用户名: 密码: 验证码:
电子型导电高分子生化传感器的构建及其农业应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农业问题始终是关乎国计民生的重大问题。目前,农业污染问题不仅直接威胁着农业安全,还严重危害农业生态环境与影响人体健康水平。与此同时,威胁人类健康的很多非遗传疾病多与摄入的营养有关,使得农业生产与加工过程中粮食、蔬菜与农产品及其加工品的营养问题备受关注。传统检测方法诸如色谱法、质谱法、光谱法及其联用方法虽然灵敏准确,但需要繁琐费时的样品预处理,且仪器昂贵笨重,需专业人员维护与使用,不适于现场在线检测分析。因此,建立快速、可靠、灵敏和实用的监测/检测技术与方法,对农业安全和营养健康研究具有重要现实意义。传感技术是现代分析检测中的重要技术,由于其价格低廉、制备简单、操作简便、灵敏度高、选择性好、可微型化和连续现场检测等优点已广泛应用于临床医学、生物工程、食品工业和环境检测等领域。然而,在生化传感器的构建中,如何选择有效的固定方法和合适的材料决定着生化传感器的稳定性、灵敏度和选择性等重要性能参数。电子型导电高分子(ECPs),尤其是聚苯胺(PANi)、聚吡咯(PPy)、聚噻吩(PTh)及其衍生物或复合材料由于其可逆的电化学掺杂与去掺杂、高而稳定的电导率、分子导线效应、可与其它不同固定方法结合及可与多种固定化材料共聚或复合等独特优势已在高效生化传感器的应用中显示出独特的魅力。基于此,本论文合成了不同新型ECPs传感材料或制备了ECPs复合传感材料,结合各种电化学或光学检测方法,研究了基于不同ECPs的生化传感器的制备与性能及其农业应用。具体内容如下:
     (1)构建了各种基于PPy、聚3-噻吩乙酸(PTAA)、聚(3,4-乙撑二氧噻)(PEDOT)等ECPs及其衍生物或复合材料的酶传感器。通过引入表面活性剂、离子液体(ILs)、粘合剂、纳米材料、亲水基团等可不同程度改善酶传感电极的性能。尤其是ECPs纳米复合材料,能很好的发挥其协同生物电催化效应,表面活性剂可改善单体的水溶解性和聚合电位,ILs能为不溶于水的单体同时提供良好的溶剂体系和支持电解质。粘合剂等高分子膜能很好的提供生物兼容性和改善PEDOT: PSS膜的水稳定性。抗坏血酸氧化酶(AO)由于其长的寿命和高而稳定的生物活性可作为酶传感器固定生物组分研究的模式生物材料。更为重要的是,PEDOT及其性能优良的功能化衍生物或它们的复合材料也为生物活性组分的固定和生物传感器的构建提供了优异的载体材料或传感材料。
     (2)以AO为模式酶,PEDOT为的固定化载体,构建各种基于PEDOT的电化学AO生物传感器并应用于农业基础探索研究。通过生物兼容性表面活性、磺基阴离子基ILs、Nafion、碳纳米材料和金属纳米颗粒、亲水基团等引入,改善了PEDOT及其电化学生物传感器的性能。①生物兼容性表面活性剂十二烷基肌氨酸钠和N-十二烷基-β-D-麦芽糖苷的掺入不仅改善了3,4-乙撑二氧噻(EDOT)的溶解性和聚合电位及其聚合物膜的生物兼容性,而且获得的生物兼容性PEDOT酶膜有利于生物传感器的构建,并应用于蔬菜作物和商业饮料中的VC检测;②离子液体1-乙基-3-甲基咪唑硫酸乙酯是良好的“绿色”溶剂和支持电解质,它不仅可以解决单体溶解性问题,还可通过掺入PEDOT改善其导电性和生物传感器的灵敏度、检测限和抗干扰性;③Nafion可改善生物传感电极的稳定性和生物兼容性及其抗干扰性;④纳米材料如多壁碳纳米管、单壁碳纳米管、金属纳米颗粒、石墨烯及其氧化物可改善PEDOT膜的电子传递、电催化性能、防止生物分子的泄露;增强生物传感器的灵敏度、检测限、选择性、稳定性等;⑤EDOT衍生物,尤其是羟甲基化EDOT(EDOTM)和羧基化EDOT(EDOT-C4-COOH)不仅有良好的水溶解性和类似EDOT的聚合电位,而且获得的聚合物具有良好的生物兼容,可通过功能基团进行生物活性组分的共价固定;⑥通过掺入黏附性聚合物如Nafion、聚乙烯醇等可改善PEDOT:PSS水溶胀性和易分解性等问题,还可解决其构建生物传感器的稳定性问题,是自制电极开发与商业化应用的良好候选者。
     (3)构建基于PEDOT及其衍生物或复合材料的电化学传感器并应用于农业基础探索研究。通过引入碳材料、金属颗粒、亲水基团等改善PEDOT的性能,构建电化学化学传感电极。PEDOT复合传感电极不仅可解决PEDOT修饰电极弱的电催化性能和抗干扰性能,而且也提高了其灵敏度、检测限和稳定性。尤其是PEDOTM和PEDOT-C4-COOH不仅可以和不同材料共沉积或复合,还有利于纳米材料的自组装。已构建的PEDOT-C4-COOH/Cu电化学传感器可实现农作物和粮食中马来酰肼的检测。改良后的高水稳定性PEDOT:PSS复合电极为电极材料提供了最有前景的平台。
     (4)构建ECPs荧光化学传感器并应用于农业基础探索研究。ECPs的分子线放大效应可增强荧光传感器的灵敏度,而且醇/水溶性ECPs是开发“绿色”荧光传感器的优异材料。醇溶性PBA荧光传感器能高效、特异性识别Pd~(2+),可实现农作物或农业环境Pd~(2+)的检测。水溶性P9AF荧光传感器可检测Fe~(3+)和不同羧基化合物,通过磷酸盐对其Fe~(3+)猝灭体系进行恢复,可实现二者的区分。通过进一步改良获得的醇溶性PFCA荧光传感器只对Fe~(3+)有高效的特异性识别作用,这有利于进一步应用于农业中对Fe~(3+)的感测。
Agriculture is always the major problems in the national economy and people'slivelihood. Each year, at present, agricultural pollution has not only directly threatento the agricultural safety, but also serious harm to the agricultural ecologicalenvironment and affect human health. Meanwhile, many non-genetic diseases whichhave threaten to human health, are more related to nutritional intake, resulting in awidespread concern in agricultural production and process of nutritional problems offood, vegetables, and agricultural products and its processed products. Traditionaldetection methods such as chromatography, mass spectrometry, spectroscopy andtheir combination methods are sensitive and accurate, but require tedious andtime-consuming sample preparation, professionals to maintain and use, and bulkyinstruments and their expensive costs, which are not suitable for in-field fastmeasurement and real-time on-line analysis. Therefore, the development of a fast,reliable, sensitive and practical monitoring/detection techniques and methods hasimportant practical significance for the agricultural safety and nutrition health.
     Sensing technology, an important technology in the modern analyticalmethodology, has been widely used in clinical medicine, bio-engineering, foodindustry, environmental testing and other areas due to its low price, simplepreparation, easy operation, high sensitivity, fast response, good selectivity,miniaturization, and continuous on-site detection. However, how to select effectiveimmobilized method of biologically-active speciesthe and appropriate chemo/biosensing materials in the fabrciation of biochemical sensors, which play a crucial rolein important performance parameters such as the stability, sensitivity, and selectivityof chemo/bio sensors. Electronic conductive polymer (ECPs), especially polyaniline(PANi), polypyrrole (PPy), polythiophene (PTh) and their derivatives or compositematerials, have shown a unique charm in the application of efficient chemo/biosensors due to their unique advantages such as reversible electrochemical doping anddedoping, high stable electrical conductivity, molecular wire effect, the combinationwith other different immobilized methods, and the co-deposition or composite with avariety of materials. Inspired by these aspects, new ECPs sensing materials weresynthesized or ECPs composite sensing materials were prepared, and the fabrication,properties and appl ications in agriculturre of various ECPs chemo/bio sensors werestudied by different electrochemical or optical methods. The details are as follows:
     (1) A variety of enzyme sensors based on ECPs such as PPy, poly-3-thiophene acetic acid (PTAA), poly (3,4-ethylenedioxy thiophene)(PEDOT) and theirderivatives or composites. The introduction of surfactants, ionic liquids (ILs), binders,nanomaterials, or hydrophilic groups, these greatly improved the performance ofenzyme sensors. Especially, ECPs nanocomposites have a good synergisticbioelectrocatalytic effect. Meanwhile, surfactants can improve the water solubility ofmonomers and its polymerization potential (E_(ox)). ILs can provide a good solventsystem and support electrolytes for water-insoluble monomers. Polymer films basedon binders, can provide a good bio-compatibility and improve the water stability ofpoly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) films.Ascorbic acid oxidase (AO) can be employed as a mode biomaterial of biologicallyactive species to fabricate enzyme sensors due to its long life span and high and stablebiological activity. More importantly, PEDOT and its excellent functionalizedderivatives or their composite materials can provide excellent immobilized materialsand sensing materials for the immobilization of biologically active species and thefabrication of biosensors.
     (2) AO biomolecules were selected as the mode biologically active species,PEDOT was employed as immobilized materials of biologically active species, avariety of AO electrochemical biosensors based on PEDOT were fabricated forexploring its application in agricultural fundamental research. The performance ofelectrochemical biosensors and properties of PEDOT can be improved by theintroducation of the biocompatible surfactants, ILs with alkyl sulfate anions, Nafion,carbon nanomaterials, metal nanoparticles, and hydrophilic groups.(a) Theincorporation of the biocompatible surfactants such as sodium N-lauroylsarcosinateand N-dodecyl-β-D-maltoside can improved the solubility and E_(ox)of monomer3,4-ethylenedioxy-thiophene (EDOT) and the biocompatibility of its polymer films,and the obtained biocompatible PEDOT complex enzyme film is beneficial for thefabricatiom of biosensors and application for to the determination of VC in vegetablecrops and commercial drinks;(b) ILs1-ethyl-3-methyl-imidazol-ethyl sulfate, as agood "green" solvent and supporting electrolyte, can resolve the solubility ofmonomer and improve the efficiency of electron transfer, sensitivity, detection limit,and interference of biosensor;(c) Nafion can improve the stability, biocompatibility,and interference of sensing electrode;(d) nanomaterials such as multi-walled carbonnanotubes, single-walled carbon nanotubes, metal nanoparticles, graphene and itsoxide, not only can improve the electron transfer, bioelectrocatalytic activity of PEODT film, and prevent the leakage of biologically active species, but also enhancethe sensitivity, detection limit, selectivity, stability of sensors;(e) EDOT derivativessuch as the hydroxymethylated EDOT (EDOTM) and functionalized EDOT withcarboxyl group (EDOT-C4-COOH), which have a good water solubility and a similarE_(ox)of EDOT, and the obtained polymers not only has a good biocompatibility, butalso available for the immobization of the biological active species by functionalizedgroup;(f) PEDOT:PSS tends to swell and disintegrates in water, the performance ofits film can be improved by incorporation of the adhesive polymers such as Nafion,polyvinyl alcohol, which can also improve stability of biosensors. The improvementof PEDOT:PSS is good candidate for the development and commercialization ofself-made electrode.
     (3) Various AO electrochemical sensing electrodes based on PEDOT and theirderivatives or composites were fabricated for exploring its application in agriculturalfundamental research. The performance of the electrochemical sensing electrodes canbe improved by introducing carbon nanomaterials, metal nanoparticles, andhydrophilic group. PEDOT nanocomposite sensing electrodes can not only solve theweak electrocatalytic activity and interference of PEDOT sensing electrodes, but alsoimprove sensitivity, detection limit, and stability of electrochemical sensors.Especially, PEDOTM and PEDOT-C4-COOH, as typical representative of excellentPEDOT derivatives, can be copolymerized and composited with other materials, andare also beneficial to the self-assembly of nanoparticles. The fabricatedGCE/PEDOT-C4-COOH/Cu electrochemical sensor can be empolyed for thedetermination of maleic hydrazide in crops and food. The high water-stability ofPEDOT:PSS composites are a promising candidate of electrode materials.
     (4) Fluorescent chemical sensors based on based on ECPs were fabricated forexploring its application in agricultural fundamental research. A small number ofECPs, which can dissolve in the environment-friendly solvent such as alcohol/water,are excellent sensing materials for the development of "green" fluorescent sensors,and the sensing sensitivity can be enhanced by molecular wire effect of ECPs. Thealcohol soluble fluorescent PBAhas an excellent specific recognition, high sensitivity,and low detection limit for the detection of Pd~(2+), and can be well applied for thedetection of Pd~(2+)in samples of agricultural crops or environment. Water-solublefluorescent P9AF can be empolyed for the detection of Fe~(3+)and carboxyl compounds,and phosphate can recover the fluorescence quenching of Fe~(3+)-P9AF and distinguish determination both of the two analyties. Through the further research, alcohol solublefluorescent PFCAhas an excellent specificity, high sensitivity, and low detection limitfor the detection of Fe~(3+), which is very beneficial for the further application for thedetection of Fe~(3+)in agricultural samples.
引文
[1]路苹,于同泉,王淑英,王建立,杨柳.蛋白质测定方法评价[J].北京农学院学报,2006,21(2):65-68.
    [2]李宁.几种蛋白质测定方法的比较[J].山西农业大学学报,2006,26(2):132-134.
    [3]章丽,刘松雁.氨基酸测定方法的研究进展[J].河北化工,2009,32(5):27-29.
    [4]杨柳,王建立,王淑英,路苹.糖类物质测定方法评价[J].北京农学院学报,2009,24(4):68-71.
    [5]郭金格,郑树朝,张芳,张亚军.还原糖测定方法的研究[J].河北化工,2008,31(11):34-35.
    [6]谭敏,邱细敏,陆艳艳,杨小红,刘胜姿,邱文高.植物多糖分析方法综述[J].食品科学,2009,30(21):420-423.
    [7]徐晓飞,陈健.多糖含量测定的研究进展[J].食品科学,2009,30(21):443-448.
    [8]俞一夫.国内外粮食,油料脂肪测定方法评析[J].西部粮油科技,2000,25(1):46-49.
    [9]张坚.脂肪和脂肪酸的测定[C].食品营养成分分析技术培训班论文集,2010.
    [10]张翼.黄酒中矿质元素的测定及研究[D].浙江大学,2008.
    [11]王克敏.稻米重要矿质元素的分布及铁锌快速测定方法的研究[D].浙江大学,2011.
    [12]刘杰,朱智伟,孙成效,于永红.稻米中矿质元素及其测定方法的研究进展[J].中国稻米,2010,16(5):24-27.
    [13]常相娜,黄荣清,王正平,崔玉芳. B族维生素测定方法研究进展[J].科学技术与工程,2004,4(4):312-315.
    [14]谭和平,叶善蓉,邹燕,陈丽.茶叶中维生素分析方法概述[J].中国测试技术,2008,34(3):4-8.
    [15]左程丽,李端.维生素的检测现状及国际标准检测方法[J].食品安全导刊,2011,(10):36-37.
    [16]林国伟,李嘉,黄启华.食品中常见添加剂的测定与评价[J].科技资讯,2011,4:243-243.
    [17]彭亚锋,巢强国,葛宇,郭顺清,周耀斌,薛峰,张文珠.食品添加剂检测技术的研究进展[J].粮油加工,2009,(10):138-140.
    [18]朱莉,陈锡爱,黄平捷,张光新,张宏建.基于太赫兹波的食品添加剂检测技术研究[D].浙江大学,2008.
    [19]李莉,董喆,崔生辉,林兰.我国餐饮食品中滥用食品添加剂的检测技术与方法综述[J].中国药事,2012,26(4):404-407.
    [20]嵇超.多种类食品添加剂的高灵敏、快速检测技术研究及应用[D].江南大学,2010.
    [21] Clark L C, Lyons C. Electrode systems for continuous monitoring in cardiovascularsurgery[J]. Ann NyAcad Sci,1962,102(1):29-45.
    [22] Updike S J, Hicks G P. The enzyme electrode[J]. Nature,1967,214(5092):986-988.
    [23]陈时洪.基于纳米材料构建过氧化氢生物传感器的研究[D].西南大学,2008.
    [24] Heyrovsky J. Electrolysis with the dropping mercury electrode[J]. Chem Listy,1922,16:256-304.
    [25] Müller D. Studies on the new enzyme glucose oxidase [J]. Biochem Z,1928,199:136-170.
    [26] Clark Lc Jr. Monitor and control of blood and tissue oxygen tensions[J]. Asaio J,1956,2(1):41-48.
    [27] Guilbault G G, Montalvo J J G. Urea-specific enzyme electrode[J]. J Am Chem Soc,1969,91(8):2164-2165.
    [28] Mosbach K, Danielsson B. An enzyme thermistor[J]. BBA-protein Struct M,1974,364(1):140-145.
    [29] Diviés C. Remarks on ethanol oxidation by an“Acetobacter xylinum”microbial electrode [J].Ann Microbiol,1975,126(2):175-186.
    [30] Janata J. Immunoelectrode[J]. JAm Chem Soc,1975,97(10):2914-2916.
    [31] Rechnitz G A, Kobos R K, Riechel S J, Gebauer C R. A bio-selective membrane electrodeprepared with living bacterial cells[J]. Anal Chim Acta,1977,94(2):357-365.
    [32] Karube I, Matsunaga T, Mitsuda S, Suzuki S. Microbial electrode BOD sensors[J].Biotechnol Bioeng,1977,19(10):1535-1547.
    [33] Johnson C C, Moss S D, Janata J A. Selective chemical sensitive FET transducers. US Patent,4020830.1977.
    [34] Rechnitz G A, Arnold M A, Meyerhoff M E. Bioselective membrane electrode using tissueslices[J]. Nature,1979,278(5703):466-467.
    [35] Aizawa M, Wada M, Kato S, Suzuki S. Immobilized mitochondrial electron transportparticle for NADH determination[J]. Biotechnol Bioeng,1980,22(9):1769-1783.
    [36] Caras S, Janata J. Field effect transistor sensitive to penicillin[J]. Anal Chem,1980,52(12):1935-1937.
    [37] Lowe C R, Goldfinch M J. Novel electrochemical sensors for clinical analysis[J]. BiochemSoc Trans,1983,11(4):448-451.
    [38] Guilbault G G. Determination of formaldehyde with an enzyme-coated piezoelectric crystaldetector[J]. Anal Chem,1983,55(11):1682-1684.
    [39] Cass AE G, Davis G, Francis G D, Hill H a O, Aston W J, Higgins I J, Plotkin E V, Scott L DL, Turner A P F. Ferrocene-mediated enzyme electrode for amperometric determination ofglucose[J]. Anal Chem,1984,56(4):667-671.
    [40] Arnold M A. Enzyme-based fiber optic sensor[J].Anal Chem,1985,57(2):565-566.
    [41] Caras S D, Petelenz D, Janata J. pH-based enzyme potentiometric sensors. Part2.Glucose-sensitive field effect transistor[J]. Anal Chem,1985,57(9):1920-1923.
    [42] Nylander C, Liedberg B, Lind T. Gas detection by means of surface plasmon resonance[J].Sensor Actuat B-Chem,1982-1983,3:79-88.
    [43] Tarasevich M R. Ways of using enzymes for acceration of electrochemical reactions[J]. JElectroanal Chem,1979,104:587-597.
    [44] Battaglini F, Bartlett P, Wang J. Covalent attachment of osmium complexes to glucoseoxidase and the application of the resulting modified enzyme in an enzyme switchresponsive to glucose[J]. Anal Chem,2000,72(3):502-509.
    [45]左鹏,于少明,杨杰茹,章璟嵩,张迟.辣根过氧化物酶固定化载体材料的研究进展[J].材料导报,2007,21(11):46-49.
    [46] Barlett P N, Cooper J M. A review of the immobilization of enzymes in electropolymerizedfilms[J]. J Electroanal Chem,1993,362(1-2):1-12.
    [47]牛亚楠,侯红萍.固定化酶载体的研究进展[J].酿酒科技,2011,9:33.
    [48]袁定重,张秋禹,侯振宇,李丹,张军平,张和鹏.固定化酶载体材料的最新研究进展[J].材料导报,2006,20(1):69-72.
    [49]毕淑娴.固定化酶载体的制备及其性能研究[D].陕西师范大学,2007.
    [50] Ramanavi ius A, Ramanavi ien A, Malinauskas A. Electrochemical sensors based onconducting polymer-polypyrrole[J]. ElectrochimActa,2006,51(27):6025-6037.
    [51] Yamaguchi S, Shimomura T, Tatsuma T, Oyama N. Adsorption, immobilization, andhybridization of DNA studied by the use of quartz crystal oscillators[J]. Anal Chem,1993,65(14):1925-1927.
    [52] Liu B H, Hu R Q, Deng J Q. Characterization of immobilization of an enzyme in a modifiedY zeolite matrix and its application to an amperometric glucose biosensor[J]. Anal Chem,1997,69(13):2343-2348.
    [53] Cagnini A, Palchetti I, Mascini M, Turner A P. Ruthenized screen-printed cholineoxidase-based biosensors for measurement of anticholinesterase activity[J]. Microchim Acta,1995,121(1-4):155-166.
    [54] Rover Júnior L, De Oliveira Neto G, Roberto Fernandes J, Tatsuo Kubota L. Determinationof salicylate in blood serum using an amperometric biosensor based on salicylatehydroxylase immobilized in a polypyrrole-glutaraldehyde matrix[J]. Talanta,2000,51(3):547-557.
    [55] Ianniello R M, Yacynych A M. Immobilized enzyme chemically modified electrode as anamperometric sensor[J].Anal Chem,1981,53(13):2090-2095.
    [56]李兰扣,董江庆,徐晓燕.自组装技术及其在生物传感器中的应用研究[J].河北化工,32(7):52-53.
    [57]王毓德,马春来,孙晓丹,彭平华,李恒德.分子自组装及其在传感器中的应用[J].高技术通讯,2002,10:102-106.
    [58] Mueller P, Rudin D O, Ti Tien H, Wescott W C. Reconstitution of cell membrane structure invitro and its transformation into an excitable system[J]. Nature,1962,194(4832):979-980.
    [59]罗立强,杨秀荣.双层类脂膜及其在电化学生物传感器中的应用[J].分析化学,2000,28(9):1165-1171.
    [60] Naqvi A, Nahar P. Photochemical immobilization of proteins on microwave–synthesizedphotoreactive polymers[J]. Anal Biochem,2004,327(1):68-73.
    [61] Kumar S, Nahar P. Sunlight-induced covalent immobilization of proteins[J]. Talanta,2007,71(3):1438-1440.
    [62]李赛,傅皓,罗祥林,万昌秀,钟银屏.聚醚砜表面光固定脲酶的研究[J].生物医学工程学杂志,2002,19(1):13-16.
    [63] Kress-Rogers E. Handbook of biosensors and electronic noses: medicine, food, and theenvironment[M]. CRC Press1997.
    [64] Spichiger-Keller U E. Chemical sensors and biosensors for medical and biologicalapplications[M]. Wiley-VCH,2008.
    [65] Kerman K, Saito M, Tamiya E, Yamamura S, Takamura Y. Nanomaterial-basedelectrochemical biosensors for medical applications[J]. TrAC Trend Anal Chem,2008,27(7):585-592.
    [66] Wang P, Xu G, Qin L, Xu Y, Li Y, Li R. Cell-based biosensors and its application inbiomedicine[J]. Sensor Actuat B-Chem,2005,108(1):576-584.
    [67]李燕.生物传感器在医学上的应用[J].世界最新医学信息文摘,2004,3(5):1285-1287.
    [68]罗宏,刘劲,邓刚.生物传感器在医学中的应用现状和发展前景[J].医疗设备信息,2006,21(11):40-44.
    [69] Brooks S L, Ashby R E, Turner A P, Calder M R, Clarke D J. Development of an on-lineglucose sensor for fermentation monitoring[J]. Biosensors,1988,3(1):45-56.
    [70]张广.生物传感器在生物工程研究中的应用[J].太原师范学院学报(自然科学版),2005,3(4):24.
    [71] Terry L A, White S F, Tigwell L J. The application of biosensors to fresh produce and thewider food industry[J]. J Agr Food Chem,2005,53(5):1309-1316.
    [72] Mello L D, Kubota L T. Review of the use of biosensors as analytical tools in the food anddrink industries[J]. Food Chem,2002,77(2):237-256.
    [73] Luong J H T, Bouvrette P, Male K B. Developments and applications of biosensors in foodanalysis[J]. Trends Biotechnol,1997,15(9):369-377.
    [74]刘春菊,刘春泉,李大婧.生物传感器及其在食品检测中的应用进展[J].江苏农业科学,2009,4:146.
    [75]陈继冰.生物传感器在食品安全检测中的应用与研究进展[J].食品研究与开发,2009,30(1):180-183.
    [76]马莉萍,范增杰,韩根亮,李工农,刘国汉.新型生物传感器在食品安全检测中的应用
    [C].第四届中国北京国际食品安全高峰论坛论文集,2011.
    [77]聂成霞.生物传感技术及传感器在食品工业中的应用[J].肉类研究,2010,12:76-79.
    [78]蒋雪松,王剑平,应义斌,李延斌.用于食品安全检测的生物传感器的研究进展[J].农业工程学报,2007,23(5):272-277.
    [79]陈颖,史廷明,沈更新,黄文耀,刘家发,梅素容,周宜开.生物传感器在食品安全检测中的应用[J].中国卫生检验杂志,2008,18(11):2451-2452.
    [80]项锦欣,王勇德.生物传感器在食品工业中的应用[J].肉类工业,2004,8:46-48.
    [81] Wang J, Rogers K. Electrochemical sensors for environmental monitoring: a review of recenttechnology[M]. US Environmental Protection Agency, Office of Research and Development,Environmental Monitoring and Support Laboratory,1995.
    [82] Parellada J, Narvaez A, Lopez M, Dom nguez E, Fernandez J, Pavlov V, Katakis I.Amperometric immunosensors and enzyme electrodes for environmental applications[J].Anal ChimActa,1998,362(1):47-57.
    [83] Karube I, Nomura Y, Arikawa Y. Biosensors for environmental control[J]. TrAC Trend AnalChem,1995,14(7):295-299.
    [84] Karube I, Nomura Y. Enzyme sensors for environmental analysis[J]. J Mo Catal B: Enzym2000,10(1):177-181.
    [85] Dzyadevych S V, Soldatkin AP, Arkhypova V N, El’skaya AV, Chovelon J M, Georgiou CA,Martelet C, Jaffrezic Renault N. Early-warning electrochemical biosensor system forenvironmental monitoring based on enzyme inhibition[J]. Sensor Actuat B-Chem,2005,105(1):81-87.
    [86]刘佳,殷立峰,代云容,江帆,牛军峰.电化学酶传感器在环境污染监测中的应用[J].化学进展,2012,24(1):131-143.
    [87] Wang J, Rivas G, Cai X, Palecek E, Nielsen P, Shiraishi H, Dontha N, Luo D, Parrado C,Chicharro M. DNA electrochemical biosensors for environmental monitoring [J]. Anal ChimActa,1997,347(1):1-8.
    [88]王建龙. DNA生物传感器在环境污染监测中的应用[J].生物化学与生物物理进展,2001,28(1):125-128.
    [89] Ciumasu I M, Kr mer P M, Weber C M, Kolb G, Tiemann D, Windisch S, Frese I, Kettrup AA. Anew, versatile field immunosensor for environmental pollutants: development and proofof principle with TNT, diuron, and atrazine[J]. Biosens Bioelectron,2005,21(2):354-364.
    [90]蔡强,何苗,施汉昌.电化学免疫传感器在环境污染监测中的研究进展[J].传感技术学报,2004,3(17):526-530.
    [91] Belkin S. Microbial whole-cell sensing systems of environmental pollutants[J]. Curr OpinMicrobiol,2003,6(3):206-212.
    [92] Riedel K, Lange K-P, Stein H-J, Kühn M, Ott P, Scheller F. A microbial sensor for BOD[J].Water Res,1990,24(7):883-887.
    [93] K nig A, Riedel K, Metzger J W. A microbial sensor for detecting inhibitors of nitrificationin wastewater[J]. Biosens Bioelectron,1998,13(7):869-874.
    [94] Foulds N C, Lowe C R. Enzyme entrapment in electrically conducting polymers.Immobilisation of glucose oxidase in polypyrrole and its application in amperometricglucose sensors[J]. J Chem Soc FaradayTrans1,1986,82(4):1259-1264.
    [95] Shirakawa H, Louis E J, Macdiarmid A G, Chiang C K, Heeger A J. Synthesis of electricallyconducting organic polymers: halogen derivatives of polyacetylene (CH)x[J]. J C S ChemComn1977,(16):578-580.
    [96] Chiang C K, Fincher Jr C R, Park Y, Heeger A J, Shirakawa H, Louis E J, Gau S C,Macdiarmid A G. Electrical conductivity in doped polyacetylene[J]. Phys Rev Lett,1977,39(17):1098-1101.
    [97]李靖.聚吡咯纳米电极电化学生物传感器的研究[D].中国科学技术大学,2008.
    [98]孟晓荣,胡新婷,邢远清,张敏.噻吩类导电高聚物的研究进展[J].应用化工,2006,35(7):549-553.
    [99]牛林,陈晓,魏丰华,王浩,李秋红.导电聚合物的结构和性能表征方法[J].功能高分子学报,2002,15(1):91-98.
    [100] Kong F Y, Li X R, Zhao W W, Xu J J, Chen H Y. Graphene oxide–thionine–Au nanostructurecomposites: preparation and applications in non-enzymatic glucose sensing[J]. ElectrochemCommun,2012,14(1):59-62.
    [101] Pandey R K, Lakshminarayanan V. Ethanol electrocatalysis on gold and conducting polymernanocomposites: A study of the kinetic parameters[J]. Applied Catalysis B: Environmental,2012,125:271-281.
    [102] Sahoo N G, Rana S, Cho J W, Li L, Chan S H. Polymer nanocomposites based onfunctionalized carbon nanotubes[J]. Prog Polym Sci,2010,35(7):837-867.
    [103] Mallouki M, Tran-Van F, Sarrazin C, Chevrot C, Fauvarque J. Electrochemical storage ofpolypyrrole-Fe2O3nanocomposites in ionic liquids[J]. Electrochim Acta,2009,54(11):2992-2997.
    [104] Mostafaei A, Zolriasatein A. Synthesis and characterization of conducting polyanilinenanocomposites containing ZnO nanorods[J]. Prog Nat Sci,2012,22(4):273-280.
    [105] Pavlidou S, Papaspyrides C D. A review on polymer-layered silicate nanocomposites[J].Prog Polym Sci,2008,33(12):1119-1198.
    [106] Waghuley S, Yenorkar S, Yawale S, Yawale S. Application of chemically synthesizedconducting polymer-polypyrrole as a carbon dioxide gas sensor[J]. Sensor Actuat B-Chem,2008,128(2):366-373.
    [107] Penza M, Milella E, Musio F, Alba M, Cassano G, Quirini A. AC and DC measurements onLangmuir-Blodgett polypyrrole films for selective NH3gas detection[J]. Materials Scienceand Engineering: C,1998,5(3):255-258.
    [108] Al-Mashat L, Tran H D, Wlodarski W, Kaner R B, Kalantar-Zadeh K. Conductometrichydrogen gas sensor based on polypyrrole nanofibers[J]. IEEE Sens J2008,8(4):365-370.
    [109] Ekanayake E, Preethichandra D M, Kaneto K. Polypyrrole nanotube array sensor forenhanced adsorption of glucose oxidase in glucose biosensors[J]. Biosens Bioelectron,2007,23(1):107-113.
    [110] Gong J, Wang L, Zhang L. Electrochemical biosensing of methyl parathion pesticide basedon acetylcholinesterase immobilized onto Au–polypyrrole interlaced network-likenanocomposite[J]. Biosens Bioelectron,2009,24(7):2285-2288.
    [111] Periasamy A P, Umasankar Y, Chen S-M. Nanomaterials-acetylcholinesterase enzymematrices for organophosphorus pesticides electrochemical sensors: a review[J]. Sensors,2009,9(6):4034-4055.
    [112] Tatsuma T, Gondaira M, Watanabe T. Peroxidase-incorporated polypyrrole membraneelectrodes[J]. Anal Chem,1992,64(10):1183-1187.
    [113] Bian X, Lu X, Jin E, Kong L, Zhang W, Wang C. Fabrication of Pt/polypyrrole hybridhollow microspheres and their application in electrochemical biosensing towards hydrogenperoxide[J]. Talanta,2010,81(3):813-818.
    [114] Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56-58.
    [115] Kum M C, Joshi K A, Chen W, Myung N V, Mulchandani A. Biomolecules-carbonnanotubes doped conducting polymer nanocomposites and their sensor application[J].Talanta,2007,74(3):370-375.
    [116] Spitalsky Z, Tasis D, Papagelis K, Galiotis C. Carbon nanotube–polymer composites:chemistry, processing, mechanical and electrical properties[J]. Prog Polym Sci,2010,35(3):357-401.
    [117] Lin K C, Tsai T H, Chen S M. Performing enzyme-free H2O2biosensor and simultaneousdetermination for AA, DA, and UAby MWCNT-PEDOT film[J]. Biosens Bioelectron,2010,26(2):608-614.
    [118] Liu M, Wen Y P, Li D, He H H, Xu J K, Liu C C, Yue R R, Lu B Y, Liu G D.Electrochemical immobilization of ascorbate oxidase inpoly(3,4-ethylenedioxythiophene)/multiwalled carbon nanotubes composite films[J]. J ApplPolym Sci,2011,122(2):1142-1151.
    [119] Li D, Wen YP, He H H, Xu J K, Liu M, Yue R R. Polypyrrole-multiwalled carbon nanotubescomposites as immobilizing matrices of ascorbate oxidase for the facile fabrication of anamperometric vitamin C biosensor[J]. JAppl Polym Sci,2012,126(3):882-893.
    [120] Elschner A, Kirchmeyer S, Lovenich W, Merker U, Reuter K. PEDOT: principles andapplications of an intrinsically conductive polymer[M]. CRC Press Boca Raton, FL, USA,2010.
    [121] Stevanato R, Avigliano L, Finazzi-Agro A, Rigo A. Determination of ascorbic acid withimmobilized green zucchini ascorbate oxidase[J].Anal Biochem,1985,149(2):537-542.
    [122] Macholan L, Chmelikova B. Plant tissue-based membrane biosensor for L-ascorbic acid[J].Anal ChimActa,1986,185:187-193.
    [123] Uchiyama S, Umetsu Y. Concentration-step amperometric sensor of l-ascorbic acid usingcucumber juice[J]. Anal ChimActa,1991,255(1):53-57.
    [124] Uchiyama S, Suzuki S. Concentration-step amperometric biosensors using thin enzymereactors[J]. Sensor Actuat B-Chem,1993,13(1):76-78.
    [125] Marques I D, Marques E T, Silva A, Ledingham W, Melo E H, Silva V L D, Lima Filho J.Ascorbic acid determination in biological fluids using ascorbate oxidase immobilized onalkylamine glass beads in a flow injection potentiometric system[J]. Appl Biochem Biotech,1994,44(1):81-89.
    [126] Uchiyama S, Hasebe Y, Tanaka M. L-Ascorbate sensor with polypyrrole-coated carbon feltmembrane electropolymerized in a cucumber juice solution[J]. Electroanal,1997,9(2):176-178.
    [127] Wang H Y, Mu S L. Bioelectrochemical response of the polyaniline ascorbate oxidaseelectrode[J]. J Electroanal Chem,1997,436(1):43-48.
    [128] Fernandes J C B, Kubota L T, Neto G D O. Potentiometric biosensor for L-ascorbic acidbased on ascorbate oxidase of natural source immobilized on ethylene-vinylacetatemembrane[J].Anal ChimActa,1999,385(1):3-12.
    [129] Akyilmaz E, Dinckaya E. A new enzyme electrode based on ascorbate oxidase immobilizedin gelatin for specific determination of L-ascorbic acid[J]. Talanta,1999,50(1):87-93.
    [130] Tomita I, Manzoli A, Fertonani F, Yamanaka H. Amperometric biosensor for ascorbic acid[J].Eclet Quim,2005,30(2):37-43.
    [131] Wang X, Watanabe H, Uchiyama S. Amperometric L-ascorbic acid biosensors equipped withenzyme micelle membrane[J]. Talanta,2008,74(5):1681-1685.
    [132] Sezgintürk M K, Koca H B, Ozben Y S, Din kaya E. A Biosensor Based on Zucchini(Cucurbita Pepo L.) Homogenate as a Biorecognition Layer for Ascorbic AcidDetermination[J].Artif Cell Blood Sub,2010,38(4):215-221.
    [133] Chauhan N, Dahiya T, Pundir C. Fabrication of an amperometric ascorbate biosensor usingegg shell membrane bound Lagenaria siceraria fruit ascorbate oxidase[J]. J Mol CatalB-enzym,2010,67(1):66-71.
    [134] Pisoschi A-M, Negulescu G-P, Pisoschi A. Ascorbic acid determination by an amperometricascorbate oxidase-based biosensor[J]. Revista De Chimie,2010,61(4):339-344.
    [135] Chauhan N, Narang J, Pundir C. Fabrication of multiwalled carbon nanotubes/polyanilinemodified Au electrode for ascorbic acid determination[J].Analyst,2011,136(9):1938-1945.
    [136] Peng C, Jin J, Chen G Z. A comparative study on electrochemical co-deposition andcapacitance of composite films of conducting polymers and carbon nanotubes[J].Electrochim Acta,2007,53(2):525-537.
    [137] Karim M R, Lee C J, Sarwaruddin C a M, Nahar N, Lee M S. Radiolytic synthesis ofconducting polypyrrole/carbon nanotube composites[J]. Mater Lett,2007,61(8):1688-1692.
    [138] Sahoo N G, Jung Y C, So H H, Cho J W. Polypyrrole coated carbon nanotubes: synthesis,characterization, and enhanced electrical properties[J]. Synthetic Met,2007,157(8):374-379.
    [139] Deng J G, Peng Y X, He C L, Long X P, Li P, Chan A S C. Magnetic and conductingFe3O4-polypyrrole nanoparticles with core‐shell structure[J]. Polym Int,2003,52(7):1182-1187.
    [140] Park J H, Ko J M, Park O O, Kim D-W. Capacitance properties of graphite/polypyrrolecomposite electrode prepared by chemical polymerization of pyrrole on graphite fiber[J]. JPower Sources,2002,105(1):20-25.
    [141] Xu Y, Jiang Y, Cai H, He P G, Fang Y Z. Electrochemical impedance detection of DNAhybridization based on the formation of M-DNA on polypyrrole/carbon nanotube modifiedelectrode[J]. Anal ChimActa,2004,516(1):19-27.
    [142] Sabatani E, Cohen-Boulakia J, Bruening M, Rubinstein I. Thioaromatic monolayers on gold:a new family of self-assembling monolayers[J]. Langmuir,1993,9(11):2974-2981.
    [143] Lien T T N, Lam T D, An V T H, Hoang T V, Quang D T, Khieu D Q, Tsukahara T, Lee YH,Kim J S. Multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole DNA biosensor forlabel-free detection of genetically modified organisms by QCM and EIS[J]. Talanta,2010,80(3):1164-1169.
    [144] MarangoniAG. Enzyme kinetics: a modern approach[M]. Wiley-Interscience, USA,2003.
    [145] Wang J, Zhu S, Xu C. Biochemistry (3rd ed.)[M]. Higher Education Press, Beijing,2002.
    [146] Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds J R.Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future[J]. Adv Mater,2000,12(7):481-494.
    [147] Kirchmeyer S, Reuter K. Scientific importance, properties and growing applications ofpoly(3,4-ethylenedioxythiophene)[J]. J Mater Chem,2005,15(21):2077-2088.
    [148] Jang J, Chang M, Yoon H. Chemical sensors based on highly conductivepoly(3,4-ethylenedioxythiophene) nanorods[J]. Adv Mater,2005,17(13):1616-1620.
    [149] Richardson-Burns S M, Hendricks J L, Foster B, Povlich L K, Kim D H, Martin D C.Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene)(PEDOT)around living neural cells[J]. Biomaterials,2007,28(8):1539-1552.
    [150] Kamei T, Asano K, Suzuki H, Matsuzaki M, Nakamura S. L-Glutamate oxidase fromstreptomyces violascens. I. production, isolation and some properties[J]. Chem Pharm Bull,1983,31:1307-1314.
    [151] Salt T E, Eaton S A. Functions of ionotropic and metabotropic glutamate receptors in sensorytransmission in the mammalian thalamus[J]. Prog Neurobiol,1996,48(1):55-72.
    [152] Haxhiu M A, Chavez J C, Pichiule P, Erokwu B, Dreshaj I A. The excitatory amino acidglutamate mediates reflexly increased tracheal blood flow and airway submucosal glandsecretion[J]. Brain Res,2000,883(1):77-86.
    [153] Mcentee W J, Crook T H. Glutamate: its role in learning, memory, and the aging brain[J].Psychopharmacology,1993,111(4):391-401.
    [154] Chang K S, Hsu W L, Chen H Y, Chang C K, Chen C Y. Determination of glutamatepyruvate transaminase activity in clinical specimens using a biosensor composed ofimmobilized L-glutamate oxidase in a photo-crosslinkable polymer membrane on apalladium-deposited screen-printed carbon electrode[J]. Anal Chim Acta,2003,481(2):199-208.
    [155] Compagnone D, Federici G, Massoud R, Santoro L, Anichini M, Palleschi G. Analysis fortransaminases in serum with an amperometric glutamate electrode[J]. Clin Chem,1992,38(11):2306-2310.
    [156] Song M J, Yun D H, Hong S I. An electrochemical biosensor array for rapid detection ofalanine aminotransferase and aspartate aminotransferase[J]. Biosci Biotech Biochem,2009,73(3):474-478.
    [157] Wen Y P, Xu J K, He H H, Lu B Y, Li Y Z, Dong B. Electrochemical polymerization of3,4-ethylenedioxythiophene in aqueous micellar solution containing biocompatible aminoacid-based surfactant[J]. J Electroanal Chem,2009,634(1):49-58.
    [158]文阳平.导电聚(3,4-乙撑二氧噻吩)/抗坏血酸氧化酶电化学生物传感器用于维生素C检测[D].江西农业大学,2010.
    [159] Bobacka J, Lewenstam A, Ivaska A. Electrochemical impedance spectroscopy of oxidizedpoly(3,4-ethylenedioxythiophene) film electrodes in aqueous solutions[J]. J ElectroanalChem,2000,489(1):17-27.
    [160] Albery W J, Chen Z, Horrocks B R, Mount A R, Wilson P J, Bloor D, Monkman AT, ElliottC M. Spectroscopic and electrochemical studies of charge transfer in modified electrodes[J].Faraday Discuss Chem Soc,1989,88:247-259.
    [161] Messerschmidt A, Ladenstein R, Huber R, Bolognesi M, Avigliano L, Petruzzelli R, Rossi A,Finazzi-Agró A. Refined crystal structure of ascorbate oxidase at1.9A resolution[J]. J MolBiol,1992,224(1):179.
    [162] Messerschmidt A, Huber R. The blue oxidases, ascorbate oxidase, laccase and ceruloplasminModelling and structural relationships[J]. Eur J Biochem,2005,187(2):341-352.
    [163]石永春,刘卫群.植物中的抗坏血酸氧化酶[J].植物生理学通讯,2008,44(1):151-153.
    [164]郭燕,朱杰,许自成,张水成.植物抗坏血酸氧化酶的研究进展[J].中国农学通报,2008,24(3):196-199.
    [165] Janata J, Josowicz M. Conducting polymers in electronic chemical sensors[J]. Nature Mater,2003,2(1):19-24.
    [166] Lange U, Roznyatovskaya N V, Mirsky V M. Conducting polymers in chemical sensors andarrays[J]. Anal ChimActa,2008,614(1):1-26.
    [167] Gerard M, Chaubey A, Malhotra B. Application of conducting polymers to biosensors[J].Biosens Bioelectron,2002,17(5):345-359.
    [168] Malhotra B D, Chaubey A, Singh S. Prospects of conducting polymers in biosensors[J]. AnalChim Acta,2006,578(1):59-74.
    [169] Ahuja T, Mir I A, Kumar D. Biomolecular immobilization on conducting polymers forbiosensing applications[J]. Biomaterials,2007,28(5):791-805.
    [170] Javadpour S, Gharavi A, Feizpour A, Khanehzar A, Panahi F. Morpholine doped poly(3,4-ethylenedioxy) thiophene:poly (styrenesulfonate) as a low temperature and quick carbonmonoxide sensor[J]. Sensor Actuat B-Chem,2009,142(1):152-158.
    [171] Aouada F A, Guilherme M R, Campese G M, Girotto E M, Rubira A F, Muniz E C.Electrochemical and mechanical properties of hydrogels based on conductive poly (3,4-ethylene dioxythiophene)/poly (styrenesulfonate) and PAAm[J]. Polym Test,2006,25(2):158-165.
    [172] Hong W J, Xu Y X, Lu G W, Li C, Shi G Q. Transparent graphene/PEDOT:PSS compositefilms as counter electrodes of dye-sensitized solar cells[J]. Electrochem Commun,2008,10(10):1555-1558.
    [173] Manesh K M, Santhosh P, Gopalan A, Lee K P. Electrocatalytic oxidation of NADH at goldnanoparticles loaded poly(3,4-ethylenedioxythiophene):poly (styrene sulfonic acid) filmmodified electrode and integration of alcohol dehydrogenase for alcohol sensing[J]. Talanta,2008,75(5):1307-1314.
    [174] Istamboulie G, Sikora T, Jubete E, Ochoteco E, Marty J L, Noguer T. Screen-printedpoly(3,4-ethylenedioxythiophene): a new electrochemical mediator foracetylcholinesterase-based biosensors[J]. Talanta,2010,82(3):957-961.
    [175] Kuo C W, Huang L M, Wen T C, Gopalan A. Enhanced electrocatalytic performance formethanol oxidation of a novel Pt-dispersed poly(3,4-ethylenedioxythiophene):poly (styrenesulfonic acid) electrode[J]. J Power Sources,2006,160(1):65-72.
    [176]陈金锋,王宫南,程素满.过氧化氢酶在植物胁迫响应中的功能研究进展[J].西北植物学报,2008,28(1):188-193.
    [177]宋喜贵,佘小平.植物体内过氧化氢的产生及其生理作用[J].连云港师范高等专科学校学报,2010,27(4):99-103.
    [178] Neill S, Desikan R, Hancock J. Hydrogen peroxide signalling[J]. Curr Opin Plant Biol,2002,5(5):388-395.
    [179] Bienert G P, Schjoerring J K, Jahn T P. Membrane transport of hydrogen peroxide[J].BBA-Biomembranes,2006,1758(8):994-1003.
    [180] Liu X, Xu Y, Ma X, Li G. A third-generation hydrogen peroxide biosensor fabricated withhemoglobin andTriton X-100[J]. Sensor Actuat B-Chem,2005,106(1):284-288.
    [181] Horrocks B R, Schmidtke D, Heller A, Bard A J. Scanning electrochemical microscopy.24.enzyme ultramicroelectrodes for the measurement of hydrogen peroxide at surfaces[J]. AnalChem,1993,65(24):3605-3614.
    [182] Lei C, Deng J. Hydrogen peroxide sensor based on coimmobilized methylene green andhorseradish peroxidase in the same montmorillonite-modified bovine serumalbumin-glutaraldehyde matrix on a glassy carbon electrode surface[J]. Anal Chem,1996,68(19):3344-3349.
    [183] Vreeke M S, Yong K T, Heller A. A thermostable hydrogen peroxide sensor basedon“wiring”of soybean peroxidase[J].Anal Chem,1995,67(23):4247-4249.
    [184] Rad A S, Mirabi A, Binaian E, Tayebi H. A review on glucose and hydrogen peroxidebiosensor based on modified electrode included silver nanoparticles[J]. Int J Electrochem Sci,2011,63671-3683.
    [185] Chen W, Cai S, Ren Q-Q, Wen W, Zhao Y-D. Recent advances in electrochemical sensing forhydrogen peroxide: a review[J]. Analyst,2012,137(1):49-58.
    [186] Veal E A, Day A M, Morgan B A. Hydrogen peroxide sensing and signaling[J]. Mol Cell,2007,26(1):1-14.
    [187] Miller G, Mittler R. Could heat shock transcription factors function as hydrogen peroxidesensors in plants [J]. Ann Bot-london,2006,98(2):279-288.
    [188] Hernández S D, González G M B, García A C. Metal-nanoparticles based electroanalysis[J].Electroanal,2002,14(18):1225-1235.
    [189] Bogue R. Nanosensors: a review of recent progress[J]. Sensor Review,2008,28(1):12-17.
    [190] Guo S J, Wang E. Noble metal nanomaterials: Controllable synthesis and application in fuelcells and analytical sensors[J]. Nano Today,2011,6(3):240-264.
    [191] Pradeep T. Noble metal nanoparticles for water purification: a critical review[J]. Thin SolidFilms,2009,517(24):6441-6478.
    [192] Kumar C S. Nanomaterials for biosensors[M]. Wiley-VCH,2007.
    [193] Wei H, Chen C, Han B, Wang E. Enzyme colorimetric assay using unmodified silvernanoparticles[J]. Anal Chem,2008,80(18):7051-7055.
    [194] Chen X, Parker S G, Zou G, Su W, Zhang Q. β-Cyclodextrin-functionalized silvernanoparticles for the naked eye detection of aromatic isomers[J]. ACS Nano,2010,4(11):6387-6394.
    [195] Lu W, Liao F, Luo Y, Chang G, Sun X. Hydrothermal synthesis of well-stable silvernanoparticles and their application for enzymeless hydrogen peroxide detection[J].Electrochim Acta,2011,56(5):2295-2298.
    [196] Lin C Y, Lai Y H, Balamurugan A, Vittal R, Lin C W, Ho K C. Electrode modified with acomposite film of ZnO nanorods and Ag nanoparticles as a sensor for hydrogen peroxide[J].Talanta,2010,82(1):340-347.
    [197] Xu J J, Peng R, Ran Q, Xian Y Z, Tian Y, Jin L T. A highly solublepoly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)/Au nanocomposite forhorseradish peroxidase immobilization and biosensing[J]. Talanta,2010,82(4):1511-1515.
    [198] Singh R, Verma R, Kaushik A, Sumana G, Sood S, Gupta R K, Malhotra B. Chitosan–ironoxide nano-composite platform for mismatch-discriminating DNA hybridization forNeisseria gonorrhoeae detection causing sexually transmitted disease[J]. BiosensBioelectron,2011,26(6):2967-2974.
    [199] Bui M P N, Pham X H, Han K N, Li C A, Kim YS, Seong G H. Electrocatalytic reduction ofhydrogen peroxide by silver particles patterned on single-walled carbon nanotubes[J]. SensorActuat B-Chem,2010,150(1):436-441.
    [200] MaehlyA C. Plant peroxidase[J]. Method Enzymol,1955,2801-813.
    [201] Laviron E. The use of linear potential sweep voltammetry and of ac voltammetry for thestudy of the surface electrochemical reaction of strongly adsorbed systems and of redoxmodified electrodes[J]. J Electroanal Chem,1979,100(1):263-270.
    [202] Laviron E. General expression of the linear potential sweep voltammogram in the case ofdiffusionless electrochemical systems[J]. J Electroanal Chem,1979,101(1):19-28.
    [203] You J M, Kim D, Kim S K, Kim M S, Han H S, Jeon S. Novel determination of hydrogenperoxide by electrochemically reduced graphene oxide grafted with aminothiophenol–Pdnanoparticles[J]. Sensor Actuat B-Chem,2013,178:450-457.
    [204] Komathi S, Gopalan A I, Kim S K, Anand G S, Lee K P. Fabrication of horseradishperoxidase immobilized poly(N-[3-(trimethoxy silyl) propyl] aniline) gold nanorods filmmodified electrode and electrochemical hydrogen peroxide sensing[J]. Electrochim Acta,2013,92:71-78.
    [205] Cui K, Song Y, Yao Y, Huang Z, Wang L. A novel hydrogen peroxide sensor based on Agnanoparticles electrodeposited on DNA-networks modified glassy carbon electrode[J].Electrochem Commun,2008,10(4):663-667.
    [206] Zhao H Y, Sheng Q L, Zheng J B. Direct electrochemistry and electrocatalysis of horseradishperoxidase on a gold electrode modified with a polystyrene and multiwalled carbon nanotubecomposite film[J]. MicrochimActa,2012,176(1-2):177-184.
    [207] Yamamoto T, Sanechika K, Yamamoto A. Preparation of thermostable andelectric-conducting poly(2,5-thienylene)[J]. J Polym Sci Polym Lett Ed,1980,18(1):9-12.
    [208] Diaz A. Electrochemical preparation and characterization of conducting polymers[J].Chemica Scripta,1981,17:145-148.
    [209] Rahman M A, Park D S, Chang S C, Mcneil C J, Shim Y B. The biosensor based on thepyruvate oxidase modified conducting polymer for phosphate ions determinations[J].Biosens Bioelectron,2006,21(7):1116-1124.
    [210] Maciejewska J, Pisarek K, Bartosiewicz I, Krysiński P, Jackowska K, Bieguński A T.Selective detection of dopamine on poly(indole-5-carboxylic acid)/tyrosinase electrode[J].Electrochim Acta,2011,56(10):3700-3706.
    [211] Nie G M, Cai T, Zhang S S, Bao Q, Xu J K. Electrodeposition of poly(indole-5-carboxylicacid) in boron trifluoride diethyl etherate containing additional diethyl ether[J]. ElectrochimActa,2007,52(24):7097-7106.
    [212] Koh W C A, Chandra P, Kim D M, Shim Y B. Electropolymerized self-assembled layer ongold nanoparticles: detection of inducible nitric oxide synthase in neuronal cell culture[J].Anal Chem,2011,83(16):6177-6183.
    [213] Vaddiraju S, Seneca K, Gleason K K. Novel strategies for the deposition of-COOHfunctionalized conducting copolymer films and the assembly of inorganic nanoparticles onconducting polymer platforms[J].Adv Funct Mater,2008,18(13):1929-1938.
    [214] Lee J-W, Serna F, Nickels J, Schmidt C E. Carboxylic acid-functionalized conductivepolypyrrole as a bioactive platform for cell adhesion[J]. Biomacromolecules,2006,7(6):1692-1695.
    [215] Singh K, Aminur Rahman M, Jung I S, Kyung C K, Shim Y B. An amperometricimmunosensor for osteoproteogerin based on gold nanoparticles deposited conductingpolymer[J]. Biosens Bioelectron,2008,23(11):1595-1601.
    [216] Bhattacharyya D, Gleason K K. Single-step oxidative chemical vapor deposition of-COOHfunctional conducting copolymer and immobilization of biomolecule for sensorapplication[J]. Chem Mater,2011,23(10):2600-2605.
    [217] Arias Pardilla J, Otero T F, Yu H H. Electropolymerization and characterization ofCOOH-functionalized poly(3,4-ethylenedioxythiophene): ionic exchanges[J]. ElectrochimActa,2011,56(27):10238-10245.
    [218] Fan C L, Xu J K, Chen W, Lu B Y, Miao H M, Liu C C, Liu G D. Polyfluorene derivativeswith hydroxyl and carboxyl substitution: electrosynthesis and characterization[J]. J PhysChem C,2009,113(22):9900-9910.
    [219] Nie G M, Bai Z M, Chen J, Yu W Y. Simple label-free femtomolar DNA Detection based ona nanostructure composite material: MWNT-doped poly(indole-6-carboxylic acid)[J]. ACSMacro Letters,2012,1(11):1304-1307.
    [220] Malitesta C, Guascito M R, Mazzotta E, Picca R A. X-Ray photoelectron spectroscopycharacterization of electrosynthesized poly(3-thiophene acetic acid) and its application inMolecularly Imprinted Polymers for atrazine[J]. Thin Solid Films,2010,518(14):3705-3709.
    [221] Liu C, Kuwahara T, Yamazaki R, Shimomura M. Covalent immobilization of glucoseoxidase on films prepared by electrochemical copolymerization of3-methylthiophene andthiophene-3-acetic acid for amperometric sensing of glucose: effects of polymerizationconditions on sensing properties[J]. Eur Polym J,2007,43(8):3264-3276.
    [222] Lin M, Cho M, Choe W, Lee Y. Electrochemical analysis of copper ion using a Gly–Gly–Histripeptide modified poly (3-thiopheneacetic acid) biosensor[J]. Biosens Bioelectron,2009,25(1):28-33.
    [223] Tóth P S, Janáky C, Hiezl Z, Visy C. Electrosynthesis and comparative studies oncarboxyl-functionalized polythiophene derivatives[J]. Electrochim Acta,2011,56(10):3447-3453.
    [224] Luo S C, Mohamed Ali E, Tansil N C, Yu H H, Gao S, Kantchev E a B, Ying J Y.Poly(3,4-ethylenedioxythiophene) nanobiointerfaces: thin, ultrasmooth, and functionalizedPEDOT films with in vitro and in vivo biocompatibility[J]. Langmuir,2008,24(15):8071-8077.
    [225]卢遥.功能化PEDOT的合成及性能[D].江西科技师范大学,2012.
    [226] Li D, Wen Y P, Kun X J, He H H, Liu M. An amperometric biosensor based on covalentimmobilization of ascorbate oxidase on biocompatiable and low-toxic poly(thiophene-3-acetic acid) matrix[J]. Chin J Polym Sci,2012,30(5):705-718.
    [227] Wen Y P, Li D, Xu J K, Wang X Q, He H H. Electrosynthesis of poly(thiophene-3-aceticAcid) film in ionic liquids for covalent immobilization of biologically bctive species[J]. Int JPolym Mater Polym Biomat,2013,62(8):437-443.
    [228] Thomas C A, Zong K, Schottland P, Reynolds J R. Poly(3,4-alkylenedioxypyrrole) s ashighly stable aqueous-compatible conducting polymers with biomedical implications[J]. AdvMater,2000,12(3):222-225.
    [229] Kros A, Sommerdijk N J M, Nolte R J M. Poly(pyrrole) versuspoly(3,4-ethylenedioxythiophene): implications for biosensor applications[J]. Sensor ActuatB-Chem,2005,106(1):289-295.
    [230] Diaz A F, Logan J A. Electroactive polyaniline films[J]. J Electroanal Chem,1980,111(1):111-114.
    [231] Cui S Y, Park S M. Electrochemistry of conductive polymers XXIII: polyaniline growthstudied by electrochemical quartz crystal microbalance measurements[J]. Synthetic Met,1999,105(2):91-98.
    [232]佘平平. PEDOT的电化学性质研究[D].北京师范大学,2006.
    [233] Davey M W, Montagu M V, Inzé D, Sanmartin M, Kanellis A, Smirnoff N, Benzie I J J,Strain J J, Favell D, Fletcher J. Plant L-ascorbic acid: chemistry, function, metabolism,bioavailability and effects of processing[J]. J Sci Food Agr,2002,80(7):825-860.
    [234] Conklin P. Recent advances in the role and biosynthesis of ascorbic acid in plants[J]. PlantCell Environ,2001,24(4):383-394.
    [235] Smirnoff N, Wheeler G L. Ascorbic acid in plants: biosynthesis and function[J]. Crit RevBiochem Mol,2000,35(4):291-314.
    [236] Barth C, De Tullio M, Conklin P L. The role of ascorbic acid in the control of flowering timeand the onset of senescence[J]. J Exp Bot,2006,57(8):1657-1665.
    [237] Smirnoff N. Ascorbic acid: metabolism and functions of a multi-facetted molecule[J]. CurrOpin Plant Biol,2000,3(3):229-235.
    [238] Chen Z, Gallie D R. The ascorbic acid redox state controls guard cell signaling and stomatalmovement[J]. Plant Cell,2004,16(5):1143-1162.
    [239] Chen S, Dickman M B. Bcl-2family members localize to tobacco chloroplasts and inhibitprogrammed cell death induced by chloroplast-targeted herbicides[J]. J Exp Bot,2004,55(408):2617-2623.
    [240] Hancock R D, Viola R. Improving the nutritional value of crops through enhancement ofL-ascorbic acid (vitamin C) content: rationale and biotechnological opportunities[J]. J AgrFood Chem,2005,53(13):5248-5257.
    [241] Padayatty S J, Katz A, Wang Y, Eck P, Kwon O, Lee J H, Chen S, Corpe C, Dutta A, Dutta SK. Vitamin C as an antioxidant: evaluation of its role in disease prevention[J]. J Am CollNutr,2003,22(1):18-35.
    [242] Maggini S, Wenzlaff S, Hornig D. Essential role of vitamin C and zinc in child immunity andhealth[J]. J Int Med Res,2010,38(2):386-414.
    [243] Lamkey K R, Lee M. Plant breeding[M]. Wiley-Blackwell,2006.
    [244] Arya S P, Mahajan M, Jain P. Non-spectrophotometric methods for the determination ofVitamin C[J].Anal Chim Acta,2000,417(1):1-14.
    [245] Arya S P, Mahajan M, Jain P. Photometric methods for the determination of vitamin C[J].Anal Sci,1998,14(5):889-895.
    [246] Pandey N K. Spectrophotometric and titrimetric determinations of ascorbic acid[J]. AnalChem,1982,54(4):793-796.
    [247] Posádka P, Macholán L. Amperometric assay of vitamin C using an ascorbate oxidaseenzyme electrode[J]. Collect Czech Chem Commun,1979,44(11):3395-3404.
    [248] Sakmeche N, Aaron J J, Fall M, Aeiyach S, Jouini M, Lacroix J C, Lacaze P C. Anionicmicelles: a new aqueous medium for electropolymerization ofpoly(3,4-ethylenedioxythiophene) films on Pt electrodes[J]. Chem Commun,1996,(24):2723-2724.
    [249] Sakmeche N, Bazzaoui E A, Fall M, Aeiyach S, Jouini M, Lacroix J C, Aaron J J, Lacaze PC.Application of sodium dodecylsulfate micellar solution as an organized medium forelectropolymerization of thiophene derivatives in water[J]. Synthetic Met,1997,84(1):191-192.
    [250] Zhang S S, Hou J, Zhang R, Xu J K, Nie G M, Pu S Z. Electrochemical polymerization of3,4-ethylenedioxythiophene in aqueous solution containing N-dodecyl-β-d-maltoside[J]. EurPolym J,2006,42(1):149-160.
    [251] Blanchard F, Carre B, Bonhomme F, Biensan P, Pages H, Lemordant D. Study ofpoly(3,4-ethylenedioxythiophene) films prepared in propylene carbonate solutionscontaining different lithium salts[J]. J Electroanal Chem,2004,569(2):203-210.
    [252] Choi J W, Han M G, Kim S Y, Oh S G, Im S S. Poly(3,4-ethylenedioxythiophene)nanoparticles prepared in aqueous DBSA solutions[J]. Synthetic Met,2004,141(3):293-299.
    [253] Li C, Imae T. Electrochemical and optical properties of the poly(3,4-ethylenedioxythiophene)film electropolymerized in an aqueous sodium dodecyl sulfate and lithium tetrafluoroboratemedium[J]. Macromolecules,2004,37(7):2411-2416.
    [254] Pigani L, Heras A, Colina, Seeber R, López-Palacios J. Electropolymerisation of3,4-ethylenedioxythiophene in aqueous solutions[J]. Electrochem Commun,2004,6(11):1192-1198.
    [255] Tsakova V, Winkels S, Schultze J W. Anodic polymerization of3,4-ethylenedioxythiophenefrom aqueous microemulsions[J]. Electrochim Acta,2001,46(5):759-768.
    [256] Sakmeche N, Aeiyach S, Aaron J J, Jouini M, Lacroix J C, Lacaze P C. Improvement of theelectrosynthesis and physicochemical properties of poly(3,4-ethylenedioxythiophene) usinga sodium dodecyl sulfate micellar aqueous medium[J]. Langmuir,1999,15(7):2566-2574.
    [257] Stromberg C, Tsakova V, Schultze J. Composition of the microemulsion and its influence onthe polymerisation and redox activation of PEDOT[J]. J Electroanal Chem,2003,547(2):125-133.
    [258] Goto M, Kamiya N, Nakashio F. Enzymatic interesterification of triglyceride withsurfactant-coated lipase in organic media[J]. Biotechnol Bioeng,1995,45(1):27-32.
    [259] Ruckenstein E, Karpe P. On the enzymatic superactivity in ionic reverse micelles[J]. JColloid Interface Sci,1990,139(2):408-436.
    [260] Morán M C, Pinazo A, Pérez L, Clapés P, Angelet M, García M T, Vinardell M P, Infante MR.“Green” amino acid-based surfactants[J]. Green Chem,2004,6(5):233-240.
    [261] Infante M R, Pérez L, Pinazo A, Clapés P, Morán M C, Angelet M, García M T, Vinardell MP. Amino acid-based surfactants[J]. Comptes Rendus Chimie,2004,7(6):583-592.
    [262] Chen Q, Chen S F, Li Z. Preparation and surfactant properties of amino acid-basedsurfactants[J]. Chin Chem Lett,1999,10(9):789-792.
    [263] Xia J. Protein-based surfactants: synthesis, physicochemical properties, and applications[M].CRC,2001.
    [264] Gad E a M, El-Sukkary M M A, Ismail D A. Surface and thermodynamic parameters ofsodium N-acyl sarcosinate surfactant solutions[J]. J Am Oil Chem Soc,1997,74(1):43-47.
    [265] Clapes P, Rosa Infante M. Amino acid-based surfactants: Enzymatic synthesis, propertiesand potential applications[J]. Biocatal Biotransfor,2002,20(4):215-233.
    [266] Porter M R. Handbook of surfactants[M]. Kluwer1994.
    [267] Du X, Wang Z. Effects of polymerization potential on the properties of electrosynthesizedPEDOT films[J]. ElectrochimActa,2003,48(12):1713-1717.
    [268] Matsumoto K, Yamada K, Osajima Y. Ascorbate electrode for determination of L-ascorbicacid in food[J]. Anal Chem,1981,53(13):1974-1979.
    [269] Nakamura T, Makino N, Ogura Y. Purification and properties of ascorbate oxidase fromcucumber[J]. J Biochem,1968,64(2):189-195.
    [270] Zen J M, Tsai D M, Yang H H. Direct determination of vitamin C in fruit juices using apolyviologen-modified electrode[J]. Electroanal,2002,14(22):1597-1600.
    [271] Garrett R H, Grisham C M. Biochemistry.(2nd ed.)[M]. Saunders College, NewYork1999.
    [272] Mazurkiewicz J H, Innis P C, Wallace G G, Macfarlane D R, Forsyth M. Conductingpolymer electrochemistry in ionic liquids[J]. Synthetic Met,2003,135-136:31-32.
    [273] Dong B, Xu J K, Zheng LQ. Ionic liquids for the electrosyntheses of conducting polymers[J].Prog Chem,2009,21(09):1792-1799.
    [274] Lu J, Yan F, Texter J. Advanced applications of ionic liquids in polymer science[J]. ProgPolym Sci,2009,34(5):431-448.
    [275] Torriero A a J, Shiddiky M J A. Electrochemical properties and applications of ionicliquids[M].2010.
    [276] Lu W, Fadeev A G, Qi B, Smela E, Mattes B R, Ding J, Spinks G M, Mazurkiewicz J, ZhouD, Wallace G G. Use of ionic liquids for π-conjugated polymer electrochemical devices[J].Science,2002,297(5583):983-987.
    [277] Wei D, Ivaska A. Applications of ionic liquids in electrochemical sensors[J]. Anal Chim Acta,2008,607(2):126-135.
    [278] Wasserscheid P, Van Hal R, B smann A.1-N-Butyl-3-methylimidazoliumoctylsulfate-aneven“greener” ionic liquid[J]. Green Chem,2002,4(4):400-404.
    [279] Cammarata L, Kazarian S, Salter P, Welton T. Molecular states of water in room temperatureionic liquids[J]. Phys Chem Chem Phys,2001,3(23):5192-5200.
    [280] Holbrey J D, Reichert W M, Swatloski R P, Broker G A, Pitner W R, Seddon K R, Rogers RD. Efficient, halide free synthesis of new, low cost ionic liquids:1,3-dialkylimidazolium saltscontaining methyl-and ethyl-sulfate anions[J]. Green Chem,2002,4(5):407-413.
    [281] Lin P Y, Soriano A N, Leron R B, Li M H. Measurements and correlations of electrolyticconductivity and molar heat capacity for the aqueous ionic liquid systems containing
    [Emim][EtSO4] or [Emim][CF3SO3][J]. Exp Therm Fluid Sci,2011,35(6):1107-1112.
    [282] Alvarez V H, Mattedi S, Aznar M. Isobaric (vapor+liquid) equilibria of1-ethyl-3-methylimidazolium ethylsulfate plus (propionaldehyde or valeraldehyde):Experimental data and prediction[J]. J Chem Thermodyn,2011,43(6):895-900.
    [283] Harrar A, Zech O, Hartl R, Bauduin P, Zemb T, Kunz W.[Emim][EtSO4] as the polar phasein low-temperature-stable microemulsions[J]. Langmuir,2011,27(5):1635-1642.
    [284] Hunger J, Stoppa A, Buchner R, Hefter G. Dipole correlations in the ionic liquid1-N-ethyl-3-N-methylimidazolium ethylsulfate and its binary mixtures withdichloromethane[J]. J Phys Chem B,2009,113(28):9527-9537.
    [285] Fernández A, Torrecilla J S, García J, Rodríguez F. Thermophysical properties of1-ethyl-3-methylimidazolium ethylsulfate and1-butyl-3-methylimidazolium methylsulfateionic liquids[J]. J Chem Eng Data,2007,52(5):1979-1983.
    [286] Gómez E, González B, Calvar N, Tojo E, Domínguez A. Physical properties of pure1-ethyl-3-methylimidazolium ethylsulfate and its binary mixtures with ethanol and water atseveral temperatures[J]. J Chem Eng Data,2006,51(6):2096-2102.
    [287] Domańska U, Laskowska M. Phase equilibria and volumetric properties of(1-ethyl-3-methylimidazolium ethylsulfate+alcohol or water) binary systems[J]. J SolutChem,2008,37(9):1271-1287.
    [288] Arce A, Pobudkowska A, Rodríguez O, Soto A. Citrus essential oil terpenless by extractionusing1-ethyl-3-methylimidazolium ethylsulfate ionic liquid: Effect of the temperature[J].Chem Eng J,2007,133(1):213-218.
    [289] Arce A, Rodríguez O, Soto A. A comparative study on solvents for separation of tert-amylethyl ether and ethanol mixtures. New experimental data for1-ethyl-3-methyl imidazoliumethyl sulfate ionic liquid[J]. Chem Eng Sci,2006,61(21):6929-6935.
    [290] Alonso L, Arce A, Francisco M, Soto A. Thiophene separation from aliphatic hydrocarbonsusing the1-ethyl-3-methylimidazolium ethylsulfate ionic liquid[J]. Fluid Phase Equilibr,2008,270(1):97-102.
    [291] Shi Q F, Zhang Y, Jing G L, Kan J Q. Properties of polyaniline synthesized in ionic liquid(l-Ethyl--methylimidazolium-ethyl sulphate)[J]. Iran Polym J,2007,16(5):337.
    [292] Taghvaei V, Habibi-Yangjeh A, Behboudnia M. Preparation and characterization of SnO2nanoparticles in aqueous solution of [EMIM][EtSO4] as a low cost ionic liquid usingultrasonic irradiation[J]. Powder Technol,2009,195(1):63-67.
    [293] Santafé A L a M, DoumèChe B, Blum L J, Girard-Egrot A S P, Marquette C A.1-Ethyl-3-methylimidazolium ethylsulfate/copper catalyst for the enhancement of glucosechemiluminescent detection: effects on light emission and enzyme activity[J]. Anal Chem,2010,82(6):2401-2404.
    [294] Jalili A H, Mehdizadeh A, Shokouhi M, Ahmadi A N, Hosseini-Jenab M, Fateminassab F.Solubility and diffusion of CO2and H2S in the ionic liquid1-ethyl-3-methylimidazoliumethylsulfate[J]. J Chem Thermodyn,2010,42(10):1298-1303.
    [295] Jiang Y, Wang A, Kan J Q. Selective uricase biosensor based on polyaniline synthesized inionic liquid[J]. Sensor Actuat B-Chem,2007,124(2):529-534.
    [296] Tan Y Y, Guo X X, Zhang J H, Kan J Q. Amperometric catechol biosensor based onpolyaniline-polyphenol oxidase[J]. Biosens Bioelectron,2010,25(7):1681-1687.
    [297] Wang P, Liu M, Kan J. Amperometric phenol biosensor based on polyaniline[J]. SensorActuat B-Chem,2009,140(2):577-584.
    [298] Ndiaye C, Xu S-Y, Wang Z. Steam blanching effect on polyphenoloxidase, peroxidase andcolour of mango (Mangifera indica) slices[J]. Food Chem,2009,113(1):92-95.
    [299] Bernardes C E, Minas Da Piedade M E, Canongia Lopes J N. The Structure of AqueousSolutions of a Hydrophilic Ionic Liquid: The Full Concentration Range of1-Ethyl-3-methylimidazolium Ethylsulfate and Water[J]. J Phys Chem B,2011,115(9):2067-2074.
    [300] Li L, Huang Y, Yan G P, Liu F J, Huang Z L, Ma Z B. Poly(3,4-ethylenedioxythiophene)nanospheres synthesized in magnetic ionic liquid[J]. Mater Lett,2009,63(1):8-10.
    [301] Damlin P, Kvarnstr m C, Ivaska A. Electrochemical synthesis and in situspectroelectrochemical characterization of poly(3,4-ethylenedioxythiophene) in roomtemperature ionic liquids[J]. J Electroanal Chem,2004,570(1):113-122.
    [302] D bbelin M, Marcilla R, Pozo-Gonzalo C, Mecerreyes D. Innovative materials andapplications based on poly(3,4-ethylenedioxythiophene) and ionic liquids[J]. J Mater Chem,2010,20(36):7613-7622.
    [303] Randriamahazaka H, Plesse C, Teyssie D, Chevrot C. Relaxation kinetics ofpoly(3,4-ethylenedioxythiophene) in1-ethyl-3-methylimidazolium bis ((trifluoromethyl)sulfonyl) amide ionic liquid during potential step experiments[J]. Electrochim Acta,2005,50(7):1515-1522.
    [304] Randriamahazaka H, Plesse C, Teyssie D, Chevrot C. Electrochemical behaviour ofpoly(3,4-ethylenedioxythiophene) in a room-temperature ionic liquid[J]. ElectrochemCommun,2003,5(7):613-617.
    [305] Wagner K, Pringle J M, Hall S B, Forsyth M, Macfarlane D R, Officer D L. Investigation ofthe electropolymerisation of EDOT in ionic liquids[J]. Synthetic Met,2005,153(1):257-260.
    [306] Ahmad S, Deepa M, Singh S. Electrochemical synthesis and surface characterization ofpoly(3,4-ethylenedioxythiophene) films grown in an ionic liquid[J]. Langmuir,2007,23(23):11430-11433.
    [307] Santhosh P, Manesh K M, Uthayakumar S, Komathi S, Gopalan A I, Lee K P. Fabrication ofenzymatic glucose biosensor based on palladium nanoparticles dispersed ontopoly(3,4-ethylenedioxythiophene) nanofibers[J]. Bioelectrochemistry,2009,75(1):61-66.
    [308] Serafín V, Agüí L, Yá ez Sede o P, Pingarrón J M. A novel hybrid platform for thepreparation of disposable enzyme biosensors based on poly(3,4-ethylenedioxythiophene)electrodeposition in an ionic liquid medium onto gold nanoparticles-modified screen-printedelectrodes[J]. J Electroanal Chem,2011,656(1):152-158.
    [309] Dong B, Zhang S H, Zheng L Q, Xu J K. Ionic liquid microemulsions: A new medium forelectropolymerization[J]. J Electroanal Chem,2008,619-620:193-196.
    [310] Randriamahazaka H, Noel V, Chevrot C. Nucleation and growth ofpoly(3,4-ethylenedioxythiophene) in acetonitrile on platinum under potentiostaticconditions[J]. J Electroanal Chem,1999,472(2):103-111.
    [311] Venables J A, Spiller G D T, Hanbucken M. Nucleation and growth of thin films[J]. RepProg Phys,1984,47:399-459.
    [312] Armand M, Endres F, Macfarlane D R, Ohno H, Scrosati B. Ionic-liquid materials for theelectrochemical challenges of the future[J]. Nature Mater,2009,8(8):621-629.
    [313] Zhao H, Holladay J E, Brown H, Zhang Z C. Metal chlorides in ionic liquid solvents convertsugars to5-hydroxymethylfurfural[J]. Science,2007,316(5831):1597-1600.
    [314] Rogers R D. Materials science: Reflections on ionic liquids[J]. Nature,2007,447(7147):917-918.
    [315] Cooper E R, Andrews C D, Wheatley P S, Webb P B, Wormald P, Morris R E. Ionic liquidsand eutectic mixtures as solvent and template in synthesis of zeolite analogues[J]. Nature,2004,430(7003):1012-1016.
    [316] Seddon K R. Ionic liquids: a taste of the future[J]. Nature Mater,2003,2(6):363.
    [317] Rogers R D, Seddon K R. Ionic liquids-solvents of the future [J]. Science,2003,302(5646):792-793.
    [318] Blanchard L A, Hancu D, Beckman E J, Brennecke J F. Green processing using ionic liquidsand CO2[J]. Nature,1999,399(6731):28-29.
    [319] Wasserscheid P. Chemistry: Volatile times for ionic liquids[J]. Nature,2006,439(7078):797-797.
    [320] Rogers R D, Seddon K R. Ionic liquids: industrial applications for greenchemistry[C].Washington, DC.ACS Symposium Series,2002.818.
    [321] Rogers R D, Seddon K R. Ionic Liquids III: fundamentals, progress, challenges, andopportunities[C].Washington, DC.ACS Symposium Series,2005.901-902
    [322] Holbrey J D, Reichert W M, Reddy R, Rogers R. Ionic liquids as green solvents: progressand prospects[C].Washington, DC.ACS symposium series,2003.856.
    [323] Pham T, Cho C-W, Yun Y-S. Environmental fate and toxicity of ionic liquids: a review[J].Water Res,2010,44(2):352.
    [324] Zhao H. Methods for stabilizing and activating enzymes in ionic liquids:a review[J]. J ChemTechnol Biotechnol,2010,85(7):891-907.
    [325] Petkovic M, Seddon K R, Rebelo L P N, Pereira C S. Ionic liquids: a pathway toenvironmental acceptability[J]. Chem Soc Rev,2011,40(3):1383-1403.
    [326] Hapiot P, Lagrost C. Electrochemical reactivity in room-temperature ionic liquids[J]. ChemRev,2008,108(7):2238-2264.
    [327] Pinto P C, Saraiva M L M, Lima J L. Oxidoreductase behavior in ionic liquids: a review[J].Anal Sci,2008,24(10):1231-1238.
    [328] Seddon K R, Rogers R D. Ionic liquids: coiled for action[M]. Wiley-Blackwell,2011.
    [329] Kirchner B. Ionic liquids[M]. Springer,2010.
    [330] Zhang S, Lu X M, Zhou Q. Ionic liquids: physicochemical properties[M]. Elsevier2009.
    [331] Hoar T P, Schulman J H. Transparent water-in-oil dispersions:the oleopathichydro-micelle[J]. Nature,1943,152(3847):102-103.
    [332] Yali M, Zhen L, Jing C, Chungu X. Application studies of ionic liquid basedmicroemulsions[J]. Prog Chem,2011,23(12):2442-2456.
    [333] Anderson J L, Pino V, Hagberg E C, Sheares V V, Armstrong D W. Surfactant solvationeffects and micelle formation in ionic liquids[J]. Chem Commun,2003,(19):2444-2445.
    [334] Qiu Z, Texter J. Ionic liquids in microemulsions[J]. Curr Opin Colloid Interface Sci,2008,13(4):252-262.
    [335] Dong B, Xu J K, Zheng L Q, Hou J. Electrodeposition of conductivepoly(3-methoxythiophene) in ionic liquid microemulsions[J]. J Electroanal Chem,2009,628(1):60-66.
    [336] Wen Y P, Duan X M, Xu J K, Yue R R, Li D, Liu M, Lu L M, He H H. One-stepelectrosynthesis of poly(3,4-ethylenedioxythiophene)-ethylsulfate matrix for fabricatingvitamin C electrochemical biosensor and its determination in commercial juices[J]. J SolidState Electrochem,2012,16(12):3725-3738.
    [337] Wang J. Carbon-nanotube based electrochemical biosensors: a review[J]. Electroanal,2005,17(1):7-14.
    [338] Ahammad A J, Lee J J, Rahman M A. Electrochemical sensors based on carbon nanotubes[J].Sensors,2009,9(4):2289-2319.
    [339] Zengin H, Zhou W, Jin J, Czerw R, Smith D W, Echegoyen L, Carroll D L, Foulger S H,Ballato J. Carbon nanotube doped polyaniline[J].Adv Mater,2002,14(20):1480-1483.
    [340] Wei Z X, Wan M X, Lin T, Dai L M. Polyaniline nanotubes doped with sulfonated carbonnanotubes made via a self-assembly process[J]. Adv Mater,2003,15(2):136-139.
    [341] Santhosh P, Gopalan A, Lee K P. Gold nanoparticles dispersed polyaniline grafted multiwallcarbon nanotubes as newer electrocatalysts: preparation and performances for methanoloxidation[J]. J Catal,2006,238(1):177-185.
    [342] Yang M H, Jiang J H, Yang Y H, Chen X H, Shen G L, Yu R Q. Carbon nanotube/cobalthexacyanoferrate nanoparticle-biopolymer system for the fabrication of biosensors[J].Biosens Bioelectron,2006,21(9):1791-1797.
    [343] Liu M, Wen Y P, Xu J K, He H H, Li D, Yue R R, Liu G D. An amperometric biosensorbased on ascorbate oxidase immobilized in poly(3,4-ethylenedioxythiophene)/multi-walledcarbon nanotubes composite films for the determination of L-ascorbic acid[J]. Anal Sci,2011,27(5):477.
    [344] Wang J, Musameh M, Lin Y H. Solubilization of carbon nanotubes by Nafion toward thepreparation of amperometric biosensors[J]. JAm Chem Soc,2003,125(9):2408-2409.
    [345] Tsai Y C, Chiu C C. Amperometric biosensors based on multiwalled carbonnanotube-Nafion-tyrosinase nanobiocomposites for the determination of phenoliccompounds[J]. Sensor Actuat B-Chem,2007,125(1):10-16.
    [346] Tsai Y C, Chen J M, Li S C, Marken F. Electroanalytical thin film electrodes based on aNafion-multi-walled carbon nanotube composite[J]. Electrochem Commun,2004,6(9):917-922.
    [347] Xu J J, Yu Z H, Chen H Y. Glucose biosensors prepared by electropolymerization ofp-chlorophenylamine with and without Nafion[J].Anal Chim Acta,2002,463(2):239-247.
    [348] Moore C M, Akers N L, Hill AD, Johnson Z C, Minteer S D. Improving the environment forimmobilized dehydrogenase enzymes by modifying Nafion with tetraalkylammoniumbromides[J]. Biomacromolecules,2004,5(4):1241-1247.
    [349] Liang Z X, Zhao T S, Prabhuram J. A glue method for fabricating membrane electrodeassemblies for direct methanol fuel cells[J]. Electrochim Acta,2006,51(28):6412-6418.
    [350] Karyakin A A, Kotel'nikova E A, Lukachova L V, Karyakina E E, Wang J. Optimalenvironment for glucose oxidase in perfluorosulfonated ionomer membranes: improvementof first-generation biosensors[J]. Anal Chem,2002,74(7):1597-1603.
    [351] Carvalho L B, Lima C J, Medeiros P H. Ascorbate oxidase from Cucurbita maxima[J].Phytochemistry,1981,20(10):2423-2424.
    [352] Farver O, Wherland S, Pecht I. Intramolecular electron transfer in ascorbate oxidase isenhanced in the presence of oxygen[J]. J Biol Chem,1994,269(37):22933-22936.
    [353] Groenendaal L, Zotti G, Aubert P H, Waybright S M, Reynolds J R. Electrochemistry ofpoly(3,4-alkylenedioxythiophene) Derivatives[J]. Adv Mater,2003,15(11):855-879.
    [354] Ahuja T, Kumar D. Recent progress in the development of nano-structured conductingpolymers/nanocomposites for sensor applications[J]. Sensor Actuat B-Chem,2009,136(1):275-286.
    [355] Baibarac M, Gómez-Romero P. Nanocomposites based on conducting polymers and carbonnanotubes: from fancy materials to functional applications[J]. J Nanosci Nanotechnol,2006,6(2):289-302.
    [356] Gangopadhyay R, De A. Conducting polymer nanocomposites: a brief overview[J]. ChemMater,2000,12(3):608-622.
    [357] Heywang G, Jonas F. Poly(alkylenedioxythiophene)s-new, very stable conductingpolymers[J]. Adv Mater,1992,4(2):116-118.
    [358] Mohanakrishnan A K, Hucke A, Lyon M A, Lakshmikantham M V, Cava M P.Functionalization of3,4-ethylenedioxythiophene[J]. Tetrahedron,1999,55(40):11745-11754.
    [359] Groenendaal L, Zotti G, Jonas F. Optical, conductive and magnetic properties ofelectrochemically prepared alkylated poly(3,4-ethylenedioxythiophene) s[J]. Synthetic Met,2001,118(1):105-109.
    [360] Schoene D L, Hoffmann O L. Maleic hydrazide, a unique growth regulant[J]. Science,1949,109(2841):588-590.
    [361] Leopold A C, Klein W H. Maleic hydrazide as an antiauxin in plants[J]. Science,1951,114(2949):9-10.
    [362] Epstein S S, Andrea J, Jaffe H, Joshi S, Falk H, Mantel N. Carcinogenicity of the herbicidemaleic hydrazide[J]. Nature,1967,215(5108):1388-1390.
    [363] Harrison R O, Brimfield A A, Nelson J O. Development of a monoclonal antibody basedenzyme immunoassay method for analysis of maleic hydrazide[J]. J Agr Food Chem,1989,37(4):958-964.
    [364] Vadukul N K. Determination of maleic hydrazide in onions and potatoes using solid-phaseextraction and anion-exchange high-performance liquid chromatography[J]. Analyst,1991,116(12):1369-1371.
    [365] Yang S S. Determination of maleic hydrazide in tobacco by micellar liquidchromatography[J]. J Chromatogr A,1992,595(1):346-350.
    [366] Arribas A S, Bermejo E, Chicharro M, Zapardiel A. Application of matrix solid-phasedispersion to the propham and maleic hydrazide determination in potatoes by differentialpulse voltammetry and HPLC[J]. Talanta,2007,71(1):430-436.
    [367] Chicharro M, Bermejo E, Ongay S, Zapardiel A. Determination of maleic hydrazide inpotato samples using capillary electrophoresis with dual detection (UV-electrochemical)[J].Electroanal,2008,20(5):534-541.
    [368] Shibata M, Zuman P. Electroreduction of the hydrazide of maleic acid in aqueoussolutions[J]. J Electroanal Chem,1997,420(1):79-87.
    [369] Ni Y, Qiu P, Kokot S. Study of the voltammetric behaviour of maleic hydrazide and itsdetermination at a hanging mercury drop electrode[J]. Talanta,2004,63(3):561-565.
    [370] Sánchez A, Zapardiel A, Prado F L, Bermejo E, Moreno M, Pérez-López J A, Chicharro M.Flow injection analysis of maleic hydrazide using an electrochemical sensor based onpalladium-dispersed carbon paste electrode[J]. Electroanal,2007,19(16):1683-1688.
    [371] Fang Y, Yan S, Ning B, Liu N, Gao Z, Chao F. Flow injection chemiluminescence sensorusing molecularly imprinted polymers as recognition element for determination of maleichydrazide[J]. Biosens Bioelectron,2009,24(8):2323-2327.
    [372] Blohm M L, Pickett J E, Vandort P C. Substituted3,4-polymethylenedioxythiophenes, andpolymers and electro responsive devices made therefrom, US Patent5,111,327.1992.
    [373] Reuter K, Karbach A, Ritter H, Wrubbel N. Alkylenedioxythiophenes andPoly(alkylendioxythiophenes) with mesogenic groups, E Patent1,440,974.2004.
    [374] Ying J Y, Yu H H, Ali E M, Kantchev E a B. Electrically conducting polymers, US Patent0048815.2012.
    [375] Yeisley S, Dubois C J J, Hsu C H, Shuey S W, Shen Y, Skulason H. Derivatized3,4-alkylenedioxythiophene monomers, methods of making them, and use there of, USPatent073968.2012.
    [376] Ali E M, Kantchev E B, Yu H H, Ying J Y. Conductivity shift ofpolyethylenedioxythiophenes in aqueous solutions from side-chain charge perturbation[J].Macromolecules,2007,40(17):6025-6027.
    [377] Le W-Z, Liu Y-Q. Preparation of nano-copper oxide modified glassy carbon electrode by anovel film plating/potential cycling method and its characterization[J]. Sensor ActuatB-Chem,2009,141(1):147-153.
    [378] Schieber A, Keller P, Carle R. Determination of phenolic acids and flavonoids of apple andpear by high-performance liquid chromatography[J]. J Chromatogr A,2001,910(2):265-273.
    [379] Proestos C, Sereli D, Komaitis M. Determination of phenolic compounds in aromatic plantsby RP-HPLC and GC-MS[J]. Food Chem,2006,95(1):44-52.
    [380]李晔,杨慧,韩伟伟,廖明霞,鲁毅强.一种可用于酚类化合物检测的酶传感器[J].光谱学与光谱分析,2010,30(2):571-574.
    [381] Chen Z C, Xi F N, Yang S M, Wu Q, Lin X F. Development of a bienzyme system based onsugar-lectin biospecific interactions for amperometric determination of phenols and aromaticamines[J]. Sensor Actuat B-Chem,2008,130(2):900-907.
    [382]陈伟,黄丽英,林新华,罗红斌.聚溴酚蓝膜电极对儿茶酚的电催化性能及其应用[J].分析测试学报,2005,24(3):71-73.
    [383]蔡家英,万本强.聚2,5-二甲氧基苯胺膜电极对儿茶酚的电催化作用[J].重庆师范学院学报(自然科学版),1995,12(2):97-71.
    [384] Kim H N, Guo Z, Zhu W, Yoon J, Tian H. Recent progress on polymer-based fluorescent andcolorimetric chemosensors[J]. Chem Soc Rev,2011,40(1):79-93.
    [385] Bobacka J, IvaskaA. Chemical sensors based on conducting polymers[M].2010.
    [386] Mcquade D T, Pullen A E, Swager T M. Conjugated polymer-based chemical sensors[J].Chem Rev,2000,100(7):2537-2574.
    [387] Swager T M. The molecular wire approach to sensory signal amplification[J]. AccountsChem Res,1998,31(5):201-208.
    [388] Thomas S I, Joly G D, Swager T M. Chemical sensors based on amplifying fluorescentconjugated polymers[J]. Chem Rev Columbus,2007,107(4):1339-1386.
    [389] Gale P A. Anion receptor chemistry: highlights from1999[J]. Coordin Chem Rev,2001,213(1):79-128.
    [390] Moragues M E, Martínez-Má ez R, Sancenón F. Chromogenic and fluorogenicchemosensors and reagents for anions. A comprehensive review of the year2009[J]. ChemSoc Rev,2011,40(5):2593-2643.
    [391] Wenzel M, Hiscock J R, Gale P A. Anion receptor chemistry: highlights from2010[J]. ChemSoc Rev,2012,41(1):480-520.
    [392] Dumas S, Grabchev I, Stoikova P, Chauvin J, Chovelon J M. Synthesis of benzanthronderivatives for selective detection by fluorescence of copper ions[J]. J Photoch Photobio A2009,201(2):237-242.
    [393] Sinkeldam R W, Greco N J, Tor Y. Fluorescent analogs of biomolecular building blocks:design, properties and applications[J]. Chem Rev,2010,110(5):2579-2619.
    [394] Gao Y W, Bai H, Shi G Q. Electrosynthesis of oligo(methoxyl pyrene) for turn-onfluorescence detection of volatile aromatic compounds[J]. J Mater Chem,2010,20(15):2993-2998.
    [395] Meggers E, Holland P L, Tolman W B, Romesberg F E, Schultz P G. A novelcopper-mediated DNA base pair[J]. JAm Chem Soc,2000,122(43):10714-10715.
    [396] Zhang X B, Guo C C, Li Z Z, Shen G L, Yu R Q. An optical fiber chemical sensor formercury ions based on a porphyrin dimer[J].Anal Chem,2002,74(4):821-825.
    [397] Chen Y, Shi G. Fluorescence detection and discrimination of ss-and ds-DNA with a watersoluble oligopyrene derivative[J]. Sensors,2009,9(6):4164-4177.
    [398] Chen Y, Bai H, Chen Q, Li C, Shi G. A water-soluble cationic oligopyrene derivative:Spectroscopic studies and sensing applications[J]. Sensor Actuat B-Chem,2009,138(2):563-571.
    [399] Wei B, Yang L. Areview of heavy metal contaminations in urban soils, urban road dusts andagricultural soils from China[J]. Microchem J,2010,94(2):99-107.
    [400] Alloway B J. Heavy metals in soils[M]. Springer,1995.
    [401] Le Bars J, Specht U, Bradley J S, Blackmond D G. A catalytic probe of the surface ofcolloidal palladium particles using Heck coupling reactions[J]. Langmuir,1999,15(22):7621-7625.
    [402] Zhou Y M, Zhang J L, Zhou H, Zhang Q Y, Ma T S, Niu J Y. Ahighly sensitive and selective“off-on” chemosensor for the visual detection of Pd2+in aqueous media[J]. Sensor ActuatB-Chem,2012,171-172:508-514.
    [403] Song F, Garner A L, Koide K. A highly sensitive fluorescent sensor for palladium based onthe allylic oxidative insertion mechanism[J]. JAm Chem Soc,2007,129(41):12354-12355.
    [404] Liu B, Bao Y Y, Du F F, Wang H, Tian J, Bai R K. Synthesis and characterization of afluorescent polymer containing2,6-bis(2-thienyl) pyridine moieties as a highly efficientsensor for Pd2+detection[J]. Chem Commun,2011,47(6):1731-1733.
    [405] Liu B, Bao Y Y, Wang H, Du F F, Tian J, Li Q B, Wang T S, Bai R K. An efficientconjugated polymer sensor based on the aggregation-induced fluorescence quenchingmechanism for the specific detection of palladium and platinum ions[J]. J Mater Chem,2012,22(8):3555-3561.
    [406] Huang H M, Wang K M, Tan W H, An D L, Yang X H, Huang S S, Zhai Q G, Zhou LJ, Jin Y.Design of a modular-based fluorescent conjugated polymer for selective sensing[J]. AngewChem Int Ed,2004,43(42):5635-5638.
    [407] Duan L P, Xu Y F, Qian X H. Highly sensitive and selective Pd2+sensor of naphthalimidederivative based on complexation with alkynes and thio-heterocycle[J]. Chem Commun,2008,(47):6339-6341.
    [408] Li H L, Fan J L, Du J J, Guo K X, Sun S G, Liu X J, Peng X J. Afluorescent and colorimetricprobe specific for palladium detection[J]. Chem Commun,2010,46(7):1079-1081.
    [409] Jiang J, Jiang H, Liu W, Tang X, Zhou X, Liu W, Liu R. A colorimetric and ratiometricfluorescent probe for palladium[J]. Org Lett,2011,13(18):4922-4925.
    [410] Chen W, Wright B D, Pang Y. Rational design of a NIR-emitting Pd (ii) sensor via oxidativecyclization to form a benzoxazole ring[J]. Chem Commun,2012,48(32):3824-3826.
    [411] Liu B, Dai H, Bao Y, Du F, Tian J, Bai R.2,6-Substituted pyridine derivative-containingconjugated polymers: synthesis, photoluminescence and ion-sensing properties[J]. PolymChem,2011,2(8):1699-1705.
    [412] Liu B, Wang H, Wang T, Bao Y, Du F, Tian J, Li Q, Bai R. A new ratiometric ESIPT sensorfor detection of palladium species in aqueous solution[J]. Chem Commun,2012,48(23):2867-2869.
    [413] Ren W X, Pradhan T, Yang Z G, Cao Q Y, Kim J S. Rapid responsive palladium sensor undermild condition[J]. Sensor Actuat B-Chem,2012,171-172:1277-1282.
    [414] Kumar M, Kumar N, Bhalla V. Highly selective fluorescent probe for detection andvisualization of palladium ions in mixed aqueous media[J]. RSC Adv,2013,3(4):1097-1102.
    [415] Zhang X B, Cheng G, Zhang W J, Shen G L, Yu R Q. A fluorescent chemical sensor for Fe3+based on blocking of intramolecular proton transfer of a quinazolinone derivative[J]. Talanta,2007,71(1):171-177.
    [416] Lohani C R, Lee K H. The effect of absorbance of Fe3+on the detection of Fe3+byfluorescent chemical sensors[J]. Sensor Actuat B-Chem,2010,143(2):649-654.
    [417] Xiang Y, Tong A. A new rhodamine-based chemosensor exhibiting selective Fe(III)amplified fluorescence[J]. Org Lett,2006,8(8):1549-1552.
    [418] Lin W Y, Long L L, Yuan L, Cao Z M, Feng J B. Anovel ratiometric fluorescent Fe3+sensorbased on a phenanthroimidazole chromophore[J].Anal ChimActa,2009,634(2):262-266.
    [419] Weerasinghe A J, Schmiesing C, Varaganti S, Ramakrishna G, Sinn E. Single andmultiphoton turn-on fluorescent Fe3+sensors based on bis(rhodamine)[J]. J Phys Chem B,2010,114(29):9413-9419.
    [420] Prodi L, Bolletta F, Montalti M, Zaccheroni N. Luminescent chemosensors for transitionmetal ions[J]. Coordin Chem Rev,2000,205(1):59-83.
    [421] Gunnlaugsson T, Glynn M, Kruger P E, Pfeffer F M. Anion recognition and sensing inorganic and aqueous media using luminescent and colorimetric sensors[J]. Coordin ChemRev,2006,250(23):3094-3117.
    [422] Fan L J, Zhang Y, Murphy C B, Angell S E, Parker M F L, Flynn B R, Jones J W E.Fluorescent conjugated polymer molecular wire chemosensors for transition metal ionrecognition and signaling[J]. Coordin Chem Rev,2009,253(3):410-422.
    [423] Moon S Y, Cha N R, Kim Y H, Chang S K. New Hg2+selective chromo-and fluoroionophorebased upon8-hydroxyquinoline[J]. J Org Chem,2004,69(1):181-183.
    [424] Vetrichelvan M, Hairong L, Ravindranath R, Valiyaveettil S. Synthesis and comparison ofthe structure-property relationships of symmetric and asymmetric water-soluble poly(p-phenylene)s[J]. J Polym Sci Poly Chem,2006,44(12):3763-3777.
    [425] Oh S H, Na S I, Nah Y C, Vak D, Kim S S, Kim D Y. Novel cationic water-solublepolyfluorene derivatives with ion-transporting side groups for efficient electron injection inPLEDs[J]. Org Electron,2007,8(6):773-783.
    [426] Li C, Numata M, Takeuchi M, Shinkai S. A sensitive colorimetric and fluorescent probebased on a polythiophene derivative for the detection of ATP[J]. Angew Chem Int Ed,2005,117(39):6529-6532.
    [427] Angelopoulos M, Shaw J M, Kaplan R D, Perreault S. Conducting polyanilines: Dischargelayers for electron‐beam lithography[J]. J Vac Sci Technol B,1989,7(6):1519-1523.
    [428] Qin C J, Wu X F, Gao B X, Tong H, Wang LX. Amino acid functionalized polyfluorene as awater-soluble Hg2+chemosensor with high solubility and high photoluminescence quantumyield[J]. Macromolecules,2009,42(15):5427-5429.
    [429] Lu B Y, Yan J, Xu J K, Zhou S Y, Hu X J. Novel electroactive proton-doped conducting poly(aromatic ethers) with good fluorescence properties via electropolymerization[J].Macromolecules,2010,43(10):4599-4608.
    [430] Fan C L, Xu J K, Chen W, Dong B. Electrosynthesis and characterization of water-solublepoly(9-aminofluorene) with good fluorescence properties[J]. J Phys Chem C,2008,112(31):12012-12017.
    [431] Xu J K, Liu H T, Pu S Z, Li F Y, Luo M B. Anovel electrochromic polyacetylene derivativewith good fluorescence properties electrodeposited by direct anodic oxidation of1,2-methylenedioxybenzene[J]. Macromolecules,2006,39(17):5611-5616.
    [432] Qin C J, Cheng Y X, Wang L X, Jing X X, Wang F S. Phosphonate-functionalizedpolyfluorene as a highly water-soluble iron (III) chemosensor[J]. Macromolecules,2008,41(21):7798-7804.
    [433] Saikia G, Iyer P K. A Remarkable superquenching and superdequenching sensor for theselective and noninvasive detection of inorganic phosphates in saliva[J]. Macromolecules,2011,44(10):3753-3758.
    [434] Dwivedi A K, Saikia G, Iyer P K. Aqueous polyfluorene probe for the detection andestimation of Fe3+and inorganic phosphate in blood serum[J]. J Mater Chem,2011,21(8):2502-2507.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700