用户名: 密码: 验证码:
两种新的电偶效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电偶效应是两种不同的金属或非金属导体在电解质溶液中接触时普遍存在的现象:当异种导体在同一电解质中接触时,较低电位的导体中的电子就要向高电位导体流动。与此同时,在电位较低的阳极导体表面发生氧化反应,在电位较高的阴极金属表面发生还原反应。具体到腐蚀领域,电偶效应对金属的腐蚀会造成很大的影响,另一方面,也能应用电偶效应为金属腐蚀提供保护作用。因此,本文在国家自然科学基金和美国环保总局(US EPA)的资助下,分别对美国饮用水管道体系中铜管和铅管间的电偶腐蚀效应以及导电高分子材料对不锈钢的伽伐尼电偶保护效应这两种新的电偶效应进行了系统的研究。
     在美国饮用水管道体系中铜管和铅管间的电偶腐蚀效应研究中,通过设计完善的铅管与铜管电偶腐蚀的研究实验方案,采用直接测量水样中铅浓度结合电化学测试的方法,对铅管的电偶腐蚀效应以及含铜饮用水对铅管的微电偶蚀效应进行了系统的探讨。主要的工作和结论如下:
     (1)当新铅管与铜管电化学偶合时,铅管的电偶腐蚀会引起饮用水中铅含量的急剧增加;当老铅管与铜管电化学偶合时,在偶合初期,由于偶合会使得老铅管表明的氧化物膜更加稳定,从而使得饮用水中铅含量比没有偶合时要低。但随着时间的推移,铅管的电偶腐蚀效应将成为饮用水中铅的主要来源,从而引起饮用水中铅含量的上升。
     (2)饮用水中的Cl-与S042+的质量比(CSMR)是影响铅管电偶腐蚀的重要因素:CSMR越高,铅管的腐蚀速度越快。消毒剂的选择也会对铅管的电偶腐蚀产生影响,当选择NH4Cl作为消毒剂时,铅管的腐蚀速度较快。但是与CSMR相比,消毒剂对铅管电偶腐蚀的影响相对比较小。
     (3)饮用水管道中铅管的“局部替换”不能解决由于消毒剂从NaClO更换为NH4Cl所带来的铅腐蚀问题,反而会由于铅管的电偶腐蚀效应使得这一问题更加严重。
     (4)在静止停滞状态下,饮用水中的Cu2+的沉积会对铅管造成微电偶腐蚀效应。微电偶腐蚀在一段时间内会引起饮用水中铅浓度的上升;在流动状态下,饮用水中的Cu2+同样会对铅管造成微电偶腐蚀,从而引起饮用水中铅浓度的上升。此外,在流动状态下,铅管的微电偶腐蚀速度更快,腐蚀强度更大。
     (5)在静止停滞状态下,低浓度的含铜水样同样会引起铅管的微电偶腐蚀,从而在一段时期内引起水样中总铅浓度的上升。这一点对于饮用水管道体系中微电偶腐蚀的实际控制具有很重要的指导意义。
     在导电高分子材料对不锈钢的伽伐尼电偶保护效应的研究中,在以前研究的基础上,采用不同的聚合方法制备出了单独的聚吡咯(PPy)电极,比较系统的研究了PPy电极的电化学行为;采用PPy电极与不锈钢电极电化学偶合的方法研究了PPy对不锈钢的“伽伐尼阳极电偶保护效应”的应用,同时对PPy和PANi这两种高分子材料提供的“伽伐尼阳极保护效应”进行了详细的对比。主要的工作和结论如下:
     (1)研究了聚合介质中氧化剂的种类、氧化剂与吡咯单体的摩尔比及反应时间、反应温度对化学氧化法合成产物的影响,确定最佳的聚合条件为:以FeCl3作为氧化剂,0.5M吡咯单体+2M HClO4,FeCl3和吡咯单体的摩尔比为1:1,反应时间为3h,反应温度为0-4℃。
     (2)PPy粉末压片电极在不同的条件下均能对410不锈钢提供高效的伽伐尼阳极电偶保护,PPy对不锈钢的伽伐尼阳极电偶保护效应受阴阳极(PPy/不锈钢)面积比、酸浓度、溶液酸性强弱的影响:PPy/不锈钢面积比越大,不锈钢的钝态越稳定;酸浓度越大、溶液酸性越强则使不锈钢长期稳定钝化所需的阴阳极面积比越大。
     (3)除410不锈钢外,PPy粉末压片电极对其他铁基金属也能提供高效的伽伐尼阳极保护效应,如304、316和321不锈钢、碳钢等。聚吡咯伽伐尼阳极保护对可钝铁基金属均适用。
     (4)对于不锈钢在酸性介质中的防腐,聚吡咯要优于聚苯胺,它的保护效率更高、提供保护的时间更长,而且能够在更加苛刻的条件下提供伽伐尼阳极保护。然而,与聚吡咯相比,聚苯胺更加适合应用于不锈钢点蚀的腐蚀防护。
Ganlvanic effect is a common phenomenon which will exist when two different metals contact together in solution:when two different metals contact with each other in the solution, the electron will transport from the metal with low potential to the metal with high potential. In the meanwhile, the oxidation reaction will take place on the surface of the anodic metal with low potential and the reduction reaction will take place on the surface of the cathodic metal with high potential. Focused on the corrosion field, on one hand, the galvanic effect can cause important influence to the corrosion of the metal; on the other hand, it can be also applied to provide corrosion protection to the metal. Therefore, in this work, which is supported by the national science foundation of China and US Environmental Agency, the galvanic effect between the lead pipe and copper pipe in US drinking water distribution system and the galvanic anodic protection of the stainless steel by conductive polymer were systematically studied respectively.
     In the research on the galvanic effect between the lead pipe and copper pipe in US drinking water distribution system, the experiment plan was well deisned. The galvanic corrosion of the lead pipe and the deposition corrosion caused by the Cu2+in the drinking water were studied by directly measuring the lead concentration in the water combined with the electrochemical measurement. The main work and results are as follows:
     (1) When the new lead pipe was galvanically connected with copper pipe, the lead amount in the drinking water increased which was resulted from the galvanic corrosion of the lead pipe; when the old pipe was galvanically connected with copper pipe, at the start of the connection, the lead amount in the drinking water decreased becaue the connection made the lead oxidate film on the lead pipe more stable. However, as the connection continued, the galvanic corrosion of the lead pipe became the main resource of the lead in the drinking water and caused the in creased of the lead amount in the drinking water.
     (2) The CSMR of the drinking water is an important factor which can influence the galvanic corrosion of the lead pipe:the higher the CSMR is, the higher the corrosion rate of the lead pipe is. The disinfectant choice can also influence the galvanic corrosion of the lead pipe. When NH4Cl is chosen as the disinfectant, the corrosion rate of the lead pipe is faster. However, compared with CSMR, the influence of the disinfectan is not so obvious.
     (3) The "partial replacement" of the lead pipe in the US drinking water system can not solve the "lead crisis" caused by the disinfectant swith from free chlorine to chloramine. Furthermore, it will make the problem even worse because of the galvanic corrosion of the lead pipe.
     (4) In the stagnant condition, the Cu2+ in the drinking water caused deposition corrosion to the lead pipe. The deposition corrosion resulted in the increase of the lead concentration in the drinking water in a certain period. In the flowing condition, the Cu2+ in the drinking water caused deposition corrosion to the lead pipe and resulted in the increase of the lead concentration in the drinking water. Furthermore, in the flowing condition, the rate of the deposition corrosion was faster.
     (5) In the stagnant condition, the drinking water with a low Cu2+concentration still caused deposition corrosion to the lead pipe and resulted in the increase of the lead concentration in the drinking water. This point is very important to the actual deposition corrosion control in the drinking distribution pipe system
     In the research on the galvanic anodic protection of the stainless steel by conductive polymer, based on our formal research, the separate PPy powder-pressed electrodes have been prepared and the electrochemical properties of the PPy electrode were studied. The galvanic anodic protection of the stainless steel was studied by the means of galvanically coupling the PPy electrode and stainless steel. The galvanic anodic protection provided by PPy and PANi were compared. The results are as follows:
     (1) The influences of many factors on PPy's electro-synthesis were studied, such as the kind and concentration of oxidant in the synthesis solution, the mol ratio of oxidant to aniline monomer, reaction temperature and reaction time. The best synthesized conditions were as follows:the FeCl3 was adopted as the oxidant, the solution is 0.5M pyrrole and 2M HClO4, the mol ratio of FeCl3 to pyrrole is 1:1, the reaction temperature is 0~4℃, and the reaction time is 3h.
     (2) PPy powder-pressed electrode can provide efficient galvanic anodic protection to 410 stainless steel under different conditions. The protection is influenced by many factors such as the area ratio of PPy to 410 stainless steel, the concentration of the acid and the solution acidity. The larger the area ratio of PPy to 410 stainless steel is, the more stable the passivity of the stainless steel is. More PPy will be needed when the acid concentration is higher and the solution aicidity is higher.
     (3) Besides 410 stainless steel, PPy powder-pressed electrode can also provide galvanic anodic protection to other ferrous metals, such as 304 stainless steel,316 stainless steel,321 stainless steel, carbon steel and so on.
     (4) For the galvanic anodic protection of stainless steel, PPy is better than PANi. It is more efficient and can protect the stainless steel for a longer time and in a stronger acid solution. However, for the pitting corrosion protection of stainless steel, PANi is better than PPy.
引文
[1]王朝辉,于佰俭,耿广辉.管道防腐设计中电偶效应不容忽视[J].腐蚀与防护2001,(1):33-35.
    [2]魏宝明.金属腐蚀理论及应用[M].北京,化学工业出版社,1996:254-268.
    [3]C. Edeleanu. Corrosion control by anodic protection [M]. Metallurgia,1954,50: 113.
    [4]陈旭俊等.金属腐蚀与保护基本教程[M].北京,机械工业出版社,1988:54-67.
    [5]M.G..方坦纳,N.D.格林著,左景伊译.腐蚀工程[M].化学工业出版社,1982:335-337.
    [6]L. Zhong, S. Xiao, J. Hu, H. Zhu, F. Gan, Application of polyaniline to galvanic anodic protection on stainless steel in H2SO4 solutions [J]. Corros. Sci.2006 48: 3960-3968.
    [7]Chiu, W.T. and Ho, Y.S. Bibliometric analysis of tsunami research [J]. Scientometrics,200773 (1),3-17.
    [8]Ho, Y.S. Bibliometric analysis of adsorption technology in environmental science [J]. Journal of Environmental Protection Science,20071(1),1-11.
    [9]Chuang, K.Y., Huang, Y.L. and Ho, Y.S. A bibliometric and citation analysis of stroke-related research in Taiwan [J]. Scientometrics,200772 (2),201-212.
    [10]Federal Highway Administration. Corrosion Costs and Preventative Strategies in the United States [R]. Report FHWA-RD-01-156. US Department of Transportation Federal Highway Administration,2002.
    [11]Brongers, M.P.H. Appendix K. Drinking Water and Sewer Systems in Corrosion Costs and Preventative Strategies in the United States [R]. Report FHWA-RD-01-156. US Department of Transportation Federal Highway Administration.2002.
    [12]Allegood, J. Pitt Probes Boy's Lead Poisoning [N]. News and Observer,2005, May 6.
    [13]Bachelor, S.T. Area Family Copes With Lead Poisoning [N]. Greenville Daily Reflector,2005, May 4.
    [14]Copeland, L., Blood and Water:The Long Search for the Source of a Baby's Lead Poisoning [N]. Washington Post.2004. http://washingtonpost.com/wp-dyn/articles/A28828-2004Mar3.html (accessed March 20,2006).
    [15]Renner, R. Mis-Lead [J]. Environ. Sci. Technol.,2006,40:14:4333. http://pubs.acs.org/subscribe/journals/esthag-w/2006/may/science/rr_mislead.ht ml (accessed July 1,2006).
    [16]Gronberg, R., City Water Lead Levels Alarming Regulators [N]. The Herald Sun. 2006. http://www.herald-sun.com/durham/4-747728.html (accessed June 27, 2006).
    [17]US Environmental Protection Agency (USEPA),1991. Drinking Water Regulations:Maximum Contaminant Level Goals and National Drinking Water Regulations for Lead and Copper. Federal Register [S],1991:53:110.
    [18]USEPA. National Primary Drinking Water Regulations for Lead and Copper [S]. Final Rule. CFR 40Parts 141 and 142. Fed. Reg.,2000.65:8:1949.
    [19]Abhijeet Dudi, Michael Svhock, Nestor Murry and Marc Edwards. Lead leaching from inline brass devices:A critical evaluation of existing standard [J]. Journal AWWA 2005,97:866-78.
    [20]Edwards M and Dudi A.2004. Role of chlorine and chloramines in corrosion of lead-bearing plumbing materials [J]. Journal AWWA,200596:10:69-81.
    [21]Edwards M and McNeill L.S. Effect of phosphate inhibitors on lead release from pipes. Journal AWWA,200294:1:79-90.
    [22]Shock M.R, Wagner I and Oliphant R.J. Corrosion and solubility of lead in drinking water. Internal Corrosion of Water Distribution System [A]. AWWARF and DVGW-Technologiezentrum,1996, Denver.
    [23]Schock M.R. Understanding corrosion control stratigies for lead [J]. Journal AWWA,198981:10:88-101.
    [24]Mass R.P. Estimation of human lead exposure from leaded brass water works parts installed in residential service [R]. Environmental Quality Institute White Paper. University of North Carolina,2002, Asheville.
    [25]Jones D. A. Principles and prevention of corrosion [M]. Prentice Hall, NJ.1992.
    [26]Reiber, S.,1991. Galvanic Stimulation of Corrosion on Lead-Tin Solder Sweated Joints [J]. Jour. AWWA,83:7:83-97.
    [27]Shreir L.L., Jarman R.A., Burstein G.T. Corrosion control [R]. Butterworth-Heinemann Ltd 1995.
    [28]Dudi, A., Reconsidering Lead Corrosion in Drinking Water:Product Testing, Direct Chloramines Attack and Galvanic Corrosion [D]. Master's thesis, Virginia Polytechnic Institute & State University, Blacksburg, Va.2004.
    [29]Reiber, S.& Dufresne, L., Effects of External Currents and Dissimilar Metal Contact on Corrosion From Lead Service Lines [R]. Rept. to US Environmental Protection Agency Region III, contract 68-C-02-069, work assignment 47.2006. http://www.epa.gov/dclead/Grounding_Effects_Study_Final_November_2006.p df (accessed May 4,2007).
    [30]Oliphant, R.J., Summary Report on the Contamination of Potable Water by Lead From Soldered Joints [R]. Water Research Centre Engineering, External Rept. 125-E, Swindon, England.1983.
    [31]Gregory, R. Galvanic Corrosion of Lead in Copper Pipework:Phase I, Measurement of Galvanic Corrosion Potential in Selected Waters [R]. Water Research Centre Engineering, Swindon, England.1985.
    [32]Dodrill, D.M.& Edwards, M. Corrosion Control on the Basis of Utility Experience [J]. Jour. AWWA,1995,87:7:74-86.
    [33]Wright P V. Electrical conductivity in ionic complexes f poly (ethylene xide) [J]. British medical journal,1975,7(5):319-325.
    [34]Shimakawa H, Louis E J, MacDiarmid A G. Synthesis of electrically organic polymers:Halogen derivatives of poluacetylene [J]. Journal of the Chemical Society, Chemical Communications,1977,16:578-591.
    [35]Soga K, Kawakami S, Shirakawa H, Ikeda S. Hydrogenation of polyacetylene. A potential method of molecular weight determination [J]. Makromolekulare Chemie, Rapid Communications,1980,1(8):523-526.
    [36]Nigrey P J, MacDiarmid A G., Heeger A J. Electrochemistry of polyacetylene (CH)x:Electrochemical dping of (CH)x film t the metallic state [J]. Journal of the Chemical Society, Chemical Communications,1979:594-607.
    [37]Burroughes J H, Bradley D D C, Friend R H, et al. Light-emitting diodes based on conjugated polymers [J]. Nature,1990,347:539-548.
    [38]Hide F, Diaz-Garcia M A, Heeger A J, et al. Semiconducting polymers:a new class of solid-state laser materials [J]. Science,1996,273:1833-1846.
    [39]Tessler N, Dentn G J, Friend R H, et al. Lasing from conjugated-polymer microcavities [J]. Nature,1996,382:695-708.
    [40]汪晓芹,廖晓兰.聚苯胺及其复合材料研究现状[J].应用化工,2001,33(1):4-8.
    [41]Yang S M, Chen J T. The effect of synthesis conditions on the properties of polyaniline film [J]. Synthetic Metals,1995,69:193-194.
    [42]王金库,陈军,林薇薇.透明导电聚苯胺复合膜的研究进展[J].材料科学与工程,2001,19(1):121-123.
    [43]Kobayashi T, Yoneyama H, Tamura H. Oxidative degradation pathway of polyaniline film electrodes [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1984,177:281-285.
    [44]Morita M. Electrochromic behavior and stability of polyaniline composite films combined with a polycation-bathophenanthroline-Fe complex [J]. Macromolecular Chemistry and Physics,1995,196:649-651.
    [45]Morita M. Multicolor electrochromic behavior of polyaniline composite films combined with polythiophene and poly (3-methylthiophene) films [J]. Makromolekulare Chemie,1993,194:2361-2365.
    [46]Kitani A, Yano J, Sasaki K. ECD materials for the three primary colors developed by polyanilines [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1986,209:227-231.
    [47]王杨勇,强军锋,井新利,姚胜.导电高分子聚苯胺及其应用[J].化工新型材料,2003,31(3):3-10.
    [48]Louwet F, Groenendaal B. Process for preparing an aqueous or non-aqueous solution or dispersion of a polythiophene copolymer [P]. WO 03/048227,2003.
    [49]Wang S S, High contrast. Moisture resistant antistatic/antire flective coating fro CRT display screen [P]. US Patent,0029357,2003.
    [50]Frank L.3,4-alkylenedioxy-thiophene copolymer [P]. EP,1323763,2003.
    [51]Frank L. PEDOT/PSS synthesis, characterization, properties and applications [J]. Synthetic Metals,2003:115-117,125-136.
    [52]Anderson M R, Mattes B R, et al. Inter Conf Sciand Tech [J]. Synthetic Metals, FRG:Tobingen 2-7 Sept,1990,2:350-354.
    [53]谢丹.聚苯胺基LB膜的制备及气敏特性的研究[J].高分子学报,2001,(2):224-232.
    [54]谭晓明,李承军,马咏梅.烷基苯磺酸掺杂聚苯胺与某些树脂清漆导电复合物的制备和性能[J].孝感师专学报(自然科学版),1998,15(4):33-36.
    [55]Wang F S, Jing X B. New Progress in conducting polyaniline [J]. Korea Polymer Journal,1996,4(2):89-93.
    [56]Wang X H, Li J, Zhang J Yetal. Polyaniline as marine antifouling and corrosion-preventionagent [J]. Synthetic Metals,1999,102:1377-1380.
    [57]孙祖信,彭志强.导电高分子材料聚苯胺及其开发前景[J].材料开发与应用,1995,10(1):20-22.
    [58]Epstein A J, Roe M G, Ginder J M, et al. Electromagnetic radiation absorbers and modulators comprising polyaniline [P]. US Patent:5563182.1996.
    [59]Kim M S, Kim H K, Byun S W, et al. PET fabric/polypyrrole composite with igh electrical conductivity for EMI shielding [J]. Synthetic Metals,2002,126(2-3): 233-239.
    [60]Hong Y K, Lee C Y, Jeong C K, et al. Electromagnetic interference shielding characteristics of fabric complexes coated with conductive polypyrrole and thermally evaporated Ag [J]. Current Applied Physics,2001,1(6):439-442.
    [61]Kaynak A, Unsworth J, Clout R, et al. A study of microwave, reflection, absorption, and shielding effectiveness of conducting polypyrrole film [J]. Journal of Applied Polymer Science,1994,54(3):269-278.
    [62]Taka T. EMI shielding measurements on poly (3-ocyl thiophene) blends [J]. Synthetic Metals,1991,41(3):1177-1181.
    [63]Pomposo J A, Rodriguez J, Grande H. Polypyrrole-based conducting bot melt adhesives for EMI shielding applications [J]. Synthetic Metals,1999,104(2-3): 107-111.
    [64]Lee C K, Kim H M, Park J M, et al. AC electrical properties of conjugated polymers and theoretical high-frequency behaviour of multilayer films [J]. Synthetic Metals.2001,117(1-3):109-113.
    [65]Koul S, Chandra R, Dhawan S K. Conducting polyaniline composite for ESD and EMI at 101 GHz [J]. Polymer,2000,41(26):9306-9310.
    [66]潘玮,黄素萍,龚静华.聚苯胺/涤纶导电纤维的制备及其织物抗静电性能研究[J].合成纤维,2002,1:30-32.
    [67]Lacroix J C, Cammalet J L, Aeiyach S, et al. Aniline electropolymerization on mild steel and zinc in a two-step process [J]. J.Electroanal. Chem.,2000,481:76.
    [68]Epstein A J, Smallfield J A, Guan H, Fahlman M, Corrosion Protection of Aluminum and Aluminum Alloys by Polyanilines:A Potentiodynamic and Photoelectron Spectroscopy Study [J]. Synthetic Metals,1999,102:1374-1378.
    [69]Stuart F C, Michael D G, Gerhard L H, Julia E, and Michael H J. Galvanic Coupling of Doped Polyaniline and Aluminum Alloy 2024-T3 [J]. Journal of the Electrochemical Society,2000,147(6):2143-2148.
    [70]Tallman D E, Pae Y, Bierwagen G P. Conducting polymers and corrosion:part 2-polyaniline on aluminum alloys [J]. Corrosion,2000,56:401-406.
    [71]Tiiken T, Yazici B, Erbil M. Electrochemical synthesis of polythiophene on nickel coated mild steel and corrosion performance [J]. Applied Surface Science, 2005,239 (3-4) 398-409.
    [72]He J, Johnston-Gelling V, Tallman D E, Bierwagen G P, Wallace G G. Conducting polymers and corrosion III. A scanning vibrating electrode study of poly(3-octyl pyrrole) on steel and aluminum [J]. Journal of the Electrochemical Society,2000,147:3667-3670.
    [73]Lu W-K, Elsenbaumer R L,56th Annu Tech Conf Soc Plast Eng [C],1999, 1276-1279.
    [74]Gelling V J, Wiest M M, Tallman D E, Bierwagen G P, Wallace G G, Electroactive-conducting polyanilines for corrosion control:4. Study of poly (3-octylpyrrole) and poly (3-octadecylpyrrole) on aluminum 2024-T3 alloy [J]. Progress in Organic Coatings,2001,43:149-153.
    [75]Uehara K, Ichikawa T, Serikawa T, Yoshikawa S, Ehara S, Tsunooka M, Redox reaction at the two-layer interface between aluminum and electropolymerized poly (3-methlthiophene) thin solid films [J]. Thin Solid Films,1998,322: 198-201.
    [76]Idla K, Inganas O, Strandberg M, Good adhesion between chemically oxidized titanium and electrochemically deposited polypyrrole [J]. Electrochimica Acta, 2000,45:2121-2125.
    [77]Truong V T, Lai P K, Moore B T, Muscat R T, Russo M S, Corrosion protection of magnesium by electroactive polypyrrole/paint coatings [J]. Synthetic Metals, 2000,110:7-10.
    [78]李永舫.导电聚吡咯的研究[J].高分子通报,2005,(04),23-25.
    [79]万本强,吴婉群.催化电合成聚毗咯的电化学性质研究[J].西南师范大学学报(自然科学版).1993,18(1):52-55.
    [80]方惠群,王美全,陈洪渊.微电极研究一毗咯在微电极上的聚合及膜的生长过程[J].化学学报.1995,53(8):789-795.
    [81]程发良,宁满霞,莫金垣等.水介质中毗咯的电化学聚合反应[J].分析测试学报.2002,21(4):30-33.
    [82]高劲松,田中群.十二烷基苯磺酸钠掺杂的聚毗咯的电化学和现场拉曼光谱[J].厦门大学学报(自然科学版).1995,34(2):226-233.
    [83]郑玉斌,张善举,柯杨船等.电聚合导电聚毗咯的合成研究[J].功能高分子学报.1996,9(4):613-615.
    [84]陈凤恩,石高全,徐景坤等.拉曼光谱研究电化学沉积聚毗咯掺杂程度对膜 厚度的依赖性[J].光散射学报.2002,14(1):54-57.
    [85]Jianyong Ouyang, Yongfang Li.Great improvement of polypyrrole films prepared electroehemically from aqueous solutions by adding nonaphenol polyethyleneoxy (10) ether [J]. Polymer.1997,38(15):3997-3999.
    [86]S.J.Sutton, A.S.Vaughan. On the morphology and growth of electrochemically polymerized polypyrrole [J]. Polymer.1995,36(9):1849-1857.
    [87]贝建中,钱人元.在水溶液中电化学反应制备大面积聚毗咯膜[J].功能高分子学报.1991,4(4):320-324.
    [88]Gouri Smitha Akundy, Jude O.Iroh. Polypyrrole coatings on aluminum synthesis and characterization [J]. Polymer.2001,42(24):9665-9669.
    [89]何天白,胡汉杰.功能高分子与新技术[M].北京:化学工业出版社,2001:305-310.
    [90]Bedioui F, Voisin M, Devynck J, et al. Electrochemistry of conducting polypyrrole films containing cobalt porphyrin.2. New developments and inclusion of metallic aggregates in the coordination polymer [J]. J Electroanal Chem,1991,297:257-269.
    [91]Girard F et al. Polypyrrole film electrodes electrochemically doped with tetrathiomolybdata anions-preparation and characterization [J]. J Electroanal Chem,1992,334:35-40.
    [92]Deronzier A, Moutet JC, Saintaman E. Electrocatalytic Hydrogenation of Organic-Compouds on Carbon Electrodes modified by poly(pyrrole-bis) [2,2'-Bipyridyl] palladium(II) complex films [J]. J Electroanal Chem,1992,334: 247-251.
    [93]Deronzier A, Devaux R, Limosin D, Latour JM. Poly (pyrrole-metallotetraphenylporphyrin)-modified electrodes [J]. J Electroanal Chem,1992,324:325-329.
    [94]Fan FRF, Bard AJ. Polymer-films on electrodes.19. electrochemical-behavior at polypyrrole-nafion and polypyrrole-clay thin-films on glassy-carbon electrodes [J]. J Electrochem Soc,1986,133:301-304.
    [95]Penner RM, Martin CR. Controlling the morphology of electronically conductive polymers [J]. J Electrochem Soc,1986,133:2206-2207.
    [96]Mao H et al. Electronically conductive anion-exchange polymers based on polypyrrole-preparation, characterization, electrostatic binding of ferrocyanide and electrocatalysis of ascorbic-acid oxidation [J]. J Electrochem Chem,1989, 265:127-142.
    [97]Lin XiaWang, Xin GuiLi, Yu Liang Yang. Praparation properties and applications of polypyrroles [J]. Reaetive & Funetional Polymers.2001,472:125-139.
    [98]胡明,张景阳,郝嘉林等.新型铝电解电容器中导电聚吡咯对电极的形成[J].天津大学学报.2000,33(2):231-235.
    [99]徐友龙,季锐,王飞.影响掺杂聚吡咯(PPy)导电性能的因素[J].电子元件与材料,2000,(05),62-67.
    [100]徐友龙,季锐,王飞.溶剂和酸处理对聚吡咯膜电性能的影响[J].西安交通大学学报,2000,(10),54-58.
    [101]钱人元,李永舫.导电聚吡咯的研究[J].中国科学基金,1996,(03),83-87.
    [102]沙兆林,戴青云.化学氧化法合成聚吡咯薄膜[J].化学研究与应用,1998,(04),361-365.
    [103]Lytle, D. A.; Schock, M. R. The formation of Pb (IV) oxides in chlorinated water [J]. J. Am. Water Works Assoc.2005,97,102-114.
    [104]Lian Zhong, Hua Zhu, Jie Hu, Shuhu Xiao, Fuxing Gan. A passivation mechanism of doped polyaniline on 410 stainless steel in deaerated H2SO4 solution [J]. Electrochimica Acta 2006 51:5494-5501
    [1]Abhijeet Dudi, Michael Svhock, Nestor Murry and Marc Edwards. Lead leaching from inline brass devices:A critical evaluation of existing standard [J]. Journal AWWA 2005,97:866-78.
    [2]Marc Edwards, Laurie S. McNeill. Effect of phosphate inhibitors on lead release from pipes [J]. Journal AWWA.2002,94:179-90.
    [3]Edwards M and Dudi A. Role of chlorine and chloramines in corrosion of lead-bearing plumbing materials [J]. Journal AWWA,2004,96:10:69-81.
    [4]Steven Kvech, Marc Edards. Role of Aluminosilicate deposits in lead and copper corrosion [J]. Journal AWWA,2001,93:11 104-112.
    [5]Laurie S, McNeill, Marc Edwards. Phosphate inhibitor use at US utilities [J]. Journal AWWA,2002,94:757-63.
    [6]Simoni Triantafyllidou, Jeffrey Parks, Marc Edwards. Lead particles in potable water [J]. Journal AWWA.2007,99:6107-117.
    [7]Oliphant, R.J., Summary Report on the Contamination of Potable Water by Lead From Soldered Joints [R]. Water Research Centre Engineering, External Rept. 125-E, Swindon, England.1983.
    [8]Gregory, R. Galvanic Corrosion of Lead in Copper Pipework:Phase Ⅰ, Measurement of Galvanic Corrosion Potential in Selected Waters [R]. Water Research Centre Engineering, Swindon, England.1985.
    [9]Dodrill, D.M.& Edwards, M.. Corrosion Control on the Basis of Utility Experience [J]. Jour. AWWA,1995,87:7:74-86.
    [10]APHA. (1998). Standard Methods for the Examination of Water and Wastewater [S].20th Edition, United Book Press, Inc; Baltimore, Maryland.
    [11]L. Zhong, S. Xiao, J. Hu, H. Zhu, F. Gan, Application of polyaniline to galvanic anodic protection on stainless steel in H2SO4 solutions [J]. Corros. Sci.2006 48: 3960-3968.
    [12]国家标准GB4334.6-84[S],1984年.
    [1]Allegood, J. Pitt Probes Boy's Lead Poisoning [N]. News and Observer,2005, May 6.
    [2]Bachelor, S.T. Area Family Copes With Lead Poisoning [N]. Greenville Daily Reflector,2005, May 4.
    [3]Gronberg, R., City Water Lead Levels Alarming Regulators [N]. The Herald Sun. 2006. http://www.herald-sun.com/durham/4-747728.html (accessed June 27, 2006).
    [4]Edwards M and Dudi A. Role of chlorine and chloramines in corrosion of lead-bearing plumbing materials [J]. Journal AWWA,2004,96:10:69-81.
    [5]Lytle, D. A.; Schock, M. R. The formation of Pb (IV) oxides in chlorinated water [J]. J. Am. Water Works Assoc.2005,97,102-114.
    [6]George Rizzo. Effects of External Currents and Dissimilar Metal Contact on Corrosion from Lead Service Lines [R].2006.11.
    [7]Jones D. A. Principles and prevention of corrosion [M]. Prentice Hall, NJ.1992.
    [8]Reiber, S.,1991. Galvanic Stimulation of Corrosion on Lead-Tin Solder Sweated Joints [J]. Jour. AWWA,83:7:83-97.
    [9]Reiber, S.& Dufresne, L., Effects of External Currents and Dissimilar Metal Contact on Corrosion From Lead Service Lines [R]. Rept. to US Environmental Protection Agency Region Ⅲ, contract 68-C-02-069, work assignment 47.2006. http://www.epa.gov/dclead/Grounding Effects_Study Final November 2006.pdf (accessed May 4,2007).
    [10]Oliphant, R.J., Summary Report on the Contamination of Potable Water by Lead From Soldered Joints [R]. Water Research Centre Engineering, External Rept. 125-E, Swindon, England.1983.
    [11]Gregory, R. Galvanic Corrosion of Lead in Copper Pipework:Phase I, Measurement of Galvanic Corrosion Potential in Selected Waters [R]. Water Research Centre Engineering, Swindon, England.1985.
    [12]Dodrill, D.M.& Edwards, M.,1995. Corrosion Control on the Basis of Utility Experience [J]. Jour. AWWA,87:7:74-86.
    [13]Gregory, R. Galvanic Corrosion of Lead in Copper Pipework:Phase I, Measurement of Galvanic Corrosion Potential in Selected Waters [R]. Water Research Centre Engineering, Swindon, England.1985.
    [1]Allegood, J. Pitt Probes Boy's Lead Poisoning [N]. News and Observer,2005, May 6.
    [2]Bachelor, S.T. Area Family Copes With Lead Poisoning [N]. Greenville Daily Reflector,2005, May 4.
    [3]Gronberg, R., City Water Lead Levels Alarming Regulators [N]. The Herald Sun. 2006. http://www.herald-sun.com/durham/4-747728.html (accessed June 27, 2006).
    [4]Edwards M and Dudi A. Role of chlorine and chloramines in corrosion of lead-bearing plumbing materials [J]. Journal AWWA,2004,96:10:69-81.
    [5]Lytle, D. A.; Schock, M. R. The formation of Pb (IV) oxides in chlorinated water [J]. J. Am. Water Works Assoc.2005,97,102-114.
    [6]Abhijeet Dudi, Michael Svhock, Nestor Murry and Marc Edwards. Lead leaching from inline brass devices:A critical evaluation of existing standard [J]. Journal AWWA 2005,97:866-78.
    [7]Marc Edwards, Laurie S. McNeill. Effect of phosphate inhibitors on lead release from pipes [J]. Journal AWWA.2002,94:179-90.
    [8]Steven Kvech, Marc Edards. Role of Aluminosilicate deposits in lead and copper corrosion [J]. Journal AWWA,2001,93:11104-112.
    [9]Laurie S, McNeill, Marc Edwards. Phosphate inhibitor use at US utilities [J]. Journal AWWA,2002,94:7 57-63.
    [10]Simoni Triantafyllidou, Jeffrey Parks, Marc Edwards. Lead particles in potable water [J]. Journal AWWA.2007,99:6107-117.
    [11]George Rizzo. Effects of External Currents and Dissimilar Metal Contact on Corrosion from Lead Service Lines [R].2006.11.
    [12]USEPA. National Primary Drinking Water Regulations for Lead and Copper [S]. Final Rule. CFR 40Parts 141 and 142. Fed. Reg.,2000.65:8:1949.
    [1]C. Edeleanu. Corrosion control by anodic protection [M]. Metallurgia,1954,50: 113.
    [2]T. Tuken, G. Arslan, B. Yalcl, M. Erbil. The corrosion protection of mild steel by polypyrrole/polyphenol multilayer coating [J]. Corrosion Science.2004 46: 2743-2748.
    [3]H. Nguyen Thi Le, M.C. Bernard, B. Garcia-Renaud, C. Deslouis. Raman spectroscopy analysis of polypyrrole films as protective coatings on iron [J]. Synthetic Metals.2004 140:287-290.
    [4]P. Herrasti, P. Ocon. Polypyrrole layers for steel protection [J]. Applied Surface Science.2001 172:276-280.
    [5]S.U. Rahman, M.A. Abul-Hamayel, B.J. Abdul Aleem. Electrochemically synthesized polypyrrole films as primer for protective coatings on carbon steel [J]. Surface & Coatings Technology.2006 200:2948-2951.
    [6]T. Tiiken, B. Yazici, M. Erbil. The corrosion behaviour of polypyrrole coating synthesized in phenylphosphonic acid solution [J]. Applied Surface Science.2006 252:2311-2315.
    [7]J.Reut, A. Opik, K. Idla. Corrosion behavior of polypyrrole coated mild steel [J]. Synthetic Metals.1999102:1392-1397.
    [8]Jude O. Iroh, Wencheng Su. Corrosion performance of polypyrrole coating applied to low carbon steel by an electrochemical process [J]. Electrochimica Acta. 200046:15-18.
    [9]H. Nguyen Thi Le, B. Garcia, C. Deslouis, Q. Le Xuan. Corrosion protection and conducting polymers:polypyrrole films on iron [J]. Electrochimica Acta.200146: 4259-4263.
    [10]Branimir N. Grgur, Predrag Zivkovic, Milica M. Gvozdenovic. Kinetics of the mild steel corrosion protection by polypyrrole-oxalate coating in sulfuric acid solution [J]. Progress in Organic Coatings.200656:240-345.
    [11]T. Zhang, C.L. Zeng. Corrosion protection of 1Cr18Ni9Ti stainless steel by polypyrrole coatings in HC1 aqueous solution [J]. Electrochimica Acta.2005 50: 4721-4729.
    [12]P. Ocon, A.B. Cristobal, P. Herrasti, E. Fatas. Corrosion performance of conducting polymer coatings applied on mild steel [J]. Corrosion Science.2005 47:649-655.
    [13]Shine Joseph, J.C. McClure, P.J. Sebastian, J. Moreira, Edgar Valenzuela. Polyaniline and polypyrrole coatings on aluminum for PEM fuel cell bipolar plates [J]. Journal of Power Sources.2008 177:161-167.
    [14]Aziz Yagan, Nuran Ozycicek Pekmez, Attila Yildiz. Inhibition of corrosion of mild steel by homopolymer and bilayer coatings of polyaniline and polypyrrole [J]. Progress in Organic Coatings 2007 59:297-299.
    [15]T. Tuken, A.T. Ozyilmaz, B. Yazici, G. Kardas, M. Erbil. The preparation of polypyrrole coated brass and copper electrodes for electrocatalysis [J]. Progress in Organic Coatings.200451:27-31.
    [16]G. Tansug, T. Tuken, A.T.6 zyilmaz, M. Erbil, B. Yazici. Mild steel protection with epoxy top coated polypyrrole and polyaniline in 3.5% NaCl [J]. Current Applied Physics 2007 7:440-448.
    [17]Elaine Armelin, Rosa Pla, Francisco Liesa, Xavier Ramis, Jose I, Carlos Aleman. Corrosion protection with polyaniline and polypyrrole as anticorrosive additives for epoxy paint. Iribarren [J]. Corrosion Science 2008 50:721-725.
    [18]L. Zhong, S. Xiao, J. Hu, H. Zhu, F. Gan, Application of polyaniline to galvanic anodic protection on stainless steel in H2SO4 solutions [J]. Corros. Sci.200648: 3960-3968.
    [1]王光国.国外聚苯胺防腐涂料工业研发概况[J].全面腐蚀控制,2002,16(2):23-28.
    [2]Thompson K.G, et al. Los Alamos National Laboratory Report LA-UR-92-360, Los Alamos [R]. NM, USA,1991.
    [3]Li P, Tan T C, Lee J Y. Corrosion protection of mild steel by electroactive polyaniline coatings [J]. Synthetic Metals,1997,88:237-242.
    [4]王杨勇,强军锋,井新利.聚苯胺防腐涂料的研究进展[J].宇航材料工艺,2002,4:1-6.
    [5]蒋永锋,郭兴伍,翟春泉,丁文江.聚苯胺膜在AZ91镁合金表面的制备[J].表面技术,2003,32(1):43-45.
    [6]Epstein A J, Smallfield J A, Guan H, Fahlman M. Corrosion Protection of Aluminum and Aluminum Alloys by Polyanilines:A Potentiodynamic and Photoelectron Spectroscopy Study [J]. Synthetic Metals,1999,102:1374-1379.
    [7]Brusiz V, Angelopoulos M, Graham T. J. Use of polyaniline and its derivatives in corrosion protection of copper and silver [J]. Electrochem. Soc.,1997,144: 436-441.
    [8]Hua Zhu, Lian Zhong, Shuhu Xiao, Fuxing Gan, Accelerating effect and mechanism of passivation of polyaniline on ferrous metals [J]. Electrochimica Acta,2004,49 (28):5161-5166.
    [9]Beck F, Haase V, Schroetz M. Polyheteroaromatic layers on commodity metals (CIPL)-passivation, corrosion protection [A]. AIP Conference Proceedings [C], 1996,354:115-121.
    [10]Bernhard Wessling, Joerg Posdorfer. Corrosion Prevention with an Organic Metal (Polyaniline):Corrosion Test Results [J]. Electrochimica Acta,1999,44: 2139-2143.
    [11]Mc Andrew T P, Miller S A, Gilicinski A G, Robeson L M. Poly(aniline) in corrosion resistant coatings [J]. Polymeric Materials Science and Engineering, 1996,74:204-209.
    [12]Bouayed M, Rabaa H, Srhiri A, et al. Experimental and theoretical study of organic corrosion inhibitors on iron in acidic medium [J]. Corrosion Science, 1999,41:501-507.
    [13]Luo H, Guan Y C, Han K N. Corrosion inhibition of a mild steel by aniline and alkylamines in acidic solutions [J]. Corrosion,1998,54:721-727.
    [14]Gardner G, in Nathan CC(ed) Corrosion inhibitors [R], NACE, Houston, 1973,156
    [15]Sathiyanarayanan S, Dhawan S K, Trivedi D C, Balakrishnan K. Soluble conducting poly ethoxy aniline as an inhibitor for iron in hydrochloric acid [J]. Corrosion Science,1992,33(12):1831.1836.
    [16]Schauer T, Joos A, Dulog L, Eisenbach CD, Protection of Iron Against Corrosion with Polyaniline Primers [J]. Progress in Organic Coatings,1998,33:20-22.
    [17]Lacroix J C, Cammalet J L, Aeiyach S, et al. Aniline electropolymerization on mild steel and zinc in a two-step process [J]. Journal of Electroanalytical Chemistry,2000,481:76.82.
    [18]Fahlman M, Smallfield JAO, Epstein A J. Corrosion protection of iron/steel by polyanilines:a photoelectron spectroscopy study [A].55th Annual Technical Conference-Society of Plastics Engineers,1997,2,1330-1333. Chemical Abstract,1997,127:52229-52233.
    [19]Robertson J. The mechanism of high temperature aqueous corrosion of steel [J]. Corrosion Science,1989,29:1275-1281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700