日内检测为1.2-2.9%,日间检测为1.4-3.1%(平行测定6次,n=6)。该试剂用于白酒中脂肪醛含量测定,加标回收率在95%-105%。试剂BODIPY-丁酰肼测定脂肪醛的线性范围为0.01-1μmol L-1,检测限为0.43-0.69nmol L-1,该试剂用于人血清中脂肪醛含量测定,回收率在96%-105%之间。
     (4)以1,3,5,7-四甲基-8-丁酰肼-二氟化硼-二吡咯甲烷荧光衍生试剂作为柱前衍生试剂,以茉莉酸为检测对象,对衍生条件和分离条件进行了优化,建立了高效液相色谱分离荧光检测植物组织中茉莉酸含量的新方法。试剂与茉莉酸在H3P04催化下60℃反应30min生成稳定衍生产物。采用C18柱分离衍生产物,λex/λem=490/510nm下荧光检测,以含30mmol L-1 pH6.5HCOOH-NH3缓冲溶液的甲醇-水-THF(67:30:3,v/v/v)为流动相作等度洗脱,流速为1ml/min,在11min内能够较好的分离衍生产物,检出限为5.7×10-11mol L-1。该方法简单,重现性好,并将该方法用于植物样品中茉莉酸含量的测定,回收率在97.2-103.6%。
     (5)以1,3,5,7-四甲基-8-丁酰肼-二氟化硼-二吡咯甲烷荧光衍生试剂作为柱前衍生试剂,以茉莉酸甲酯和茉莉酸二氢甲酯为检测对象,对衍生条件和分离条件进行了优化,建立了高效液相色谱分离荧光检测植物组织中两种茉莉酸甲酯含量的新方法。试剂与两种茉莉酸甲酯在H3P04催化下80℃反应2.5h生成稳定衍生产物。采用C18柱分离衍生产物,λex/λem=490/510nm下荧光检测,以含50mmolL-1 pH6.0乙酸-三乙胺缓冲液的甲醇-水(90:10,v/v)为流动相作等度洗脱,流速为0.8ml/min,两种衍生产物在15min内能够较好的分离,线性范围为0.001-0.1μmol L-1,对茉莉酸甲酯和茉莉酸二氢甲酯的检测限分别为0.2nmol L-1和0.3nmol L-1。该方法灵敏度高,重现性好,并将该方法用于植物组织萃取液样品中茉莉酸甲酯和茉莉酸二氢甲酯含量的测定,回收率在92.4-104.4%。
     (6)以BODIPY-丁酰肼为柱前衍生试剂,以9种还原糖(D-葡萄糖、L-鼠李糖、D-甘露糖、D-乳糖、D-果糖、D-核糖、麦芽糖、D-木糖、D-半乳糖)为研究对象,通过对衍生条件和分离条件的优化,建立HPLC-FD测定还原糖的方法。试剂与9种还原糖在H3P04催化下80℃反应2.5h生成稳定衍生产物。采用C18柱分离衍生产物,λex/λem=490/510nm下荧光检测,以含100mmol L-1 pH6.0乙酸-三乙胺缓冲液的乙腈-水(30:10,v/v)为流动相作等度洗脱,流速为0.8ml/min,9种糖衍生产物在30min内能得到较好的分离,线性范围为0.005-0.1μmol L-1,对糖的检测限在为0.2-1.Onmol L-1之间。该方法灵敏度高,重现性好,并将该方法用于人唾液样品中还原糖的测定。
The development of life science, environmental science and materials science put forward new demands on the sensitivity and selectivity of analytical methods in analytical chemistry. High performance liquid chromatography (HPLC) has been enthusiastically and widely used in many fields of industry and scientific research for its powerful separation and analysis capacities. However, there are many compounds which are not suitable to be directly analyzed by HPLC or cannot be sensitively detected by HPLC because of the properties of the corresponding compounds or lacking of strong chromophore. This limits the analytical scope of HPLC and its farther application. Chemical derivatization was adopted to solve the above problems by attaching strong chromophore to the analytes. As fluorescence detection is one of the most sensitive detection technologies in HPLC, derivatization of analytes with fluorescence labeling reagents coupled with HPLC-fluorescence detection (FD) or laser-induced fluorescence detection (LIFD) has been widely adopted. So developing new flurescent derivatization reagents and exploit their application in HPLC is one of the active research areas for HPLC.
     Carbonyl compounds are the ones of most important compounds in nature which exists extensively. They are present in a number of low molecular weight molecules such as drugs, steroid hormones, reducing sugars and some metabolic intermediates such as pyruvate and a-ketoglutarate. Some of carbonyl compounds, such as formaldehyde, acetaldehyde, hexanal, heptanal are harmful to human body, the concentration of them often be the markers of some diseases. Some of carbonyl compounds, such as carbohydrate, progesterone play significant roles in living activities. Therefore, development of fluorescent derivatization reagents for carbonyl compounds in environmental analysis and bioanalysis has important significance.
     Boradiazaindacenes (BODIPY or boradipyrrin dyes) are interesting fluorophores with many applications in fields as diverse as fluorescent labels, chemosensors, light harvesting systems, and photodynamic therapy. Their high quantum yields (typically 0.6-1.0) and large extinction coefficients (60 000-80 000 M-1cm-1) are the two main reasons for their widespread utilization. The typical peak excitation wavelength of an 1,3,5,7-tetramethyl-substituted boradiazaindacene is around 490 nm, which exactly matches the 488 nm argon-ion laser. BODIPY-based hydrazine reagents for labeling carbonyl compounds are developed for this purpose. The major contents in this dissertation are described as follows:
     (1) Two new hydrazine reagents using BODIPY as a fluorophore were designed and synthesized. They were 1,3,5,7-tetramethyl-8-propionohydrazide-difluoroboradiaza-s-indacene (BODIPY-propionohydrazide) and 1,3,5,7-tetramethyl-8-aminozide- difluoroboradiaza-s-indacene (BODIPY-aminozide). The conditions of synthesis have been investigated and the structures of all new compounds are identified with MS and 1H NMR.
     (2) The effect of different environments on the fluorescent properties of new reagents and their derivatives were studied and discussed; the relation between molecule structure and fluorescent properties was discussed; and the feasibility of the application on the HPLC was discussed. The result shows the derivatives of the reagents with carbonyl compounds have good photostability, high extinction coefficient (8.40×104 M-1cm-1) and high fluorescence quantum yields (0.94 in acetonitrile). The spectra of derivatives of carbonyl compounds are also relatively insensitive to solvent polarity and pH because of lack of ionic charge. All of the derivatives have good fluorescent properties and are suited for fluorescent detection in HPLC.
     (3) The newly synthesized BODIPY-based fluorescent derivatization reagents, 1,3,5,7-tetramethyl-8-propionohydrazide-difluoroboradiaza-s-indacene (BODIPY-propionohydrazide) and 1,3,5,7-tetramethyl-8-aminozide-difluoroboradiaza-s-indacene (BODIPY-aminozide), have been used as a pre-column derivatization reagent for the determination of twelve aliphatic aldehydes (C1-C12) with high performance liquid chromatography (HPLC) for the first time. The derivatization reaction of BODIPY-hydrazide reagent with aliphatic aldehydes was completed at 60℃for 0.5 h using phosphorous acid as a catalyst. On a C18 column, the derivatives of twelve aliphatic aldehydes could be seperated in 17 min using a mobile phase of acetonitrile-tetrahydrofuran (THF)-water as mobile phase containing 30 mol L-1 formic acid/ammonia buffer (pH 6.50) with fluorescence detection atλex/λem= 490/510 nm. The detection limits for aliphatic aldehydes could reach 0.23-0.78 nmol L-1 (signal-to-noise=3) with BODIPY-propionohydrazide and 0.43-0.68 nmol L-1 (signal-to-noise=3) with BODIPY-aminozide. The proposed motheds were applied for the determination of the aliphatic aldehydes in wines and human serum samples with good recovery, respectly.
     (4) A highly sensitive and selective high performance liquid chromatographic method for one of signaling phytohormones, jasmonic acid (JA), has been developed based on pre-column derivatization with 1,3,5,7-tetramethyl-8-aminozide-difluoroboradiaza-s-indacene (BODIPY-aminozide). The derivatization reaction was carried out at 60℃for 30 min in the presence of phosphoric acid. The formed JA derivative was eluted using a mobile phase of methanol/ammonium formate buffer (pH 6.50)/tetrahydrofuran (THF) (67:30:3, v/v/v) in 10 min on a C18 column and detected with fluorescence detection at excitation and emission wavelengths of 495 and 505 nm, respectively. The detection limit (signal-to-noise ratio=3) reached 5.7×i0-11mol L-1 or 1.14 fmol per injection (20μL), which is the lowest in the existing methods. Moreover, jasmonic acid in samples could be quantified at an original concentration as low as 5.0×10-10 mol L-1. The proposed method has been successfully applied to the direct determination of trace jasmonic acid in the crude extracts of soybean leaves with recoveries of 95-104%.
     (5) A new method is described for the determination of endogenous methyl Jasmonate (Me-JA) and methyl dihydro-jasmonate (Me-DHJA) in Jasmine extracts using liquid chromatography (LC) with fluorescence detection. Plant tissues were extracted and derivatized using l,3,5,7-tetramethyl-8-aminozide-difluoroboradiaza-s-indacene (BODIPY-aminozide). The derivatization reaction was completed at 80℃for 2.5h in the presence of phosphorous acid catalyst without further transfer steps. Derivatives of Me-JA and Me-DHJA were separated with isocratic elution on a C18 reversed-phase column using methanol-water=90:10 (v/v) containing 50mM acetic acid/triethylamine buffer solution (pH 6.00) as a mobile phase and detected by a fluorescence detector at excitation and emission wavelengths of 490 and 510 nm, respectively. The detection limits of Me-JA and Me-DHJA were 0.2nmol L-1 and 0.3 nmol L-1 (signal-to-noise ratio=3).
     (6) A novel labeling reagent 1,3,5,7-tetramethyl-8-aminozide-difluoroboradiaza-s-indacene (BODIPY-aminozide) coupled with high performance liquid chromatography (HPLC) with fluorescence detection (FD) for the determination of carbohydrates has been developed. The method for the derivatization of carbohydrates with BODIPY-aminozide is simplified. The derivatization reaction was completed at 80℃for 2.5h in the presence of phosphorous acid catalyst without further transfer steps. Nine monosaccharide derivatives such as lactose, maltose, galactose, mannose, glucose, fructose, ribose, xylose and rhamnose can successfully separated using a mobile phase of 25% v/v acetonitrile in 100 mmol L-1 acetic acid/ triethylamine buffer solution (pH 6.00) in 30 min on a C18 column with fluorescence detection (λex/λem=490/510 nm). Good linearity was obtained with a correlation coefficient in the range of 0.9983-0.9999, the limits of detection and quantitation being 0.2-1 nmol L"1 and 4-20 fmol, respectively. Furthermore, the developed method has been successfully applied to the analysis of carbohydrates in human saliva samples.
引文
[1]杨先碧,阮慎康,高效液相色谱发展史,化学通报,1998,11:56-60.
    [2]傅若农,色谱分析概论(第二版),北京:化学工业出版社,2008.
    [3]K.D. Wyndham, J.E. O'Gara, T.H. Walter, Characterization and Evaluation of C18 HPLC Stationary Phases Based on Ethyl-Bridged Hybrid Organic/Inorganic Particles, Anal. Chem.,2003,75:6781-6788.
    [4]H. Minakuchi, Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography, Anal. Chem.,1996,68:3498-3501.
    [5]云自厚,欧阳津,张晓彤,液相色谱检测方法(第二版),北京:化学工业出版社,2005.
    [6]G. Subramanian, Chiral Separation Techniques:A Practical approach, Second, completely revised and updated edition, Wiley-VCH Verlag GmbH,2001.
    [7]汪正范,杨树民,吴侔天,岳卫华,色谱联用技术(第二版),北京:化学工业出版社,2007.
    [8]廖杰,钱小红,董方霆,张养军,色谱在生命科学中的应用,北京:化学工业出版社,2007.
    [9]W.R. LaCourse, Column liquid chromatography:equipment and instrumentation, Anal. Chem.,2002,74,2813-2832.
    [10]R.P.W. Scott, Liquid Chromatography Detectors,2nd, New York:Elsevier Science Publishers B V,1996.
    [11]L.C. Nogueira, F. Silva, I.M. Ferreira, L.C. Trugo, Separation and quantification of beer carbohydrates by high-performance liquid chromatography with evaporative light scattering detection, J. Chromatogr. A,2005,1065:207-210.
    [12]G. Patonay, HPLC Detector Newer Methods, New York:VCH publishers, Inc, 1992.
    [13]E.S. Yeung, Detectors for Liquid Chromatography, New York:John wiley & Sons, Inc,1986.
    [14]R.P.W. Scott, Liquid Chromatography Detectors,2nd, New York:Elsevier Science Publishers B. V.,1986.
    [15]I.D. Wilson, U.A.T. Brinkman, Hyphenation and hypernation:The practice and prospects of multiple hyphenation, J. Chromatogr. A,2003,1000:325-356.
    [16]J.F. Karnicky, L.T. Zitelli, S. Van der Wal, Ultrasonic micronebulizer inferface for high-performance liquid chromatography with flame photometric detector, Anal. Chem.,1987,59:327-333.
    [17]N.A. Santagati, E. Bousquet, A. Spadaro, G. Ronsisvalle, Analysis of aliphatic amines in air samples by HPLC with electrochemical detection, J. Pharm. Biomed. Anal.,2002,29:1105-1111.
    [18]S. Meseguer Lloret, C. Molins Legua, J. Verdu Andres, P. Campins Falco, Sensitive determination of aliphatic amines in water by high-performance liquid chromatography with chemiluminescence detection, J. Chromatogr. A,2004, 1035:75-82.
    [19]R. Hanczko, D. Kutlan, F. Toth, I. Molnar-Perl, Behavior and characteristics of the o-phthaldialdehyde derivatives of n-C6-C8 amines and phenylethylamines with four additive SH-containing reagents, J. Chromatogr. A,2004,1031:51-66.
    [20]S. Udenfriend, Fluorescence Assay in Biology and Medicine, New York: Academic Press,1962.
    [21]A.J.G. Mank, H. Lingeman, C. Gooijer, Diode laser-based detection in liquid chromatography and capillary electrophoresis, Trends Anal. Chem.,1996,15:1-11.
    [22]J.H. Hahn, S.A. Soper, H.L, J.C. Martin, J.H. Jett, R.A. Keller, Laser-Induced Fluorescence Detection of Rhodamine-6G at 6×10-15 M, Appl Spectro.,1991, 45:743-746.
    [23]Y. Lin, Y. Wang, S.Y. Chang, Capillary electrophoresis of aminoglycosides with argon-ion laser-induced fluorescence detection, J. Chromatogr. A.2008, 1188:331-333.
    [24]C.V.S. Babu, B.C. Chung, D.S. Lho, Y.S. Yoo, Capillary electrophoretic competitive immunoassay with laser-induced fluorescence detection for methionine-enkephalin, J. Chromatogr. A,2006,1111:133-138.
    [25]Y. Sun, M. Lu, X. Yin X. Gong, Intracellular labeling method for chip-based capillary electrophoresis fluorimetric single cell analysis using liposomes, J. Chromatogr. A,2006,1135:109-114.
    [26]M. Ryvolova, P. Taborsky, P. Vrabel, P. Krasensky, J. Preisler, Sensitive determination of erythrosine and other red food colorants using capillary electrophoresis with laser-induced fluorescence detection, J. Chromatogr. A.,2007, 1141:206-211.
    [27]H. Lingeman, W.J.M. Underberg, Detection-oriented derivatization techniques in liquid chromatography, New York:Marcel Dekker Inc.1990.
    [28]H. Lingeman, C.D. Ruiter, W.J.M. Underberg, Derivatization in capillary electrophoresis, J. Chromatogr. A,1998,807:3-26.
    [29]H. Lingeman, W.J.M. Underberg, A. Takadate, W.J.M. Underberg, Fluorescence detection in high performance liquid chromatography, J. Liquid Chromatogr,1985, 85:789-874.
    [30]张华山,王红,赵媛媛,分子探针与检测试剂,北京:科学出版社,2002.
    [31]L.R. Snyder, J.J. Kirkland, Introduction to modern liquid chromatography,2nd, New York:Wiely Interscience,1979.
    [32]林炳承,邹雄,韩培祯,高效液相色谱在生命科学中的应用,济南:山东科学技术出版社,1996.
    [33]祝大昌,陈剑鈜,朱世盛,分子发光分析法(荧光法和磷光发),上海:复旦大学出版社,1985.
    [34]蔡亚岐,江桂斌,牟世芬,色谱在环境分析中的应用,北京:化学工业出版社,2009.
    [35]H. Wang, J. Li, X. Liu, T.X. Yang, H.S. Zhang, N-hydroxysuccinimidyl fluorescein-O-acetate as a fluorescent derivatizing reagent for catecholamines in liquid chromatography, Anal. Biochem.,2000,281:15-20.
    [36]X.F. Guo, H. Wang, Y.H. Guo, Z.X. Zhang, H.S. Zhang, Simultaneous analysis of plasma thiols by high-performance liquid chromatography with fluorescence detection using a new probe, 1,3,5,7-tetramethyl-8-phenyl-(4-iodoacetamido)-difluoroboradiaza-s-indacene, J. Chromatogr. A,2009,1216:3874-3880.
    [37]M.L. Li, H. Wang, X. Zhang, H.S. Zhang, Development of a new fluorescent probe:1,3,5,7-tetramethyl-8-(4'-aminophenyl)-4,4-difluoro-4-bora-3a,4a-diaza-s-indacence for the determination of trace nitrite, Spectrochim. Acta, Part A,2004, 60:987-993.
    [38]X. Zhang, R.A. Chi, J. Zou, H.S. Zhang, Development of a novel fluorescent probe for nitric oxide detection:8-(3',4'-diaminophenyl)-difluoroboradiaza-S-indacence, Spectrochim. Acta, Part A,2004,60:3129-3134.
    [39]L.W. Cao, H. Wang, J.S. Li, H.S. Zhang,6-Oxy-(N-succinimidyl acetate)-9-(2'-methoxycarbonyl)fluorescein as a new fluorescent labeling reagent for aliphatic amines in environmental and food samples using high-performance liquid chromatography, J. Chromatogr. A,2005,1063:143-151.
    [40]J.S. Li, H. Wang, K.J. Huang, H.S. Zhang, Determination of biogenic amines in apples and wine with 8-phenyl-(4-oxy-acetic acid N-hydroxysuccinimide ester)-4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene by high performance liquid chromatography, Anal. Chim. Acta,2006,575:255-261.
    [41]X.F. Guo, H. Wang, Y.H. Guo, H.S. Zhang, Selective spectrofluorimetric determination of glutathione in clinical and biological samples using 1,3,5,7-tetramethyl-8-phenyl-(2-maleimide)-difluoroboradiaza-s-indacene, Anal. Chim. Acta,2009,633:71-75.
    [42]K.J. Huang, H. Wang, M. Ma, M.L. Sha, H.S. Zhang, Ultrasound-assisted liquid-phase microextraction and high-performance liquid chromatographic determination of nitric oxide produced in PC12 cells using 1,3,5,7-tetramethyl-2,6-dicarbethoxy-8-(3',4'-diaminophenyl)-difluoroboradiaza-s-indacene, J. Chromatogr. A,2006,1103:193-201.
    [43]N. Zhang, H.S. Zhang, H. Wang, Separation of free amino acids and catecholamines in human plasma and rabbit vitreous samples using a new fluorogenic reagent 3-(4-bromobenzoyl)-2-quinolinecarboxaldehyde with CE-LIF detection, Electrophoresis,2009,30:2258-2265.
    [44]N.N. Fu, H.S. Zhang, M. Ma, H. Wang, Quantification of polyamines in human erythrocytes using a new near-infrared cyanine 1-(epsilon-succinimidyl-hexanoate)-1 '-methyl-3,3,3',3'-tetramethyl-indocarbocyanine-5,5'-disulfonate potassium with CE-LIF detection, Electrophoresis,2007,28:822-829.
    [45]J.S. Li, H. Wang, L.W. Cao, H.S. Zhang,8-Phenyl-(4-oxy-acetic acid N-hydroxysuccinimidyl ester)-4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene as a new highly fluorescent-derivatizing reagent for aliphatic amines in disease-related samples with high-performance liquid chromatography, Talanta,2006, 69:1190-1199.
    [46]Y.H. Deng, H.S. Zhang, H. Wang, Rapid and sensitive determination of phosphoamino acids in phosvitin by N-hydroxysuccinimidyl fluorescein-O-acetate derivatization and capillary zone electrophoresis with laser-induced fluorescence detection, Anal. Bioanal. Chem.,2008,392:231-238.
    [47]X.L. Du, H.S. Zhang, X.F. Guo, Y.H. Deng, H. Wang,6-Oxy-(acetyl piperazine) fluorescein as a new fluorescent labeling reagent for free fatty acids in serum using high-performance liquid chromatography, J. Chromatogr. A,2007,1169:77-85.
    [48]X.L. Du, H.S. Zhang, Y.H. Deng, H. Wang, Design and synthesis of a novel fluorescent reagent,6-oxy-(ethylpiperazine)-9-(2'-methoxycarbonyl) fluorescein, for carboxylic acids and its application in food samples using high-performance liquid chromatography, J. Chromatogr. A,2008,1178:92-100.
    [49]K.J. Huang, C.X. Xu, W.Z. Xie, H.S. Zhang, H. Wang, Ultra-trace determination of S-nitrosothiols in blood samples by spectrofluorimetry with 8-(3',4 '-diaminophenyl)-difluoroboradiaza-s-indacene, Spectrochim. Acta, Part A,2008, 69:437-442.
    [50]J.M. You, Y.C. Shan, L. Zhen, L. Zhang, Y.K. Zhang, Determination of peptides and amino acids from wool and beer with sensitive fluorescent reagent 2-(9-carbazole)-ethyl chloroformate by reverse phase high-performance liquid chromotography and liquid chromotography mass spectrometry, Anal. Biochem., 2003,313:17-27.
    [51]J.M. You, B. Zhang, W.B. Zhang, P.Yang, Y.K. Zhang, Determination of alcohols by high-performance liquid chromatography with fluorimetric detection after pre-column derivatisation with carbazole-9-N-acetic acid and chromatographic behaviour of alcoholic derivatives, J. Chromatogr. A,2001,909:171-182.
    [52]J.M. You, W.B. Zhang, X.L. Jia, Y.K. Zhang, An improved derivatization method for sensitive determination of fatty acids by high-performance liquid chromatography using 9-(2-hydroxylethyl)-carbazole as derivatization reagent with fluorescence detection, Chromatographia,2001,54:316-322.
    [53]J.M. You, Y.K. Zhang, Determination of biogenic Amines by RPHPLC with fluorescent detection after derivatization with 2-(9-carbazole)ethyl chloroformate (CEOC), Chromatographia,2002,56:43-50.
    [54]L.Y. Zhang, J. Xu, L.H. Zhang, W.B. Zhang, Y.K. Zhang, Determination of 1-phenyl-3-methyl-5-pyrazolone-labeled carbohydrates by liquid chromatography and micellar electrokinetic chromatography, J. Chromatogr. B,2003,793:159-165.
    [55]J.M. You, H.X. Zhao, Z.W. Sun, Y.R. Suo, G.C. Chen, 10-Ethyl-acridine-2-sulfonyl Chloride:A New Derivatization Agent for Enhancement of Atmospheric Pressure Chemical Ionization of Estrogens in Urine, Chromatographia, 2009,70:45-55.
    [56]X.E. Zhao, Y.R. Suo, L.Y. Wang, J.M. You, C.X. Ding, Analysis of carbohydrates in a tibetan medicine using new labeling reagent, 1-(2-naphthyl)-3-methyl-5-pyrazolone, by HPLC with DAD detection and ESI-MS identification.J. Liq, Chromatogr. Relat. Technol.,2008,31:2375-2400.
    [57]C.X. Ding, X.J. Sun, X.N. Zhao, W.C. Zhao, Y.L. Li, H.L. Wang, Y.R. Suo, J.M. You, CE determination of 2-(9-carbazole)ethyl chloroformate-labeled oligopeptides, Chromatographia,2008,67:245-251.
    [58]J.M. You, X.M. Chen, X.N. Zhao, Y.R. Su, H.L. Wang, Y.L. Li, J. Sun, Pre-column derivatization of amines with 1,2-benzo-3,4-dihydrocarbazole-9-isopropyl chloroformate followed by LC-fluorescence and LC-APCI-MS, Chromatographia,2006,63:337-343.
    [59]J.M. You, Y.W. Shi, Y.F. Ming, Z.Y. Yu, Y.J. Yi, J.Y. Liu, Development of a sensitive reagent, 1,2-benzo-3,4-dihydrocarbazole-9-ethyl-p-toluenesulfonate, for determination of bile acids in serum by HPLC with fluorescence detection, and identification by mass spectrometry with an APCI source, Chromatographia,2004, 60:527-535.
    [60]J.M. You, Y.C. Shan, L. Zhen, L. Zhang, Y.K. Zhang, Determination of peptides and amino acids from wool and beer with sensitive fluorescent reagent 2-(9-carbazole)-ethyl chloroformate by reverse phase high-performance liquid chromotography and liquid chromotography mass spectrometry, Anal. Biochem., 2003,313:17-27.
    [61]J.M. You, Y.K. Zhang, Determination of biogenic Amines by RPHPLC with fluorescent detection after derivatization with 2-(9-carbazole)ethyl chloroformate (CEOC). Chromatographia,2002,56:43-50.
    [62]J.M. You, W.B. Zhang, X.L. Jia, Y.K. Zhang, An improved derivatization method for sensitive determination of fatty acids by high-performance liquid chromatography using 9-(2-hydroxylethyl)-carbazole as derivatization reagent with fluorescence detection, Chromatographia,2001,54:316-322.
    [63]J.M. You, B. Zhang, W.B. Zhang, P. Yang, Y.K. Zhang, Determination of alcohols by high-performance liquid chromatography with fluorimetric detection after pre-column derivatisation with carbazole-9-N-acetic acid and chromatographic behaviour of alcoholic derivatives, J. Chromatogr. A,2001,909:171-182.
    [64]J.M. You, X.J. Sun, W.J. Lao, Q.Y. Ou,Determination of alcohols using condensation agent carbazole-9-acetyl-benzene-disulfonate by high performance liquid chromatography with pre-column fluorescence derivatization, Chromatographia, 1999,49:657-665.
    [65]J.M. You, W.J. Lao, X.J. Sun, Q.Y. Ou, Carbazole-9-N-acetyl-N-hydroxysuccinimide (CAHS) as precolumn derivatization agent for fluorimetric detection of amino compounds with liquid chromatography, J. Liq. Chromatogr. Relat. Technol.,1999,22:2907-2923.
    [66]J.M. You, W.J. Lao, Q.Y. Ou, X.J. Sun, Fluorescence properties of carbazole-N-(2-methyl)acetyl chloride and determination of amino compounds via high-performance liquid chromatography with pre-column fluorescence derivatization, J. Chromatogr. A,1999,848:117-130.
    [67]J.J. Schauer, M.J. Kleeman, G.R. Cass, B.R.T. Simoneit, Measurement of emissions from air pollution sources.3. C1-C29 organic compounds from fireplace combustion of wood, Environ. Sci. Technol.,2001,35:1716-1728.
    [68]K.L. Olson, S.J. Swarin, Determination of aldehydes and ketones by derivatization and liquid chromatography-mass spectrometry, J. Chromatogr.,1985, 333:337-347.
    [69]A.A. Sawant, S.D. Shah, X. Zhu, J.W.Miller, D.R. Cocker, Real-world emissions of carbonyl compounds from in-use heavy-duty diesel trucks and diesel Back-Up Generators (BUGs), Atmos. Environ.,2007,41:4535-4547.
    [70]A.N. Yu, B.G. Sun, D.T. Tian, W.Y. Qu, Analysis of volatile compounds in traditional smoke-cured bacon (CSCB) with different fiber coatings using SPME, Food Chem.,2008,110:233-238.
    [71]J.M. You, H.F. Zhang, Y.W. Shi, X.N. Zhao, X.M. Chen, Development of a sensitive fluorescent derivatization reagent 1,2-benzo-3,4-dihydrocarbazole-9-ethoxy-carbonylhydrazine and its application for determination of aldehydes from alcoholic beverage using high-performance liquid chromatography with fluorescence detection and enhance mass spectrometric identification, Talanta,2005,66:982-992.
    [72]J.P. Roozen, E.N. Frankel, J.E. Kinsella, Enzymic and autoxidation of lipids in low fat foods:model of linoleic acid in emulsified hexadecane, Food Chem.1994, 50:33-38.
    [73]F. Haslbeck, W. Grosch, J. Firl, Formation of hydroperoxides with unconjugated diene systems during autoxidation and enzymic oxygenation of linoleic acid, Biochim. Biophys. Acta,1983,750:185-193.
    [74]D.A. Pratt, J.H. Mills, N.A. Porter, Theoretical calculations of carbon-oxygen bond dissociation enthalpies of peroxyl radicals formed in the autoxidation of lipids, J. Am. Chem. Soc.,2003,125:5801-5810.
    [75]H.W.S. Chan, G. Levett, Autoxidation of methyl linoleate. Separation and analysis of isomeric mixtures of methyl linoleate hydroperoxides and methyl hydroxylinoleates, Lipids,1977,12:99-104.
    [76]H.W.-S. Chan, G. Levett, Autoxidation of methyl linolenate:Analysis of methyl hydroxylinolenate isomers by high performance liquid chromatography, Lipids,1977, 12:837-840.
    [77]G.S. Wu, R.A. Stein, J.F. Mead, Autoxidation of phosphatidylcholine liposomes, Lipids,1982,17:403-413.
    [78]P. Appelblad, K. Irgum,Separation and detection of neuroactive steroids from biological matrices,J. Chromatogr. A,2002,955:151-182.
    [79]J.M. Anderson, Simultaneous determination of abscisic acid and jasmonic acid in plant extracts using high-performance liquid chromatography, J. Chromatogr.,1985, 330:347-355.
    [80]X. Liu, L. Ma, Y.W. Lin, Y.T. Lu, Determination of abscisic acid by capillary electrophoresis with laser-induced fluorescence detection, J. Chromatogr. A,2003, 1021:209-213.
    [81]L. Pallaroni, C.V. Holst, Determination of zearalenone from wheat and corn by pressurized liquid extraction and liquid chromatography-electrospray mass spectrometry, J. Chromatogr. A,2003,993:39-45.
    [82]L. Annovazzi, V. Cattaneo, S. Viglio, E. Perani, C. Rota, F. Pecora, G.Cetta, M.Silvestri, P. Iadarola, High-performance liquid chromatography and capillary electrophoresis:Methodological challenges for the determination of biologically relevant low-aliphatic aldehydes in human saliva, Electrophoresis,2004, 25:1255-1263.
    [83]G. Speit, P. Schutz, J. Hogel, O. Schmid, Characterization of the genotoxic potential of formaldehyde in V79 cells, Mutagenesis,2007,22:387-394.
    [84]O. Merk, G. Speit, Significance of formaldehyde-induced DNA-protein crosslinks for mutagenesis, Environ. Mol. Mutagen,1998,32:260-268.
    [85]A.R. Sellakumar, S. Lashkin, M. Kuschner, M. Nelson, Assessment of the Carcinogenicity of Formaldehyde, BfR (Federal Institute for Risk Assessment),2006.
    [86]R.E. Albert, A.R. Sellakumar, S. Laskin, M. Kuschner, N. Nelson, C.A.Snyder, Gaseous formaldehyde and hydrogen chloride induction of nasal cancer in the rat, J. Natl. Cancer Inst.,1982,68:597-603.
    [87]A.J. Saladino, J.C. Willey, J.F. Lechner, R.C. Grafstrom, M. LaVeck, C.C. Harris, Effects of Formaldehyde, Acetaldehyde, Benzoyl Peroxide, and Hydrogen Peroxide on Cultured Normal Human Bronchial Epithelial Cells, Cancer Research,1985, 45:2522-2526.
    [88]R.E Barry, J.D McGivan, Acetaldehyde alone may initiate hepatocellular damage in acute alcoholic liver disease, Gut,1985,26:1065-1069.
    [89]F.L. Chung, R. Young, S.S. Hecht, Formation of cyclic 1, N2-propanodeoxyguanosine adducts in DNA upon reaction with acrolein or crotonaldehyde, Cancer Res,1984,44:990-995.
    [90]V. L. Wilson, P. G. Foiles, F.L. Chung, A.C. Povey, A.A. Frank, C.C. Harris, Detection of acrolein and crotonaldehyde DNA adducts in cultured human cells and canine peripheral blood lymphocytes by 32P-postlabeling and nucleotide chromatography, Carcinogenesis,1991,12:1483-1490.
    [91]T.R. Crook, R.L. Souhami, A.E.M. McLean, Cytotoxicity, DNA cross-linking, and single strand breaks induced by activated cyclophosphamide and acrolein in human leukemia cells, Cancer Res.,1986,46:5029-5034.
    [92]C.B. Pocernich, A.L. Cardin, C.L. Racine, C.M. Lauderback, D.A. Butterfield, Glutathione elevation and its protective role in acrolein-induced protein damage in synaptosomal membranes:relevance to brain lipid peroxidation in neurodegenerative disease, Neurochem. Int.,2001,39:141-149.
    [93]G.S. Cooper, K.M. Gilbert, E.L. Greidinger, J.A. James, J.C. Pfau, L. Reinlib, B.C. Richardson, N.R. Rose, Recent Advances and Opportunities in Research on Lupus:Environmental Influences and Mechanisms of Disease. Environmental Health Perspectives,2008,116:695-702.
    [94]E.N. Frankel, Lipid oxidation, Prog. Lipid Res.,1980,19:1-22.
    [95]S. Toyokuni, K. Okamoto, J. Yodoi, H. Hiai, Persistent oxidative stress in cancer, FEBS Lett.,1995,358:1-3.
    [96]S.E. Elbeler, A.J. Clifford, T. Shibamoto, Quanlitative analysis by gas chromatography of volatile carbonyl compounds in expired air from mice and human, J. Chromatogr. B,1997,702:211-215.
    [97]M. Yazanpanah, X. Luo, R. Lau, M. Greenberg, L.J. Fisher, D.C. Lehotay, Cytotoxic aldehydes as possible markers for childhood cancer, Free Radic. Biol. Med., 1997,23:870-878.
    [98]S. Kato, P.J. Burke, D.J. Fenick, D.J. Taatjes, V.M. Bierbaum, T.H. Koch, Mass spectrometric measurement of formaldehyde generated in breast cancer cells upon treatment with anthracycline antitumor drugs, Chem. Res. Toxicol.,2000, 13:509-516.
    [99]S. Kato, G.C. Post, V.M. Bierbaum, T.H. Koch, Chemical Ionization Mass Spectrometric Determination of Acrolein in Human Breast Cancer Cells, Anal. Biochem.,2002,305:251-259.
    [100]N. Li, C.H. Cheng, N, Yao, X.Z. Shen, X.M. Zhang, Determination of acetone, hexanal and heptanal in blood by derivatization with pentafluorobenzyl hydroxylamine followed by headspace sinal-drop microextraction and gas chromatography-mass spectrometry, Anal. Chim. Acta,2005,540:317-323.
    [101]M.P. Salaspuro, Acetaldehyde, microbes and cancer of the digestive tract, Rev. Clin. Lab. Sci.,2003,40:183-185.
    [102]National Research Council, Formaldehyde and Other Aldehydes, National Academic Press, Washington, DC,1981.
    [103]J. Suttnar, L. Masova, E. Dyr, Influence of citrate and EDTA anticoagulants on plasma malondialdehyde concentrations estimated by high performance liquid chromatography, J. Chromatogr. B,2001,751:193-197.
    [104]H. Esterbauer, H. Cheeseman, Lipid peroxidation II:Pathological implications, Chem. Phys.Lipids,1987,45:103-371.
    [105]J. Lang, C. Celotto, H. Esterbauer, Quantitative determination of the lipid peroxidation product 4-hydroxynonenal by high-performance liquid chromatography, Anal. Biothem.,1985,150:369-378.
    [106]J.M. McCord, Human disease, free radicals and the oxidant/antioxidant balance, Clin. Biochem.,1993,26:351-357.
    [107]L.J. Marnett, Lipid peroxidation-DNA damage by malondialdehyde, Mutat. Res.,1999,424:83-95.
    [108]L.J. Marnett, Chemistry and biology of DNA damage by malondialdehyde, IARC Sci. Pub.,1999,150:17-27.
    [109]L.J. Marnett, DNA adducts of alpha,beta-unsaturated aldehydes and dicarbonyl compounds, IARC Sci. Pub.,1994,124:151-163.
    [110]L.J. Marnett, Oxyradicals and DNA damage, Carcinogenesis,2000, 21:361-370.
    [111]B.T. Golding, P.K. Slaich, G. Kennedy, C. Bleasdale, W.P. Watson, Mechanisms of formation of adducts from reactions of glycidaldehyde with 2'-deoxyguanosine and/or guanosine, Chem. Res. Toxicol.,1996,9:147-157.
    [112]G.M. Siu, H.H. Draper, V.E. Valli, Oral toxicity of malonaldehyde:a 90-day study on mice, J. Toxicol. Environ. Health,1983,11:105-119.
    [113]M. Takahashi, H. Okamiya, F. Furukawa, K. Toyoda, H. Sato, K. Imaida, Y. Hayashi, Effects of glyoxal and methyiglyoxal administration on gastric carcinogenesis in Wistar rats after initiation with N-methyl-N'-nitro-N-nitrosoguanidine, Carcinogenesis,1989,10:1925-1927.
    [114]M.P. Kalapos, Methylglyoxal in living organisms:Chemistry, biochemistry, toxicology and biological implications, Toxicol. Lett.,1999,110:145-175.
    [115]R.P. Bird, H.H. Draper, V.E.O. Valli, Toxicological evaluation of malonaldehyde:a 12-month study of mice, J. Toxicol. Environ. Health,1982, 10:897-905.
    [116]S. Baskaran, K.A. Balasubramanian, Toxicity of methylglyoxal towards rat enterocytes and colonocytes, Biochem. Intern.,1990,21:165-174.
    [117]J.L. Smith, C.M. Morases, M.C. Mescher, Jasmonate-and salicylate-mediated plant defense responses to insect herbivores, pathogens and parasitic plants, Pest Manag. Sci.,2009,65:497-503.
    [118]S.M. Wilbert, L.H. Ericsson, Quantification of Jasmonic Acid, Methyl Jasmonate, and Salicylic Acid in Plants by Capillary Liquid Chromatography Electrospray Tandem Mass Spectrometry, Anal. Biochem.,1998,257:186-194.
    [119]J. Engelberth, E.A. Schmelz, Simultaneous quantification of jasmonic acid and salicylic acidin plants by vapor-phase extraction and gas chromatography chemical ionization-mass spectrometry, Anal. Biochem.,2003,312:242-250.
    [120]W. Becker, K. Apel, Isolation and characterization of a cDNA encoding a naval Jasmonate-induced protein of barley (Hordeum vulgare L.), Plant.Mol.Biol.,1992, 19:1065-67.
    [121]M. McConn, J. Browse, The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant, Plant Cell,1996, 8:403-416.
    [122]Y. Cohen, U. Gisi, T. Niderman, Local and systemic protection against Phytop-hthora infestans induced in potato and tomato plants by jasmonic acid and jasmonic methyl ester, Phytopanthology,1993,83:1054-62.
    [123]C. Wasternack, Jasmonates:An update on biosynthesis, signal transduction and action in plant stress responses, growth and development, Ann. Bot.,2007 100:681-697.
    [124]C. Wasternack, I. Stenzel, B. Hause, G. Hause, C. Kutter, H. Maucher, J. Neumerkel, I. Feussner, O. Miersch, The wound response in tomato-role of jasmonic acid, J. Plant Physiol.,2006,163:297-306.
    [125]A. Mandaokar, V.D. Kumar, M. Amway, J. Browse, Microarray and differential display identify genes involved in jasmonate-dependent another development, Plant Mol. Biol.,2003,52:775-786.
    [126]T. Parasassi, G. Destasio, A. Miccheli, F. Bruno, F. Conti, E. Gratton, Abscisic acid-induced microheterogeneity in phospholipid vesicles:A fluorescence study, Biophys. Chem.,1990,35:65-73.
    [127]J. Leung, J. Giraudat, Abscisic acid signal transduction, Annu. Rev. Plant Physiol. Plant Mol. Biol.,1998,49:199-222.
    [128]C. Meurs, A. Narsra, C. Karssen, L. van Loon, Role of abscisic acid in the induction of desiccation tolerance in developing seeds of Arabidopsis thaliana, Plant Physiol.,1992,98:1484-1493.
    [129]L.B. Vysotskaya, A.V. Korobova, G.R. Kudoyarova, Abscisic acid accumulation in the roots of nutrient-limited plants:Its impact on the differential growth of roots and shoots, J. Plant Physiol.,2008,165:1274-1279.
    [130]A.J. Cutler, J.E. Krochko, Formation and breakdown of ABA, Trends Plant Sci, 1999,4:472-478.
    [131]M.L. Carbonell, O. Jauregui, A rapid method for analysis of abscisic acid (ABA) in crude extracts of water stressed Arabidopsis thaliana plants by liquid chromatography-mass spectrometry in tandem mode, Plant Physiol. Biochem.,2005, 43:407-411
    [132]R.A. Dwek, Glycobiology:toward understanding the function of sugars, Chem. Rev.,1996,96:683-720.
    [133]A. Helenius, M. Aebi, Intracellular Functions of N-Linked Glycans, Science, 2001,291:2364-2369.
    [134]M. Bernfield, M. Gotte, P.W. Park, O. Reizes, M.L. Fitzgerald, J. Lincecum, M. Zako, Functions of cell surface heparan sulfate proteoglycans, Annu. Rev. Biochem., 1999,68:729-777.
    [135]K. Sugahara, H. Kitagawa, Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans, Curr. Opin. Struct. Biol.,2000, 10:518-527.
    [136]L. Wells, K. Vosseller, G.W. Hart, Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc, Science,2001,291:2376-2378.
    [137]I. Shin, S. Park, M. Lee, Carbohydrate microarrays:an advanced technology for functional studies of glycans, Chem. Eur. J.,2005,11:2894-2901.
    [138]I. Thom,O. Schult-Kronefeld, I. Burkholder, M. Goern, B. Andritzky, K. Blonski, C. Kugler, L. Edler, C. Bokemeyer, U. Schumacher, Lectin histochemistry of metastatic adenocarcinomas of the lung, Lung Cancer,2007,56:391-397
    [139]A. Femenia, E.S. Sanchez, S. Simal, C. Rossello, Compositional features of polysaccharides from Aloe vera (Aloe barbadensis Miller) plant tissues, Carbohydrate polymers,1999,39:109-117.
    [140]K. Robards, M. Whitelaw, Chromatography of monosaccharides and disaccharides, J. Chromatogr. A,1986,373:81-84.
    [141]A.P. Altshuller, D.L. Miller, S.F. Sleva, Determination of formaldehyde in gas mixtures by the chromotropic acid method, Anal. Chem.,1961,33:621-625.
    [142]E.L.R. Krug, W.E. Hirt, Interference of nitrate in the determination of formaldehyde by the chromotropic acid method, Anal. Chem.,1977,49:1865-1867.
    [143]R.R. Miksch, D.W. Anthon, L.Z. Fanning, C.D. Hollowell, K. Revzan, J. Glanville, Modified pararosaniline method for the determination of formaldehyde in air, Anal. Chem.,1981,53:2118-2123.
    [144]P.E. Georghiou, L. Harlick, B.L.Winsor, D. Snow, Temperature dependence of the modified pararosaniline method for the determination of formaldehyde in air, Anal. Chem.,1983,55:567-570.
    [145]E. Sawicki, T.R. Hauser, T.W. Stanley, W. Elbert, The 3-methyl-2-benzothiazolon-hydrazone test, sensitive new methods for the detection, rapid estimation, and determination of aliphatic aldehydes, Anal. Chem.,1961,33:93-96.
    [146]T.R. Hauser, R.L. Cummins, Increasing the sensitivity of 3-methyl-2-benzoth-iazolone hydrazone test for analysis of aliphatic aldehydes in air, Anal. Chem.,1964, 36:679-681.
    [147]N.W. Jacobsen, R.G. Dickinson, Spectrometric assay of aldehydes as 6-merca-pto-3-substituted-s-triazolo(4,3-b)-s-tetra-zines, Anal. Chem.,1974,46:298-299.
    [148]崔九思,王钦源,王汉平,大气污染检测方法(第二版),北京:化学工业出版社,1997.
    [149]段鸿莺,王建林,向国强,荧光光度法快速测定水溶液中甲醛的研究,华中师范大学学报,2001,35(2):155-158.
    [150]樊静,唐晓基,冯素玲,催化荧光动力学法测定织物中痕量甲醛,分析化学,2002,30(8):942-945.
    [151]黎源倩,甲醛极谱吸附波的研究及分析应用分析化学,1993,21(7):804-807.
    [152]Z. Zhang, H. Zhang, G. He, Preconcentration with membrane cell and adsorptive polarographic determination of formaldehyde in air, Talanta,2002, 57:317-322.
    [153]H.C. Wing, Y.X. Tian, Adsorption voltam-metric determination of μ g L-1 level formaldehyde via in situ derivatization with Girard's reagent, Anal. Chim. Acta,1997, 339:173-179.
    [154]张利华,韦进宝,肖玫,丙烯醛的极谱法测定,上海环境科学,1999,18(3):142-143.
    [155]D. Slawinska, J. Slawinski, Chemiluminescent flow method for determination of formaldehyde, Anal. Chem.,1975,47:2101-2109.
    [156]Z.H. Song, S. Hou, On-line monitoring of formaldehyde in water and air using chemiluminescencedetection, Inter. J. Environ. Anal.Chem.,2003,83:807-817.
    [157]T. Albrecht, J. Notholt, R. Wolke, S. Solberg, C. Dye, H. Malberg, Variations of CH2O and C2H2 determined from ground based FTIR measurements and comparison with model results, Adv. Space. Res.,2002,29:1713-1718.
    [158]张云,洪群发,许国旺,色谱法辅助傅里叶变换红外光谱法用于固定大气醛酮毒物现场检测,分析化学,1998,26(8):950-954.
    [159]S. Takeda, S. Wakita, M. Yamane, K. Higashi, Analysis of lower aliphatic aldehydes in water by micellar electrokinetic chromatography with derivatization to 2,4-dinitrophenylhydrazones, Electrophoresis,1994,151:332-1334.
    [160]A. Asthana, D. Bose, S. Kulshrestha, S.P. Pathak, S.K. Sanghi, W.T. Kok, Determination of aldehydes in water samples by capillary electrophoresis after derivatization with hydrazino benzene sulfonic acid, Chromatographia,1998, 48:807-810.
    [161]P. Marcos, M.P. Lue-Meru, R. Ricardo, Pungency evaluation of onion cultivars from the Venezuelan West-Center region by flow injection analysis UV-visible spectroscopy pyruvate determination, Talanta,2004,64:1299-1303.
    [162]S. M. Leeuwen, L. Hendriksen, U. Karst, Determination of aldehydes and ketones using derivatization with 2,4-dinitrophenylhydrazine and liquid chromatography/atmospheric pressure photoionization-mass spectrometry, J. Chromatogr. A,2004,1058:107-112.
    [163]M. Emmrich, H. Floss, B. Zuhlsdorf, Automated method for determination of glutardialdehyde, J. Chromatogr. B,2003,795:363-370.
    [164]B. Cancho, F. Ventura, M. Galceran, Determination of aldehydes in drinking water using pentafluorobenzylhydroxylamine derivatization and solid-phase microextraction, J. Chromatogr. A.2001,943:1-13.
    [165]W. Wardencki, J. Orlita, J. Namiesnik, Comparison of extraction techniques for gas chromatographic determination of volatile carbonyl compounds in alcohols, Fresenius J. Anal. Chem.2001,369:661-665.
    [166]N. Li, C.H. Deng, X.M. Zhang, Determination of acetone, hexanal and heptanal in blood samples by derivatization with pentafluorobenzyl hydroxylamine followed by headspace single-drop microextraction and gas chromatography mass spectrometry, Anal. Chim. Acta,2005,540:17-323.
    [167]K. Bachmann, I. Haag, K.Y. Han, R.Q. Schimitzer, Determination of Carbonyl Compounds in the ppb range by CE, Fresenius J. Anal. Chem.1993,346:86-788.
    [168]N. klaening, H. Karst, Analytical reliability of carbonyl compound determination using 1,5-dansylhydrazine-derivatization, Fresinius J. Anal. Chem., 1998,362:70-273.
    [169]A. Buldt, R. Lindahl, J.O. Levin, A diffusive sampling device for the determination of formaldehyde in air using N-methyl-4-hydrazino-7-nitrobenzofurazan as reagent, J. Environ. Monit.,1999,1:39-43.
    [170]G. Spiteller, W. Kern, P. Spiteller, Investigation of aldehydic lipid peroxidation products by gas chromatography-mass spectrometry, J. Chromatogr. A,1999, 843:29-98.
    [171]H.J. Zhang, J.F. Huang, B. Lin, Y.Q. Feng, Polymer monolith microextraction with in situ derivatization and its application to high-performance liquid chromatography determination of hexanal and heptanal in plasma, J. Chromatogr. A, 2007,1160:114-119.
    [172]H.J. Zhang, J.F. Huang, H. Wang, Y.Q. Feng, Determination of low-aliphatic aldehyde derivatizatives in human saliva using polymer monolith microextraction coupled to high-performance liquid chromatography, Anal. Chim. Acta,2006, 565:129-135.
    [173]W. Potter, U. Karst, Identification of chemical interferences in aldehyde and ketone determination using dual-wavelength detection, Anal. Chem.,1996, 68:3354-3358.
    [174]G. Zurek, H. Luftmann, U. Karst, HPLC-APCI-MS with calibration based on stable isotope-labelled internal standards for the quantification of carbonyls in air samples, Analyst,1999,124:1291-1295.
    [175]U. Karst, N. Binding, K. Cammann, U. Witting, Interferences of nitrogen dioxide in the determination of aldehydes and ketones by sampling on 2,4-dinitrophenylhydrazine-coated solid sorbent, Fresenius J. Anal. Chem.,1993, 345:48-52.
    [176]A. Buldt, U. Karst,1-Methyl-1-(2,4-dinitrophenyl)hydrazine as a new reagent for the HPLC determination of aldehydes, Anal. Chem.,1997,69:3617-3622.
    [177]N. Binding, W. Muller, U. Witting, Syn/anti isomerization of 2,4-dinitrophenylhydrazones in the determination of airborne unsymmetrical aldehydes and ketones using 2,4-dinitrophenylhydrazine derivation, Fresenius J. Anal. Chem.,1996,356:315-319.
    [178]E.E. Stashenko, M.C. Ferreira, L.G. Sequeda, J.R. Martinez, J.W. Wong, Comparison of extraction methods and detection systems in the gas chromatographic analysis of volatile carbonyl compounds, J. Chromatogr. A,1997,779:360-369.
    [179]D.W. Lehmpuhl, J.W. Birks, New gas chromatographic-electron-capture detection method for the determination of atmospheric aldehydes and ketones based on cartridge sampling and derivatization with 2,4,6-trichlorophenylhydraz-ine, J. Chromatogr. A,1996,740:71-81.
    [180]B. Saidia, E.G. Hammond, Quantification of carbonyls produced by the decomposition of hydroperoxides, J. Am. Oil Chem. Soc.,1989,66:1097-1102.
    [181]M. Axel, R. Christine, F. Klaus, Ion-Pair RP-HPLC determination of sugars, amino sugars, and uronic acids after derivatization with p-aminobenzoic acid, Anal. Chem.,2001,73:2377-2382.
    [182]Y. Sato, M. Suzuki, T. Nirasawa, Microsequencing of glycans using 2-aminobenzamide and MALDI-TOF mass spectrometry occurrence of unique linkage-dependent fragmentation, Anal. Chem.,2000,72:1207-1216.
    [183]F.N. Lamari, R. Kuhn, N.K. Karamanosa, Derivatization of carbohydrates for chromatographic, electrophoretic and mass spectrometric structure analysis, J.Chromatogr. B,2003,793:15-36.
    [184]Z. Huang, T. Prickett, M. Potts, The use of the 2-aminobenzoic acid tag for oligosaccharide gel electrophoresis, Carbohydr. Res.,2000,328:77-83.
    [185]常理文,余兆楼,寡糖的对氨基苯甲酸乙酯衍生物的毛细管电泳分析,分析化学,1996,24(7):750-754.
    [186]蒋可,陈宇东,钟晋贤,高压液相色谱法分离寡糖的对氨基苯甲酸乙酯衍生物,生物化学杂志,1993,9(3):342-346.
    [187]周蓉,齐莉,王雅芬,甘草多糖的分离纯化及高效毛细管电泳分析,分析化学,1999,27(2):245-249.
    [188]常理文,腰锐锋,陈义,单糖的高效毛细管区带电泳定量分析,分析化学,1994,22(1):125-128.
    [189]S. Shigeo, K. Kazuaki, H. Susumu, Comparison of the sensitivities of various derivatives of oligosaccharides in LC/MS with fast atom bombardment and electrospray ionization interfaces, Anal. Chem.,1996,68:2073-2083.
    [190]J.K. Lin, S.S. Wu, Synthesis of dabsylhydrazine and its use in the chromatographic determination of monosaccharides by thin-layer and high-performance liquid chromatography, Ana. Chem.,1987,59:1320-1326.
    [191]A.P. Sherryl, A.C. Luis, Determination of carbohydrates as their dansylhydrazine derivatives by capillary electrophoresis with laser-induced fluorescence detection, Electrophoresis,1996,17:352-358.
    [192]K. Bachmann, I. Haag, K.Y. Han, R.Q. Schmitzer, Determination of carbonyl compounds in the low ppb-range by capillary electrophoresis, Fresenius J Anal. Chem.,1993,346:786-788.
    [193]W. Schmied, M. Przewosnik, K. Bachmann, Determination of traces of aldehydes and ketones in the troposphere via solid phase derivatisation with DNSH, Fresenius Anal. Chem.,1989,335:464-468.
    [194]L. Nondek, R.E. Milofsky, J.W. Birks, Determination of carbonyl compounds in air by HPLC using on-line analyzed microcartridges, fluorescence and chemiluminescence detection, Chromatographia,1991,32:33-39.
    [195]A. Mainka, K. Bachmann, UV detection of derivatized carbonyl compounds in rain samples in capillary electrophoresis using sample stacking and a Z-shaped flow cell, J. Chromatogr. A,1997,767:241-247.
    [196]L. Maestri, S. Ghittori, M. Imbriani, E. Capodaglio, Determination of 2,5-hexandione by high-performance liquid chromatography after derivatization with dansylhydrazine, J. Chromatogr. B.,1994,657:111-117.
    [197]K. Claeson, G. Thorse'n, B. Karlberg, Micellar electrokinetic chromatography separation and laser-induced fluorescence detection of the lipid peroxidation product 4-hydroxynonenal, J. Chromatogr. B,763,2001:133-138.
    [198]M. Hyytiaiinen, P. Appelblad, E. Ponten, M. Stlgbrand, K. Irgum, Hans Jaegfeldt, Trifluoromethanesulfonic acid as a catalyst for the formation of dansylhydrazone derivatives, J. Chromatogr. A,1996,740:279-283.
    [199]N. Binding, H. Klaning, U. Karst, W. Potter, P.A. Czeschinski, U. Witting, Analytical reliability of carbonyl compound determination using 1,5-dansylhydrazine-derivatization, Fresenius J. Anal. Chem.,1998,362:270-273.
    [200]R.E. Zhang, Y.L. Cao, M.W. Hearn, Synthesis and application of Fmoc-hydrazine for the quantitative determination of saccharides by reversed-phase high-performance liquid chromatography in the low and subpicomole range, Anal. Biochem.,1991,196:160-167.
    [201]林启山,张任恩,刘国诠,痕量氨基糖和中性单糖的高效毛细管电泳及液相色谱分析,色谱,1995,13:12-15.
    [202]J. Mao, H. Zhang, J. Luo, L. Li, R. Zhao, R. Zhang, G.Q. Liu, New method for HPLC separation and fluorescence detection of malonaldehyde in normal human plasma, J. Chromatogr. B,2006,832:103-108.
    [203]K. Imai, Y. Watanabe, Fluorimetric determination of secondary amino acids by 7-fluoro-4-nitrobenzo-2-oxa-1,3-diazole, Anal. Chim. Acta,1981:130:377-383.
    [204]S. Uzu, S. Kanda, K. Imai, K. Nakashima, S. Akiyama, Fluorogenic reagents: 4-aminosulphonyl-7-hydrazino-2,1,3-benzoxadiazole,4-(N,N-dimethylamino-sulphonyl)-7-hydrazino-2,1,3-benzoxadiazole and 4-hydrazino-7-nitro-2,1,3-benzoxadiazole hydrazine for aldehydes and ketones, Analyst,1990,115:1477-1482.
    [205]A. Buldt, U. Karst, N-Methyl-4-hydrazino-7-nitrobenzofurazan as a new reagent for air monitoring of aldehydes and ketones, Anal. Chem.,1999, 71:1893-1898.
    [206]N. Jachmann, U. Karst, Synthesis and application of 4-(N,N-dimethylaminosulfonyl)-7-N-methylhydrazino-2,1,3-benzoxadiazole (MDBDH) as a new derivatizing agent for aldehydes, Fresenius J. Anal. Chem.,2001, 369:47-53.
    [207]T. Toyo'oka, Y.M. Liu, Determination of aldehydes by high-performance liquid chromatography with fluorescence detection after labelling with 4-(2-carbazoylpyrrolidin-1-yl)-7-(N,N-dimethylaminosulfonyl)-2,1,3-benzoxadiazole, J. Chromatogr. A,1995,695:11-18.
    [208]Y.M. Liu, J.R. Miao, T. Toyo'oka, Determination of 4-hydroxy-2-nonenal by precolumn derivatization and liquid chromatography with laser fluorescence detection, J. Chromatogr. A,1996,719:450-456.
    [209]Y. Zhang, L.J. Huang, Z.F. Wang, A sensitive derivatization method for the determination of the sugar composition after pre-column reductive amination with 3-Amino-9-ethylcarbazole (AEC) by High-Perfor-mance Liquid Chromatography, Chin. J. Chem.,2007,25:1522-1528.
    [210]C. Kempter, U. Karst, Determination of carbonyl compounds in waters using triazine-based hydrazine reagents and liquid chromatography, Analyst,2000, 125:433-438.
    [211]Z. Liu, H.F. Zou, M.L. Ye, Separation of 4-dimethylamino-6-(4-methoxy-1-naphthyl)-1,3,5-triazine-2-hydrazine derivatives of carbonyl compounds by reversed-phase capillary electrochromatography, Electrophoresis,2001, 22:1298-1304.
    [212]C. Kempter, T.W. Berkhoudt, C.G. Tolb(?)l, K.N. Egmose, U. Karst, Air monitoring of aldehydes by use of hydrazine reagents with a triazine backbone, Anal. Bioanal. Chem.,2002,372:639-643.
    [213]M.J. Nuijens, M. Zomer, A.J.G. Mank, C. Gooijer, N.H. Velthorst, J.W. Hofstraat, A cyanine fluorophore with a hydrazide functionality as labeling reagent for aldehydes in liquid chromatography, Anal. Chim. Acta,1995,311:47-55.
    [214]T. Iwatat, T. Ishimaru, M. Amaguchi,4-(1-Methyl-2-phenanthro [9,10-d] imidazol-2-yl)-benzohydrazide as a derivatization reagent for aldehydes in high-performance liquid chromatography with conventional and laser-induced fluorescence detection, Anal. Sci.,1997,13:501-504.
    [215]M. Katayama, R. Nakane, Y. Matsuda, S. Kaneko, I. Harac, H. Satoc, Determination of progesterone and 17-hydroxyprogesterone by high performance liquid chromatography after pre-column derivatization with 4,4-difluoro-5,7-dimethyl-4-bora-3a,4adiaza-s-indacene-3-propionohydrazide, Analyst,1998,123:2339-2342.
    [216]M.A. Skidmore, S.E. Guimond, A.F. Dumax-Vorzet, A. Atrih, E.A. Yates, J.E. Turnbull, High sensitivity separation and detection of heparan sulfate disaccharides, J. Chromatogr. A,2006,1135:52-56.
    [217]L.A. Gifford, F.T.K. Owusu-Daaku, A.J. Stevens, Acenaphthene fluorescence derivatisation reagents for use in high-performance liquid chromatography, J. Chromatogr. A,1995,715:201-212.
    [218]N. Baggett, M.A. Case, P.R. Darby, CJ. Gray,7-hydroxycoumarin-4-acethydazide:a fluorescent derivatizing reagent for aldehydes and ketones, Anal. Chim.Acta,1992,265:111-115.
    [219]A. Takadate, T. Masuda, C. Murata, A. Isobe, T. Shinollara, M. Irikura, S. goya, A derivatizing reagent-kit using a single coumarin fluorophore, Anal. Sci.,1997, 13:753-756.
    [220]B. Ahn, S.G. Rhee, E.R. Stadtman, Use of fluorescein hydrazide and fluorescein thiosemicarbazide reagents for the fluorometric determination of protein carbonyl groups and for the detection of oxidized protein on polyacrylamide gels, Anal. Biochem.,1987,161:245-257.
    [221]O.W.O. Jr, D.J. Robbins, J. Lynch, D Dottavio-Martin, G. Kramer, B. Hardesty, Distances between 3'ends of ribosomal ribonucleic acids reassembled into Escherichia coli ribosomes, Biochem.,1980,19:5947-5954.
    [222]Y. Tsuruta, H. Tonofaito, Y. Date, E. Sugino, K. Kahashi,4-(2-Phthalimidyl)-benzohydrazide as fluorescent labeling reagent for aliphatic aldehydes in high performance liquid chromatography, Anal. Sci.,1993,9:311-313.
    [223]H. Inoue, J. Yamazakei, E. Suginoh, H. Fujioka, K. Kohashi, Y. Date, Y. Ishii, Y. Tsuruta,4-(5,6-Dimethoxy-2-phthalimidinyl)phenylsulfonyl hydrazide as a fluorescent labeling reagent for determination of aldehydes in HPLC, Anal. Sci.,1997, 13:669-671.
    [224]D.J. Pietrzyk, E.P. Chan, Determination of carbonyl compounds by 2-diphenylacetyl-1,3-indandione-l-hydrazone, Anal. Chem.,1970,42:37-43.
    [225]R.A. Braun, W.A. Mosher, Monohydrazones of 2-Acyl-1,3-indandiones J. Am. Chem. Soc,1958,80:3048-3050.
    [226]J.A. Lee, P.A.G. Fortes, Spatial relationship and conformational changes between the cardiac glycoside site and β-subunit oligosaccharides in sodium plus potassium activated adenosinetriphosphatase, Biochem.,1986,25:8133-8141.
    [227]H. Langhals, W. Jona, The Identification of Carbonyl Compounds by fluorescence:a novel carbonyl-derivatizing reagent, Chem. Eur. J.,1998, 4:2110-2116.
    [228]茅庆文,朱叔韬,毛细管电泳技术对单糖氨基吡啶衍生物的检测,色谱,1994,12:194-196.
    [229]R. Annika, D. Olof, Efficient capillary zone electrophoretic separation of wood-derived neutral and acidic mono-andoligosaccharides, J. Chromatogr. A,1996, 738:129-140.
    [230]A.R. Evangelista, M.S. Liu, F.T. Chen, Characterization of 9-Aminopyrene-1,4,6-trisulfonate derivatized sugars by capillary electrophoresis with laser-induced fluorescence detection, Anal. Chem.,1995,67:2239-2245.
    [231]N. Hiroshi, T. Zenzo, Fluorometric assay of.alpha.-methylene carbonyl compounds with N-methylnicotinamide chloride, Anal. Chem.,1978,50:2047-2051.
    [232]I. Jacobo, M.J. Gonzalez, M. Isabel, Determination of ascorbic and dehydroascorbic acid in lean and fatty fish species by high-performance liquid chromatography with fluorometric detection, European food research and technology, 2006,223:1438-2385.
    [233]C. Zvjezdana, M. Sneana, Fluorescence characteristics of Schiff bases derived from amino-and aminoalkylpyridines, Spectrosc. Lett.,1999,32:181-186.
    [234]M. Vogel, A. Buldt, U. Karst, Hydrazine reagents as derivatizing agents in environmental analysis-a critical review, Fresenius J. Anal. Chem., 2000,366:781-791.
    [235]American Society for Testing and Materials (1992) Standard Test Method for the Determination of Formaldehyde and Other Carbonyl Compounds in Air (Active Sampler Methodology), Designation D 5197-92.
    [236]Environmental Protection Agency (1987) Method for the Determination of Formaldehyde in Ambient Air Using Adsorbent Cartridge Followed by High Performance Liquid Chromatography (HPLC), Method TO-11.
    [237]Environmental Protection Agency (1994) Determination of Carbonyl Compounds by HPLC, EPA Method 8315A 81. Health and Safety Executive (1994) Formaldehyde in Air-Laboratory Method Using a Diffusive Sampler, Solvent Desorption and High-Performance Liquid Chromatography, Methods for the Determination of Hazardous Substances MDSH 78.
    [238]Deutsche Forschungsgemeinschaft (1996) Analytische Methoden zur Prufung gesundheitsschadlicher Arbeitsstoffe-Luftanalysen, Bd.1, Methoden-Nr.1 Aldehyde, Methoden-Nr.2 Aldehyde, VCH Verlagsgesellschaft Weinheim.
    [239]F.N. Lamari, R. Kuhn, N.K. Karamanos, Derivatization of carbohydrates for chromatographic, electrophoretic and mass spectrometric structure analysis, J. Chromatogr. B,2003,793:15-36.
    [240]A. Triebs, F.H. Krrauzer, Uber die Synthese und die Elektronenspektren ms-substituirter Porphyne, Liebigs Ann. Chem.,1968,718:183-207.
    [241]R.P. Haugland, Handbook of Fluorescent Probes and Research Chemicals,6th ed.; Molecular Probes:Eugene, OR,1996.
    [242]B. Hinkeldey, A. Schmitt, G. Jung, Comparative Photostability Studies of BODIPY and Fluorescein Dyes by Using Fluorescence Correlation Spectroscopy, ChemPhysChem,2008,9:2019-2027.
    [243]A. Loudet, K. Burgess, BODIPY Dyes and Their Derivatives:Syntheses and Spectroscopic Properties, Chem. Rev.,2007,107:4891-4932.
    [244]J. Karolin, L.B.A. Johansson, L. Strandberg, T. Ny, Fluorescence and absorption spectroscopic properties of Dipyrrometheneboron Difluoride (BODIPY) derivatives in liquids, lipid membranes, and proteins, J. Am. Chem. Soc.,1994, 116:7801-7806.
    [245]G. Ulrich, R. Ziessel, A. Harriman, The chemistry of fluorescent Bodipy dyes: versatility unsurpassed, Angew. Chem. Int. Ed.,2008,47:1184-1201.
    [1]C. Wasternack, Jasmonates:An update on biosynthesis, signal transduction and action in plant stress responses, growth and development, Ann. Bot.,2007 100:681-697.
    [2]A. Mandaokar, V.D. Kumar, M. Amway, J. Browse, Microarray and differential display identify genes involved in jasmonate-dependent another development, Plant Mol. Biol.,2003,52:775-786.
    [3]A. Helenius, M. Aebi, Intracellular Functions of N-Linked Glycans, Science,2001, 291:2364-2369.
    [4]L. Wells, K. Vosseller, G.W. Hart, Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc, Science,2001,291:2376-2378.
    [5]E.E. Farmer, E. Almeras, V. Krishnamurty, Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory, Curr. Opin. Plant Biol.,2003, 6:372-378.
    [6]H. Nojiri, M. Sugimori, H. Yamane, Y. Nishimura, A. Yamada, N. Shibuya, O. Kodama, N. Murofushi, T. Omori, Involvement of jasmonic acid in elicitor-induced phytoalexin production in suspension-cultured rice cells, Plant Physiol.,1996,110:387-392.
    [7]H. Gundlach, M.J. Muller, T.M. Kutchan, M.H. Zenk, Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures, Proc. Natl. Acad. Sci. USA, 1992,89:2389-2393.
    [8]M. Phillips, K. Gleeson, J.M.B. Hughes, J. Greenberg, R.N. Cataneo, L. Baker, Volatile organic compounds in breath as markers of lung cancer:a cross-sectional study, Lancet,1999,353:1930-1933.
    [9]H.J. O'Neill, S.M. Gordon, M.H. O'Neill, R.D. Gibbons, J.P. Szidon, Computerized classiwcation technique for screening for the presence of breath biomarkers in lung cancer, Clin. Chem.,1988,34:1613-1618.
    [10]S. Gunter, S. Petra, H. Josef and S. Oliver, Characterization of the genotoxic potential of formaldehyde in V79 cells, Mutagenesis,2007,22(6):387-394,
    [11]O. Merk and G. Speit, Significance of formaldehyde-induced DNA-protein crosslinks for mutagenesis, Environ. Mol. Mutagen.,1998,32:260-268.
    [12]张华山,王红,赵媛媛,分子探针与检测试剂,科学出版社,北京,2002.
    [13]K. Yamamoto, K. Hamase, K. Zaitsu,2-amino-3-phenylpyrazine, a sensitive fluorescence prelabeling reagent for the chromatographic or electrophoretic determination of saccharides, J. Chromatogr. A,2003,1004:99-106.
    [14]G. Ulrich, R. Ziessel, A. Harriman, The chemistry of fluorescent Bodipy dyes: versatility unsurpassed, Angew. Chem. Int. Ed.,2008,47:1184-1201.
    [15]J. Karolin, L.B.A. Johansson, L. Strandberg, T. Ny, Fluorescence and absorption spectroscopic properties of Dipyrrometheneboron Difluoride (BODIPY) derivatives in liquids, lipid membranes, and proteins, J. Am. Chem. Soc.,1994, 116:7801-7806.
    [16]B. Hinkeldey, A. Schmitt, G. Jung, Comparative photostability studies of BODIPY and fluorescein dyes by using fluorescence correlation spectroscopy, Chemphyschem,2008,9:2019-2027.
    [17]C.L. Berger, J.S. Craik, D.R. Trentham, J.E. Corrie, Y.E. Goldman, Fluorescence polarization of skeletal muscle fibers labeled with rhodamine isomers on the myosin heavy chain, Biophys. J.,1996,71:3330-3343.
    [18]A. Triebs, F.H. Krrauzer, Uber die Synthese und die Elektronenspektren ms-substituirter Porphyne, Liebigs Ann. Chem.,1968,718:183-207.
    [19]Y. Luo, G.D. Prestwich, Hyaluronic acid-N-hydroxysuccinimide:a useful intermediate for bioconjugation, Bioconjugate Chem.,2001,12:1085-1088.
    [20]Yi Luo, Glenn D. Prestwich, Synthesis and selective cytotoxicity of a hyaluronic acid-antitumor bioconjugate, Bioconjugate Chem.,1999,10:755-763.
    [21]Nikola. Basaric, M. Baruah, W. Qin, B. Metten, M. Smet, W. Dehaen, N. Boens, Synthesis and spectroscopic characterisation of BODIPY(?) based fluorescent off-on indicators with low affinity for calcium, Org. Biomol. Chem.,2005, 3:2755-2761.
    [22]I.I. Mikhalyov, J.G. Molotkovsky, Synthesis and characteristics of fluorescent BODIPY-labeled gangliosides, Russ. J. Bioorg. Chem.,2003,29:168-174.
    [23]P.J. Emmerson, S. Archer, W. EI-Hamouly, A. Mansourc, H. Akil, F. Medzihradsky, Synthesis and Characterization of 4,4-Difluoro-4-bora-3a,4a-Diaza-s-Indacene (BODIPY)-Labeled Fluorescent Ligands for the Mu Opioid Receptor, Biochem. Pharmacol.,1997,54:1315-1322.
    [24]R.P. Haugland, The Handbook-A Guide to FluorescentProbes and Labeling Technologies, Eugene,10th ed.,2005.
    [25]W. Qin, M. Baruah, M. Van der Auweraer, F.C. De Schryver, N. Boens, Photophysical properties of Borondipyrromethene analogues in solution, J. Phys. Chem. A,2005,109:7371-7384.
    [26]M. Baruah, W. Qin, N. Basaric, W.M. De Borggraeve, N. Boens, BODIPY-Based hydroxyaryl derivatives as fluorescent pH probes, J. Org. Chem,2005, 70:4152-4157.
    [27]D. Soulet, L. Covassin, M. Kaouass, R. Charest-Gaudreault, M. Audette, R. Poulin, Role of endocytosis in the internalization of spermidine-C2-BODIPY, a highly fluorescent probe of polyamine transport, Biochem. J.,2002, 367:347-357.
    [28]M.A. Coleman, V.H. Lao, B.W. Segelke, P.T. Beernink, High-throughput, fluorescence-based screening for soluble protein expression, J. Proteome Res., 2004,3:1024-1032.
    [29]R.W. Robey, Y. Honjo, K. Morisaki, T.A. Nadjem, S. Runge, M. Risbood, M.S. Poruchynsky, S.E. Bates, Mutations at amino-acid 482 in the ABCG2 gene affect substrate and antagonist specificity, Br. J. cancer,2003,89:1971-1978.
    [30]H. Takahiro, A. Ryoji, S. Kaori, S. Masahiko, Incorporation of fluorescently labeled nonnatural amino acids into proteins in an E. coli in vitro translation system, Nucleic Acids Symposium Series,2003,3:271-272.
    [31]M. Cornelius, C.G.C.T. Worth, H.C. Kliem, M. Wiessler, H.H. Schmeiser, Detection and separation of nucleoside-5'-monophosphates of DNA by conjugation with the fluorescent dye BODIPY and capillary electrophoresis with laser-induced fluorescence detection, Electrophoresis,2005,26:2591-2598.
    [32]X. Duan, Z. Zhao, J. Ye, H. Ma, A. Xia, G. Yang, C.C. Wang, Donor-donor energy-migration measurements of dimeric DsbC labeled at its N-terminal amines with fluorescent probes:A study of protein unfolding, Angew. Chem. Int. Ed.,2004,43:4216-4219.
    [33]刘忻正,朱晓滨,朱晓玲,寿慧钰,周建荣,丁二酸单乙酯酰氯合成工艺,江苏化工,1998,26:22-23.
    [34]R.L. Hinman, S. Theodorpulos, The Methylpyrroles:synthesis and characterization, J. Org. Chem.,1963,28:3052-3058.
    [35]H.C. Alsoph, H.K. Robert, A Reinvestigation of the configuration of hemin, J. Am. Chem. Soc.,1941,63:1829-1834.
    [36]Z. Li, E. Mintzer, R. Bittman. First Synthesis of Free Cholesterol-BODIPY Conjugates. J. Org. Chem.,2006,71:1718-1721.
    [37]M. Vogel, A.Buldt, U. Karst, Hydrazine reagents as derivatizing agents in environmental analysis-a critical review, Fresenius J. Anal. Chem.,2000, 366:781-791.
    [38]B. Guo, X. Peng, A. Cui, Y. Wu, M. Tian, L. Zhang, X. Chen, Y. Gao, Synthesis and spectral properties of new boron dipyrromethene dyes, Dyes and Pigments, 2007,73:206-210.
    [39]R.Y. Lai, A.J. Bard, Electrogenerated chemiluminescence 71. photophysical, electrochemical, and electrogenerated chemiluminescent, properties of selected dipyrromethene-BF2 dyes, J. Phys. Chem. B,2003,107:5036-5042.
    [40]A. Cui, X. Peng, J. Fan, X. Chen, Y. Wu, B. Guo, Synthesis, spectral properties and photostability of novel boron-dipyrromethene dyes, J. Photochem. Photobiol. A,2007,186:85-92.
    [41]丁瑜,王丽,周智慧,水杨醛缩对羟基苯甲酰肼及其配合物的荧光研究,化学试剂,2008,30:489-492.
    [42]M. Katayama, R. Nakane, Y. Matsuda, S. Kaneko, I. Hara, H. Sato, Determination of progesterone and 17-hydroxyprogesterone by high performance liquid chromatography after pre-column derivatization with 4,4-difluoro-5,7-dimethyl-4-bora-3 a,4adiaza-s-indacene-3-propionohydrazide, Analyst,1998,123:2339-2342.
    [43]M.A. Skidmore, S.E. Guimond, A.F. Dumax-Vorzet, A. Atrih, E.A. Yates, J.E. Turnbull, High sensitivity separation and detection of heparan sulfate disaccharides, J. Chromatogr. A,2006,1135:52-56.
    [44]S.F. Malan, A. van Marle, W.M. Menge, V. Zuliana, M. Hoffman, H. Timmerman, R. Leurs, Fluorescent ligands for the histamine H2 receptor: Synthesis and preliminary characterization, Bioorg, Med. Chem.,2004, 12:6495-6503.
    [45]E. Cuevas-Yane, J.M. Muchowski, R. Cruz-Almanza, Rhodium(Ⅱ) catalyzed intramolecular insertion of carbenoids derived from 2-pyrrolyl and 3-indolyl a-diazo-b-ketoesters and a-diazoketones, Tetrahedron,2004,60:1505-1511.
    [46]J.A. De Groot, G.M. Gorter-La Roy, J.A. Van Koeveringe, J. Lugtenburg, Mild preparation of pyrrole-2-carboxaldehydes, Org. Prep. Proc. Intl.,1981,13:97-101.
    [47]H.C. Kang, R.P. Haugland, Molecular Probes, Inc., US 5338854,1994.
    [1]M.L. Sanz, I. Mart'lnez-Castro, Recent developments in sample preparation for chromatographic analysis of carbohydrates, J. Chromatogr. A,2007,1153:74-89.
    [2]A. Loudet, K. Burgess, BODIPY dyes and their derivatives:Syntheses and spectroscopic properties, Chem. Rev.,2007,107:4891-4932.
    [3]A.P. de Silva, H.Q.N. Gunatatne, T. Gunnlauggson, J.T. Radmancher, T.E. Rice, Signaling Recognition Event with Fluorescent Sensors and Switches, Chem. Rev., 1997,97:1515-1566.
    [4]B.Valeur, I. Leray, Design principles of fluorescent molecular sensors for cation recognition, Coor. Chem. Rev.,2000,205:3-40.
    [5]A.X. Trautwein, Bioionorganic Chemistry, Wiley-VCH, Weinheim,1997.
    [6]S. Speiser, Photophysics and mechanisms of intramolecular electron energy transfer in bichromophoric molecular systems:solution and supersonic jet studies, Chem. Rev.,1996,96:1953-1976.
    [7]Z. Ekmekci, M.D. Yilmaz, E.U. Akkaya, A monostyryl-boradiazaindacene (BODIPY) derivative as colorimetric and fluorescent probe for cyanide ions, Org. Lett.,2008,10:461-464.
    [8]Haugland, R. P. The Handbook. A Guide to FluorescentProbes and Labeling Technologies,10th ed.; Molecular Probes, Inc.:Eugene, OR,2005.
    [9]Y. Gabe, Y. Urano, K. Kikuchi, H. Kojima, Highly sensitive fluorescence probes for nitric oxide based on Boron Dipyrromethene chromophore rational design of potentially useful bioimaging fluorescence probe, J. Am. Chem. Soc.,2004, 126:3357-3367.
    [10]E. Deniz, G.C. Isbasar, O.A. Bozdemir, L.T. Yildirim, A. Siemiarczuk, E.U. Akkaya, Bidirectional switching of near IR emitting Boradiazaindacene fluorophores, Org. Lett.,2008,10:3401-3403.
    [11]A. Coskun, M.D. Yilmaz, E.U. Akkaya, Bis (2-pyridyl)-substituted boratriazaindacene as an NIR-emitting chemosensor for Hg (II), Org. Lett.,2007, 9:607-609.
    [12]C. Goze, G. Ulrich, R. Ziessel, The chemistry of Bodipy:A new El Dorado for fluorescence tools, Org. Lett.,2006,8:4445-4448.
    [13]A. Harriman, L.J. Mallon, S. Goeb, R. Ziessel, A near-IR emitting Bodipy-based dye fitted with ancillary light harvesting units, Phys. Chem. Chem. Phys.,2007, 9:5199-5201.
    [14]M. Yee,; S.C. Fas, M.M. Stohlmeyer, T.J. Wandless, A.K Cimprich, A cell-permeable, activity-based probe for protein and lipid kinases, J. Biol. Chem. 2005,280:29053-29059.
    [15]S. Atilgan, S. Ekmekci, A.L. Dogan, D. Guc, E.U. Akkaya, Water soluble distyryl-boradiazaindacenes as efficient photosensitizers for photodynamic therapy, Chem. Commun.,2006,6:4398-4400.
    [16]T. Toyooka, H.P. Chokshi, R.G. Carlson, R.S. Givens, S.M. Lunte, Oxazole-based tagging reagents for analysis of secondary amines and thiols by liquid chromatography with fluorescence detection, Analyst,1993,118:257-263.
    [17]J. Gao, P. Wang, R.W. Giese, Xanthamide fluorescent dyes, Anal. Chem,2002, 74:6397-6401.
    [18]B. Guo, X. Peng, A. Cui, Y. Wu, M. Tian, L. Zhang, X. Chen, Y. Gao, Synthesis and spectral properties of new boron dipyrromethene dyes, Dyes and Pigments, 2007,73:206-210.
    [19]许金钩,王尊本,荧光分析法(第三版),北京:科学出版社,2006.
    [1]A.N. Yu, B.G. Sun, D.T. Tian, W.Y. Qu, Analysis of volatile compounds in traditional smoke-cured bacon (CSCB) with different fiber coatings using SPME, Food Chem.,2008,110:233-238.
    [2]J.M. You, H.F. Zhang, Y.W. Shi, X.N. Zhao, X.M. Chen, Development of a sensitive fluorescent derivatization reagent 1,2-benzo-3,4-dihydrocarbazole-9-ethoxy-carbonylhydrazine and its application for determination of aldehydes from alcoholic beverage using high-performance liquid chromatography with fluorescence detection and enhance mass spectrometric identification, Talanta,2005,66:982-992.
    [3]J.P. Roozen, E.N. Frankel, J.E. Kinsella, Enzymic and autoxidation of lipids in low fat foods:model of linoleic acid in emulsified hexadecane, Food Chem.1994, 50:33-38.
    [4]F. Haslbeck, W. Grosch, J. Firl, Formation of hydroperoxides with unconjugated diene systems during autoxidation and enzymic oxygenation of linoleic acid, Biochim. Biophys. Acta,1983,750:185-193.
    [5]D.A. Pratt, J.H. Mills, N.A. Porter, Theoretical calculations of carbon-oxygen bond dissociation enthalpies of peroxyl radicals formed in the autoxidation of lipids, J. Am. Chem. Soc.,2003,125:5801-5810.
    [6]L. Annovazzi, V. Cattaneo, S. Viglio, E. Perani, C. Rota, F. Pecora, G.Cetta, M.Silvestri, P. Iadarola, High-performance liquid chromatography and capillary electrophoresis:Methodological challenges for the determination of biologically relevant low-aliphatic aldehydes in human saliva, Electrophoresis,2004, 25:1255-1263.
    [7]H.J. Zhang, J.F. Huang, H. Wang, Y.Q. Feng, Determination of low-aliphatic aldehyde derivatizatives in human saliva using polymer monolith microextraction coupled to high-performance liquid chromatography, Anal. Chim. Acta,2006, 565:129-135.
    [8]Z. Li, B.M. Kozlowski, E.P. Chang, Analysis of aldehydes in excipients used in liquid/semi-solid formulations by gas chromatography-negative chemical ionization mass spectrometry, J. Chromatogr. A,2007,1160:299-305.
    [9]M.P. Salaspuro, Acetaldehyde, microbes and cancer of the digestive tract, Rev. Clin. Lab. Sci.,2003,40:183-185.
    [10]National Research Council, Formaldehyde and Other Aldehydes, National Academic Press, Washington, DC,1981.
    [11]T.R. Crook, R.L. Souhami, A.E.M. McLean, Cytotoxicity, DNA cross-linking, and single strand breaks induced by activated cyclophosphamide and acrolein in human leukemia cells, Cancer Res.,1986,46:5029-5034.
    [12]S. Takeda, S. Wakita, M. Yamane, K. Higashi, Analysis of lower aliphatic aldehydes in water by micellar electrokinetic chromatography with derivatization to 2,4-dinitrophenylhydrazones, Electrophoresis,1994,151:332-1334.
    [13]S.M. Leeuwen, L. Hendriksen, U. Karst, Determination of aldehydes and ketones using derivatization with 2,4-dinitrophenylhydrazine and liquid chromatography/atmospheric pressure photoionization-mass spectrometry, J. Chromatogr. A,2004,1058:107-112.
    [14]B. Cancho, F. Ventura, M. Galceran, Determination of aldehydes in drinking water using pentafluorobenzylhydroxylamine derivatization and solid-phase microextraction, J. Chromatogr. A.2001,943:1-13.
    [15]N. Li, C.H. Deng, X.M. Zhang, Determination of acetone, hexanal and heptanal in blood samples by derivatization with pentafluorobenzyl hydroxylamine followed by headspace single-drop microextraction and gas chromatography mass spectrometry, Anal. Chim. Acta,2005,540:17-323.
    [16]K. Bachmann, I. Haag, K.Y. Han, R.Q. Schimitzer, Determination of Carbonyl Compounds in the ppb range by CE, Fresenius J. Anal. Chem.1993,346:86-788.
    [17]N. klaening, H. Karst, Analytical reliability of carbonyl compound determination using 1,5-dansylhydrazine-derivatization, Fresinius J. Anal. Chem.,1998,362: 70-273.
    [18]A. Buldt, R. Lindahl, J.O. Levin, A diffusive sampling device for the determination of formaldehyde in air using N-methyl-4-hydrazino-7-nitrobenzofurazan as reagent, J. Environ. Monit.,1999,1:39-43.
    [19]R. Pal, K.H. Kim, Experimental choices for the determination of carbonyl compounds in air, J. Sep. Sci.,2007,30:2708-2718.
    [20]W. Schmied, M. Przewosnik, K. Bachmann, Determination of traces of aldehydes and ketones in the troposphere via solid phase derivatisation with DNSH, Fresenius Anal. Chem.,1989,335:464-468.
    [21]K. Bachmann, I. Haag, K.Y. Han, R.Q. Schmitzer, Determination of carbonyl compounds in the low ppb-range by capillary electrophoresis, Fresenius J Anal. Chem.,1993,346:786-788.
    [22]A. Buldt, U. Karst, N-Methyl-4-hydrazino-7-nitrobenzofurazan as a new reagent for air monitoring of aldehydes and ketones, Anal. Chem.,1999,71:1893-1898.
    [1]H.W.S. Chan, G. Levett, Autoxidation of methyl linoleate. Separation and analysis of isomeric mixtures of methyl linoleate hydroperoxides and methyl hydroxylinoleates, Lipids,1977,12:99-104.
    [2]H.W.-S. Chan, G. Levett, Autoxidation of methyl linolenate:Analysis of methyl hydroxylinolenate isomers by high performance liquid chromatography, Lipids,1977, 12:837-840.
    [3]G.S. Wu, R.A. Stein, J.F. Mead, Autoxidation of phosphatidylcholine liposomes, Lipids,1982,17:403-413.
    [4]E.N. Frankel, Lipid oxidation, Prog. Lipid Res.,1980,19:1-22.
    [5]M.P. Salaspuro, Acetaldehyde, microbes and cancer of the digestive tract, Rev. Clin. Lab. Sci.,2003,40:183-185.
    [6]National Research Council, Formaldehyde and Other Aldehydes, National Academic Press, Washington, DC,1981.
    [7]T.R. Crook, R.L. Souhami, A.E.M. McLean, Cytotoxicity, DNA cross-linking, and single strand breaks induced by activated cyclophosphamide and acrolein in human leukemia cells, Cancer Res.,1986,46:5029-5034.
    [8]S. Toyokuni, K. Okamoto, J. Yodoi, H. Hiai, Persistent oxidative stress in cancer, FEBS Lett.,1995,358:1-3.
    [9]S.E. Elbeler, A.J. Clifford, T. Shibamoto, Quanlitative analysis by gas chromatography of volatile carbonyl compounds in expired air from mice and human, J. Chromatogr. B,1997,702:211-215.
    [10]M. Yazanpanah, X. Luo, R. Lau, M. Greenberg, L.J. Fisher, D.C. Lehotay, Cytotoxic aldehydes as possible markers for childhood cancer, Free Radic. Biol. Med., 1997,23:870-878.
    [11]N. Li, C.H. Cheng, N, Yao, X.Z. Shen, X.M. Zhang, Determination of acetone, hexanal and heptanal in blood by derivatization with pentafluorobenzyl hydroxylamine followed by headspace sinal-drop microextraction and gas chromatography-mass spectrometry, Anal. Chim. Acta,2005,540:317-323.
    [12]P. Marcos, M. P. Lue-Meru, R. Ricardo, Pungency evaluation of onion cultivars from the Venezuelan West-Center region by flow injection analysis-UV-visible spectroscopy pyruvate determination, Talanta,2004,64:1299-1303.
    [13]S. M. Leeuwen, L. Hendriksen, U. Karst, Determination of aldehydes and ketones using derivatization with 2,4-dinitrophenylhydrazine and liquid chromatography/atmospheric pressure photoionization-mass spectrometry, J. Chromatogr. A,2004,1058:107-112.
    [14]M. Emmrich, H. Floss, B. Zuhlsdorf, Automated Method for Determination of Glutardialdehyde, J. Chromatogr. B,2003,795:363-370.
    [15]S. Takeda, S. Wakita, M. Yamane, K. Higashi, Analysis of lower aliphatic aldehydes in water by micellar electrokinetic chromatography with derivatization to 2,4-dinitrophenylhydrazones, Electrophoresis,1994,151:332-1334.
    [16]S. M. Leeuwen, L. Hendriksen, U. Karst, Determination of aldehydes and ketones using derivatization with 2,4-dinitrophenylhydrazine and liquid chromatography/atmospheric pressure photoionization-mass spectrometry, J. Chromatogr. A,2004,1058:107-112.
    [17]B. Cancho, F. Ventura, M. Galceran, Determination of aldehydes in drinking water using pentafluorobenzylhydroxylamine derivatization and solid-phase microextraction, J. Chromatogr. A.2001,943:1-13.
    [18]N. Li, C.H. Deng, X.M. Zhang, Determination of acetone, hexanal and heptanal in blood samples by derivatization with pentafluorobenzyl hydroxylamine followed by headspace single-drop microextraction and gas chromatography mass spectrometry, Anal. Chim. Acta,2005,540:17-323.
    [19]K. Bachmann, I. Haag, K.Y. Han, R.Q. Schimitzer, Determination of Carbonyl Compounds in the ppb range by CE, Fresenius J. Anal. Chem.1993,346:86-788.
    [20]N. klaening, H. Karst, Analytical reliability of carbonyl compound determination using 1,5-dansylhydrazine-derivatization, Fresinius J. Anal. Chem.,1998,362: 70-273.
    [21]A. Buldt, R. Lindahl, J.O. Levin, A diffusive sampling device for the determination of formaldehyde in air using N-methyl-4-hydrazino-7-nitrobenzofurazan as reagent, J. Environ. Monit.,1999,1:39-43.
    [22]J.M. You, H.F. Zhang, Y.W. Shi, X.N. Zhao, X.M. Chen, Development of a sensitive fluorescent derivatization reagent 1,2-benzo-3,4-dihydrocarbazole-9-ethoxy-carbonylhydrazine and its application for determination of aldehydes from alcoholic beverage using high-performance liquid chromatography with fluorescence detection and enhance mass spectrometric identification, Talanta,2005,66:982-992.
    [23]R. Pal, K.H. Kim, Experimental choices for the determination of carbonyl compounds in air, J. Sep. Sci.,2007,30:2708-2718.
    [24]N. Binding, H. Klaning, U. Karst, W. Potter, P.A. Czeschinski, U. Witting, Analytical reliability of carbonyl compound determination using 1,5-dansylhydrazine-derivatization, Fresenius J. Anal. Chem.,1998,362:270-273.
    [1]P.J. Davies, in:P.J. Davis (Ed.), The plant hormones:their nature, occurrence, and functions., Kluwer Academic Publishers, Netherlands,1995.
    [2]P.J. Davies, in:P.J. Davis (Ed.), The plant hormones:their nature, occurrence, and functions., Kluwer Academic Publishers, Netherlands,2004.
    [3]Crozier, Y. Kamiya, G. Bishop, T. Yokota, in:B.B. Buchanan, W. Gruissem, R.L. Jones (Eds.), Biosynthesis of Hormones and Elicitor Molecules, American Society of Plant Physiologists, Maryland,2000.
    [4]F.W. Went, Wuchstoff und Wachstum, Rec. Trav. Bot. Neerland,1928,25:1-116.
    [5]M.D. Grove, G.F. Spencer, W.K. Rohwedder, N. Mandava, J.F. Worley, J.D.Jr. Warthen, G.L. Steffens, J.L. Flippen-Anderson, J.C.Jr. Cook, A.R.S. USDA, Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen, Nature,1979,281:216-217.
    [6]G. Pearce, D. Strydom, S. Johnson, C.A. Ryan, A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins, Science,1991,253:895-897.
    [7]J Ueda, J. Kato, Isolation and identification of senescence-promoting substance from wormwood (A rtemisia absinthium L.), Plant Physiolcgy,1980,66:246-249.
    [8]A. Meyer, O. Miersch, C. Biittner, W. Dathe, G. Sernbdner, Occurrence of the plant growth regulator jasmonic acid in plants, J. Plant Growth Regul.,1984,3:1-8.
    [9]R.A. Creelman, J.E. Mullet, Oligosaccharins, brassinolides, and jasmonates: nontraditional regulators of plant growth, development, and gene expression, Plant Cell,1997,9:1211-1223.
    [10]C. Wasternack, Jasmonates:An update on biosynthesis, signal transduction and action in plant stress response, Growth and Development, Ann. Bot.,2007, 100:681-697.
    [11]C. Wasternack, B. Parthier, Jasmonate-signalled plant gene expression, Trends Plant Sci.,2007,2:302-307.
    [12]C. Wasternack, I. Stenzel, B. Hause, G. Hause, C. Kutter, H. Maucher, J. Neumerkel, I. Feussner, O. Miersch, The wound response in tomato-role of jasmonic acid, J Plant Physiol.,2006,163:297-306.
    [13]H. Gundlach, M.J. Miiller, T.M. Kutchan, M.H. Zenk. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures, Proc. Natl. Acad. Sci. USA,1992, 89:2389-2393.
    [14]J.M. Anderson, Jasmonic acid-dependent increases in the level of specific polypeptides in soybean suspension cultures and seedlings, J. Plant Growth Regul., 1988,7:203-211.
    [15]J. Ludwig-Muller, R. Bennett, J. Garci'a-Garrido, Y. Piche', H. Vierheilig, Reduced arbuscular mycorrhizal root colonization in Tropaeolum majus and Carica papaya after jasmonic acid application cannot be attributed to increased glucosinolate, J. Plant Physiol.,2002,159:517-523.
    [16]S.M. Wilbert, L.H. Ericsson, M.P. Gordon, Quantification of jasmonic acid, methyl jasmonate, and salicylic acid in plants by capillary liquid chromatography electrospray tandem mass spectrometry, Anal. Biochem.,1998,257:186-194.
    [17]R.A. Creelman, M.L. Tierney, J.E. Mullet, Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression, Proc. Natl. Acad. Sci. USA,1992,89:4938-4941.
    [18]H.D. Knofel, C. Bruckner, R. Kramell, G. Sembdner, K. Schreiber, Radioimmunoassay for the natural plant growth growth regulator (-)-jasmonic acid, Biochem. Physiol. Pflanzen.,1990,186:387-394.
    [19]T. Albrecht, A. Kehlen, K. Stahl, H.D. Knofel, G. Sembdner, E.W. Weiler, Quantification of rapid, transient increases in jasmonic acid in wounded plants using a monoclonal antibody, Planta,1993,191:86-94.
    [20]J. Engelberth, E.A. Schmelz H.T. Alborn, Y.J. Cardoza, J. Huang, J.H. Tumlinson, Simultaneous quantification of jasmonic acid and salicylic acidin plants by vapor-phase extraction and gas chromatography chemical ionization-mass spectrometry, Anal. Biochem.,2003,312:242-250.
    [21]C. Zadra, A. Borgogni, C. Marucchini, Quantification of jasmonic acid by SPME in tomato plants stressed by ozone, J. Agric. Food Chem.,2006,54:9317-9321.
    [22]C. Birkemeyer, A. Kolasa, J. Kopka, Comprehensive chemical derivatization for gas chromatography-mass spectrometry-based multi-targeted profiling of the major phytohormones, J. Chromatogr. A,2003,993:89-102.
    [23]H. Nojiri, H. Yamane, H. Seto, I. Yamaguchi, N. Murofushi, T. Yoshihara, H. Shibaoka, Qualitative and Quantitative Analysis of Endogenous Jasmonic Acid in Bulbing and Non-Bulbing Onion Plants, Plant Cell Physiol.,1992,33:1225-1231.
    [24]X. Pan, R. Welti, X. Wang, Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography-electrospray tandem mass spectrometry, Phytochemistry,2008,69:1773-1781.
    [25]M. Sibylle, Wilbert, H Lowell, Ericsson, Quantification of jasmonic acid, methyl jasmonate, and salicylic acid in plants by capillary liquid chromatography Electrospray Tandem Mass Spectrometry, Anal. Biochem.,1998,257:186-194.
    [26]G. Segarra,O. Jauregui, E. Casanova, I. Trillas, Simultaneous quantitative LC-ESI-MS/MS analyses of salicylic acid and jasmonic acid in crude extracts of Cucumis sativus under biotic stress, Phytochemistry,2006,67:395-401.
    [27]J.M. Anderson. Simultaneous determination of abscisic acid and jasmonic acid in plant extracts using high-performance liquid chromatography. J. Chromatogr.1985, 330:347-355.
    [28]J. Kristl, M. Veber, B. Krajnicic, K. Oresnik, Determination of jasmonic acid in Lemna minor (L.) by liquid chromatography with fluorescence detection, Anal. Bioanal. Chem.,2005,383:886-893.
    [29]Z.L. Zhang, X. Liu, D.F. Li, Y.T. Lu, Determination of jasmonic acid in bark extracts from Hevea brasiliensis by capillary electrophoresis with laserinduced fluorescence detection, Anal. Bioanal. Chem.,2005,382:1616-1619.
    [30]X. liu, L. Ma, Y.W. Lin, Y.T. Lu, Determination of abscisic acid by capillary electrophoresis with laser-induced fluorescence detection, J. Chromatogr. A,2003, 1021:209-213.
    [31]M. Katayama, R. Nakane, Y. Matsuda, S. Kaneko, I. Harac, H. Sato, Determination of progesterone and 17-hydroxyprogesterone by high performance liquid chromatography after pre-column derivatization with 4,4-difluoro-5,7-dimethyl-4-bora-3a,4adiaza-s-indacene-3-propionohydrazide, Analyst,1998,123, 2339-2342.
    [1]E. Demole, E. Lederer, D. Mercier, Isolement et determination de la structure du jasmonate de methyle, constituant odorant caracteristique de l'essence de jasmine, Helv. Chim. Acta,1962,45:675-685.
    [2]J. J. Cheong, Y. D. Choi, Methyl jasmonate as a vital substance in plants, Trends Genet.,2003,19,409-413.
    [3]C. Wasternack, Jasmonates:An update on biosynthesis, signal transduction and action in plant stress responses, growth and development, Ann. Bot.,2007 100:681-697.
    [4]C. Wasternack, I. Stenzel, B. Hause, G. Hause, C. Kutter, H. Maucher, J. Neumerkel, I. Feussner, O. Miersch, The wound response in tomato-role of jasmonic acid, J. Plant Physiol.,2006,163:297-306.
    [5]A. Mandaokar, V.D. Kumar, M. Amway, J. Browse, Microarray and differential display identify genes involved in jasmonate-dependent another development, Plant Mol. Biol.,2003,52:775-786.
    [6]E.E. Farmer, E. Almeras, V. Krishnamurty, Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory, Curr. Opin. Plant Biol.,2003, 6:372-378.
    [7]C. Wasternack, Jasmonates:an update on biosynthesis, signal transduction and action in plant stress response, growth and development, Ann. Bot.,2007, 100:681-697.
    [8]H. Weber, Fatty acid-derived signals in plants, Trends Plant Sci.,2002,7: 217-224.
    [9]H. Gundlach, M.J. Muller, T.M. Kutchan, M.H. Zenk, Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures, Proc. Natl. Acad. Sci. USA,1992, 89:2389-2393.
    [10]H. Nojiri, M. Sugimori, H. Yamane, Y. Nishimura, A. Yamada, N. Shibuya, O. Kodama, N. Murofushi, T. Omori, Involvement of jasmonic acid in elicitor-induced phytoalexin production in suspension-cultured rice cells, Plant Physiol.,1996, 110:387-392.
    [11]P.J. O'Donnell, E. Schmelz, A. Block, O. Miersch, C. Wasternack, J.B. Jones, H.J. Klee, Multiple hormones act sequentially to mediate a susceptible tomato pathogen defense response, Plant Physiol.,2003,133:1181-1189.
    [12]C. Zadra, A. Borgogni, C. Marucchini, Quantification of Jasmonic Acid by SPME in Tomato Plants Stressed by Ozone, J. Agric. Food Chem.,2006,54: 9317-9321.
    [13]S.M. Wilbert, L.H. Ericsson, M.P. Gordon, Quantification of jasmonic acid, methyl jasmonate and salicylic acid in plants by capillary liquid chromatography electronspray tandem mass spectrometry, Anal. Biochem.,1998,257:186-194.
    [14]A.X. Deng, W.M. Tan, S.P. He, W. Liu, T.G. Nan, Z.H Li, B.M. Wang, Q.X. Li, Monoclonal Antibody-Based Enzyme Linked Immunosorbent Assay for the Analysis of Jasmonates in Plants, J. Integr. Plant Biol.,2008,50:1046-1052.
    [15]T. Albrecht, A. Kehlen, K. Stahl, H.D. Knofel, G. Sembdner, E. W. Weiler, Quantification of rapid, transient increases in jasmonic acid in wounded plants using a monoclonal antibody, Planta,1993,191:86-94.
    [16]H.D. Knofel, C. Brfickner, R. Kramell, G. Sembdner, K. Schreiber, A radioimmunoassay for jasmonic acid, Biochem. Physiol. Pflanzen,1984, 179:317-325.
    [17]H. Gundlach, M.J. Muller, T.M. Kutchan, M.H. Zenk, Jasmonic acid is a signal transducer in elicitor-treated plant cell cultures, Proc. Natl. Acad. Sci. USA,1992,89: 2389-2393.
    [18]Y.J. Koo, E. Yoon, J.T. Song, H.S. Seo, J.H. Kim, Y.W. Lee, J.S. Lee, J.J. Cheong, Y.D. Choi, An advanced method for the determination of carboxyl methyl esterase activity using gas chromatography-chemical ionization-mass spectrometry, J. Chromatogr. B,2008,863:80-87.
    [19]X.Q. Pan, R. Welti, X.M. Wang, Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography-electrospray tandem mass spectrometry, Phytochemistry,2008,69: 1773-1781.
    [20]X.Q. Pana, X.M. Wang, Profiling of plant hormones by mass spectrometry, J. Chromatogr. B,2009,877:2806-2813.
    [21]J. Kristl, M. Veber, B. Krajnicic, K. Oresnik, Determination of jasmonic acid in Lemna minor (L.) by liquid chromatography with fluorescence detection, Anal. Bioanal. Chem.,2005,383:886-893.
    [22]Z.L. Zhang, X. Liu, D.F. Li, Y.T. Lu, Determination of jasmonic acid in bark extracts from Hevea brasiliensis by capillary electrophoresis with laser-induced fluorescence detection, Anal. Bioanal. Chem.,2005,382:1616-1619.
    [23]J.M. Anderson, Simultaneous determination of abscisic acid and jasmonic acid in plant extracts using high-performance liquid chromatography, J. Chromatogr.,1985, 330:347-355.
    [24]J.M. Anderson, Fluorescent hydrazides for the high-performance liquid chromatographic determination of biological carbonyls, Anal. Biochem.,1986,152: 146-153.
    [25]X. liu, L. Ma, Y.W. Lin, Y.T. Lu, Determination of abscisic acid by capillary electrophoresis with laser-induced fluorescence detection, J. Chromatogr. A,2003, 1021:209-213.
    [26]M.A. Skidmore, S.E. Guimond, A.F. Dumax-Vorzet, A. Atrih, E.A. Yates, J.E. Turnbull, High sensitivity separation and detection of heparan sulfate disaccharides, J. Chromatogr. A,2006,1135:52-56.
    [27]R.A. Creelman, M.L. Tierney, J.E. Mullet, Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression, Proc. Natl. Acad. Sci. USA,1992,89:4938-4941.
    [1]R.A. Dwek, Glycobiology:toward understanding the function of sugars, Chem. Rev.1996,96:683-720.
    [2]A. Helenius, M. Aebi, Intracellular Functions of N-Linked Glycans, Science,2001, 291:2364-2369.
    [3]M. Bernfield, M. Gotte, P.W. Park,O. Reizes, M.L. Fitzgerald, J. Lincecum, M. Zako, Functions of cell surface heparan sulfate proteoglycans, Annu. Rev. Biochem., 1999,68:729-777.
    [4]K. Sugahara, H. Kitagawa, Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans, Curr. Opin. Struct. Biol.,2000, 10:518-527.
    [5]L. Wells, K. Vosseller, G.W. Hart, Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc, Science,2001,291:2376-2378.
    [6]I. Shin, S. Park, M. Lee, Carbohydrate microarrays:an advanced technology for functional studies of glycans, Chemistry-A European Journal,2005,11:2894-2901.
    [7]I. Thom, O. Schult-Kronefeld, I. Burkholder, M. Goern, B. Andritzky, K. Blonski, C. Kugler, L. Edler, C. Bokemeyer, U. Schumacher,Lectin histochemistry of metastatic adenocarcinomas of the lung, Lung Cancer,2007,56:391-397
    [8]M. Takeuchi, N. Inoue, T.W. Strickland, M. Kubota, M. Wada, R. Shimizu, S. Hoshi, H. Kozutsumi, S. Takasaki, A. Kobata, Relationship between sugar chain structure and biological activity of recombinant human erythropoietin produced in Chinese hamster ovary cells, Proc. Natl. Acad. Sci. USA,1989,86:7819-7822.
    [9]R.S. Baudurski, B. Axelrod, Chromatographic identification of some biologically important phosphate esters, J. Boichem.,1951,193:405-410.
    [10]P. Wursch, P. Roulet, Quantitative estimation of malto-oligosaccharides by high-performance thin-layer chromatography, J. Chromatogr.,1982,244:177-182.
    [11]T. Morcol, W.H. Velander, An o-toluidine method for detection of carbohydrates in protein hydrolysates, Anal. Biochem.,1991,195:153-159.
    [12]J.H. Ko, W.J. Cheong, Simultaneous quantitative determination of mono-, di-, tri-, tetra-, and penta-saccharides in yogurt products by a simple HPLC system with a refractive index detector, Bull. Korean Chem. Soc.,2001,22:123-126.
    [13]V.P. Hanko, J.S. Rohrer, Determination of carbohydrates, sugar alcohols, and glycols in cell cultures and fermentation broths using high-performance anion-exchange chromatography with pulsed amperometric detection, Anal. Biochem., 2000,283:192-199.
    [14]B.A. Kimball, W.M. Arjo, J.J. Johnston, Single-point calibration with a non-linear detector:Carbohydrate analysis of conifer needles by hydrophobic interaction chromatography-evaporative light scattering detection (HIC-ELSD), J. Liq. Chromatogr. Related Technol.,2004,27:1835-1848.
    [15]J. Cabalkova, J. Zidkova, L. Pribyla, J. Chmelik, Determination of carbohydrates in juices by high-performance liquid capillary electrophoresis, chromatography, and matrix-assisted laser desorption/ionization-time of flight-mass spectrometry, Electrophoresis,2004,25:487-493.
    [16]L. Zhang, J. Xu, L. Zhang, W. Zhang, Y. Zhang, Determination of 1-phenyl-3-methyl-5-pyrazolone-labeled carbohydrates by liquid chromatography and micellar electrokinetic chromatography, J. Chromatogr. B,2003,793:159-165.
    [17]K.R. Anumula, Advances in fluorescence derivatization methods for high-performance liquid chromatographic analysis of glycoprotein carbohydrates, Anal. Biochem.,2006,350:1-23.
    [18]F.N. Lamari, R. Kuhn, N.K. Karamanosa, Derivatization of carbohydrates for chromatographic, electrophoretic and mass spectrometric structure analysis, J. Chromatogr. B,2003,793:15-36.
    [19]S. Hase, Precolumn derivatization for chromatographic and electrophoretic analyses of carbohydrates, J. Chromatogr. A,1996,720:173-182.
    [20]D.R. Wing, B. Garner, V. Hunnam, G. Reinkensmeier, U. Andersson, D J. Harvey, R.A. Dwek, F.M. Platt, T.D. Butters, High-performance liquid chromatography analysis of ganglioside carbohydrates at the picomole level after ceramide glycanase digestion and fluorescent labeling with 2-aminobenzamide, Anal. Biochem.,2001, 298:207-217.
    [21]K. Yamamoto, K. Hamase, K. Zaitsu,2-amino-3-phenylpyrazine, a sensitive fluorescence prelabeling reagent for the chromatographic or electrophoretic determination of saccharides, J. Chromatogr. A,2003,1004:99-106.
    [22]S.A. Perez, L.A. Colon, Determination of carbohydrates as their dansylhydrazine derivatives by capillary electrophoresis with laser-induced fluorescence detection, Electrophoresis,1996,17:352-358.
    [23]R.E. Zhang, Y.L. Cao, M.W. Hearn, Synthesis and application of Fmoc-hydrazine for the quantitative determination of saccharides by reversed-phase high-performance liquid chromatography in the low and subpicomole range, Anal. Biochem.,1991,196:160-167.
    [24]M.A. Skidmore, S.E. Guimond, A.F. Dumax-Vorzet, A. Atrih, E.A. Yates, J.E. Turnbull, High sensitivity separation and detection of heparan sulfate disaccharides, J. Chromatogr. A,2006,1135:52-56.
    [25]J.P. Liu,O. Shirota, D. Wiesler, M. Novotny, Ultrasensitive fluorometric detection of carbohydrates as derivatives in mixtures separated by capillary electrophoresis, Proc. Nati. Acad. Sci. USA,1991,88:2302-2306.
    [26]J. Youa, X. Sheng, C. Ding, Z. Sun, Y. Suo, H. Wang, Y. Li, Detection of carbohydrates using new labeling reagent 1-(2-naphthyl)-3-methyl-5-pyrazolone by capillary zone electrophoresis with absorbance (UV), Anal. Chim. Acta,2008, 609:66-75.
    [27]L. Zhang, J. Xu, L. Zhang, W. Zhang, Y. Zhang, Determination of 1-phenyl-3-methyl-5-pyrazolone-labeled carbohydrates by liquid chromatography and micellar electrokinetic chromatography, J. Chromatogr. B,2003,793:159-165.
    [28]H.J. Zhang, J.F. Huang, H. Wang, Y.Q. Feng, Determination of low-aliphatic aldehyde derivatizatives in human saliva using polymer monolith microextraction coupled to high-performance liquid chromatography, Anal. Chim. Acta,2006,565: 129-135.
    [29]M. Katayama, R. Nakane, Y. Matsuda, S. Kaneko, I. Harac, H. Sato, Determination of progesterone and 17-hydroxyprogesterone by high performance liquid chromatography after pre-column derivatization with 4,4-difluoro-5,7-dimethyl-4-bora-3a,4adiaza-s-indacene-3-propionohydrazide, Analyst,1998, 123:2339-2342.
    [30]N. Binding, H. Klaning, U. Karst, W Potter, P.A. Czeschinskil, U. Witting, Analytical reliability of carbonyl compound determination using 1,5-dansylhydrazine-derivatization, Fresenius J, Anal. Chem.,1998,362:270-273.
    [31]I.D. Mandel, S.Wotman, The salivary secretions in health and disease, Oral. Sci. Rev.,1976,8:25-47.
    [32]L. Iughetti, R. Marino, M.F. Bertolani, S. Bernasconi, Oral health in children and adolescents with IDDM2--a review, J. Pediatr. Endocrinol. Metab.,1999, 12:603-610.
    [33]K. Mapper, L. Johnson, Reversed-phase liquid chromatographic analysis of dns-sugars:Optimization of derivatization and chromatographic procedures and applications to natural samples, J. Chromatogr.,1983,256:27-38.
    [34]K. Yamamoto, K. Hamase, K. Zaitsu,2-Amino-3-phenylpyrazine, a sensitive fluorescence prelabeling reagent for the chromatographic or electrophoretic determination of saccharides, J. Chromatogr. A,2003,1004:99-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700