用户名: 密码: 验证码:
硬石膏类膨胀剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代混凝土技术的发展,混凝土结构裂缝呈现越来越严重的趋势,尤其是早期裂缝,己成为土木工程界一个重要研究方向。掺加膨胀剂是目前我国控制混凝土工程裂缝的主要材料措施,混凝土膨胀剂在普通混凝土中可抵消干缩或温度降低引起的拉应力,起到良好的补偿收缩作用,能提高混凝土的抗裂防渗能力,常用于配制膨胀混凝土或抗裂防渗混凝土,广泛地应用于防水、抗渗、修补等工程中。一般常用的膨胀剂有硫铝酸盐类膨胀剂(如UEA、明矾石膨胀剂EA-L型等),氧化钙类膨胀剂、复合膨胀剂等。在实际使用中,膨胀剂类型、掺量及其使用条件对混凝土的主要性能影响很大,现有的膨胀剂存在着实际掺量较大、混凝土强度及耐久性发展与膨胀剂的膨胀速率不协调、膨胀效能如何评价、钙矾石AFt相延迟性反应(DEF)等一系列问题,而目前国内外这方面的研究成果较少。
     已有的研究表明,硬石膏可以作为一种基础材料用于膨胀混合材料的生产。本研究根据目前国内外以钙钒石为膨胀源的膨胀剂及江夏硬石膏的物质成分特点,研制具有优良性能的硬石膏类膨胀剂,不仅可以消除混凝土内部因收缩产生微裂纹的现象,对我国新型膨胀剂的发展具有一定的指导意义,而且为这类工业废石膏的合理开发利用提供了新的途径,既治理了污染,又变废为宝,可以取得很好的社会效益和良好的经济效益。
     为了更好的研究混凝土中膨胀剂的效用,本文从影响膨胀剂性能的因素着手讨论了水胶比的变化、膨胀剂掺量的变化、矿物掺和料的掺用、对膨胀剂膨胀效用的影响。
     研究结果表明:以明矾石和硬石膏为基本组分配制的AG膨胀剂和以粉煤灰与硬石膏为基本组分的FG膨胀剂膨胀效果和抗压强度基本达到国家标准要求。
During the technical development of modern concrete, concrete structure crack (especially early-age crack) becomes more and more serious and has been one of main research directions of civil engineering. Adding expansion admixture is the main material measures to control concrete structure crack in our country at present. Expansion admixture of concrete can offset the tension-stress caused by drying shrinkage or temperature lowing of concrete. It has a good compensation to shrinkage, and can improve the anti-cracking and anti-penetrating performance of concrete. It is often added to concrete top roduce expanding concrete or the anti-cracking and anti-penetratingconcrete, which are widely used in such engineering as waterproofing,anti-penetrating, mending etc. The expansion admixture include at present sulpho aluminate, (such as UEA, EA-L etc), calcium oxide, and some composite expansion admixtures. In practical uses, the major performances of concrete are associated with the quantities, types and the service conditions of the expansion-admixture. The expansion admixtures of concrete available at present still have many shortcomings, such as the greater quantities required, the non-relevance between developments of concrete strength and durability and expanding speeds of expansion admixture, the evaluation of expanding effects, the DEF of AFt etc. Unfortunately, few achievements in these aspects have been obtained all over the world.The previous researches show that anhydrite can be used in expansion admixtures as a kind of basic materisaLAccording to the composition of expansion admixtures and the anhydrite of jiangxia,we research and product the anhydrite expansion admixture with-the excellent property successfully.The research not only removes the fine crackles in the cement stones,but also applies a new developing way to the industrial waste gypsum.As far as the development of expansive admixtures is concerned,the research of guiding is significance in theory certainly.In order to research the effectiveness of expensive admixture in concrete, this thesis discusses the influence of water-binder ratio changing,quantity of expensive admixture changing, adding of mineral admixture to expensive effectiveness of the expansion admixture.The results indicate that the AG expansion admixture triturated by alunite and anhydrite and FG expansion triturated by fly-ash and anhydrite also have good expensive and resistace effectiveness,which can reach national standard.
引文
[1] 陈晓芳等.固体废物的污染及综合利用.河南科技,1994,4:45~49.
    [2] 芈振明等,固体废物的处理与处置(修订版),高等教育出版社,1993.10
    [3] 王铁梦.工程结构裂缝控制,第一版.北京:中国建筑工业出版社,1998.
    [4] 韩素芳,耿维恕等.钢筋混凝土结构裂缝控制指南,第一版.化学工业出版社.2004.
    [5] 朱耀台,詹树林.混凝士裂缝成因与防治措施研究.材料科学与工程学报,2003,21(5):727~730
    [6] 朱伯芳.大体积混凝土温度应力与温度控制,第一版.中国电力出版社,1999.
    [7] G.De Schutter, General Hydration Model for Portland Cement and Blast Furnace Slag Cement. Cem. Conc. Res. 25(1995):593~604
    [8] G. DeSchutter, L.Taerwe, Degree of Hydration-based Description of Mechanical Properties of Early age Concrete. Mater. Struct. 29(1996): 335~344.
    [9] C. DeSchutter, L.Taerwe, Fictitious Degree of Hydration Method for the Basic Creep of Early Age Concrete. Mater. Struct. 33(2000) 370~380.
    [10] G.DeSchutter, Influence of Hydration Reaction on Engineering Properties of Hardening Concrete Mater. Struct. 35(2002): 447~452.
    [11] G.DeSchutter, Finite Element Simulation of Thermal Cracking in Massive Hardening Concrete Elements Using Degree of Hydration Based Material Laws. Cem. Conc. Res. 80(2002): 2035~2042
    [12] 王铁梦.工程结构裂缝控制,第一版.北京:中国建筑工业出版社,1998.50~78.
    [13] 史美生.膨胀混凝土的裂缝问题讨论,混凝土.2001,5:21~25.
    [14] B Persson, G Fagerlund, Self-desiccation and Its Importance in Concrete Technology, Proceedings of the Third International Research Seminar in Lund, June 14-15, 2002.
    [15] Z.P. Bazant, Yunping Xi. Drying Creep of Concrete: Constitutive Model and New Experiments Separating Its Mechanisms. Mater. Struct. 27(1994): 3-14.
    [16] Z.P. Bazant, Mathematical Modelling of Creep and Shrinkage of Concrete (RILEM Series), Wiley, London, 1982.
    [17] Z.P. Bazant, Interaction of Fracture and Creep in Concrete, Cem. Future 6(1) (1994). 4~5.
    [18] 张向军,陈华良等.养护条件对掺膨胀剂高性能混凝土体积稳定性影响,混凝土,2003.No.4:16~184.
    [19] 刘克忠,江云安,王显斌.明矾石膨胀水泥与建筑物的刚性防水.水泥1995.NO.5:41~42
    [20] 杜应吉.膨胀剂对混凝土主要性能影响的试验研究及其模糊评价:[硕士学位论文].北京:河海大学,2001.
    [21] 王砚.程潮铁矿废石—硬石膏在膨胀混凝土中的引用研究:[硕士学位论文].武汉:武汉理工大学,2001.
    [22] ACI Committee 223, Expansive Cement Cocretes-Present State of Knowledge, ACI JOURNAL, NO.8, 1970
    [23] 阎培渝,廖慧珍等.使用膨胀剂配置补偿收缩混凝土时应注意的几个问题.硅酸盐.2000,12:42~45
    [24] 中华人民共和国建材行业标准.混凝土膨胀剂(JC476-2001).2001
    [25] 吴仲伟,张鸿直.膨胀混凝土.北京.中国铁道出版社.1990(1):88~89
    [26] 姚启轩.UEA补偿收缩混凝土的防水作用.工程应用.2000(4):40~41
    [27] 布德尼柯夫著,樊发家等译,《石膏的研究与应用》,北京,中国工业出版社,1963年.
    [28] 陆亚文,许家玲.硬石膏在水泥生产中的应用.低温建筑技术.2004,NO,2(98):74
    [29] 牛福生,张锦瑞,倪文.明矾石—石膏复合膨胀剂.河北理工学院学报,2005,NO,1(27):97~100.
    [30] 李丽琴.补偿收缩海工混凝土耐久性的研究:[硕士学位论文].浙江:浙江工业大学,2005.
    [31] 韩怀强,蒋挺大.粉煤灰利用技术.化学工业出版社,2001.35~40
    [32] 钱觉时,吴传明,王智.粉煤灰的矿物组成.粉煤灰综合利用,2001,NO.1:30~36.
    [33] K.Takemoto and H.Vchikawa, 7th Intern. cong on Chem of Cement, Vol.I, Part Ⅳ-2 Paris, 1~29(1980)
    [34] P.Yan, W.Yang, X.Qin, Y.You. Microstrcture and properties of binder of fly ash-fluorgypsum-portl and cement. Cem. Coner. Res. 1999, 29(1):349-354
    [35] Diamond S,Ravina D,Lovell J, The occurrence of duplex films on fly ash surface. Cem Coner, Res, 1980, 10(2):297
    [36] 王培铭,陈志源.粉煤灰与水泥浆体间界面的形貌特征.硅酸盐学报.1997,NO.4:45~50.
    [37] 李纪青,秘洁芳.劣质粉煤灰的改性激活及高强度粉煤灰砌块的研究.粉煤灰综合利用.2000,NO.2:37~40
    [38] 沈旦申,我国粉煤灰利用科学技术的可持续发展[J].建筑材料学报,1998.(2):170~174
    [39] 卫亚儒,李红侠.粉煤灰活化处理及应用.粉煤灰综合利用.2005.NO.3:45~46
    [40] 钱觉时,肖保怀,袁江,王智.粉煤灰—石灰—硫酸盐系统[J].新型建筑材料,1998,(8):19~21
    [41] J.C.Hower, R.F.Rathbone, G.Petersonand A.S.Trimble, Petrology. mineralogy&chemistry of magnetically separated sized fly ash. In: 1997 International Ash Utilization Symposium. October 20-22, 1997, Lexington, Kentuchy, 738-744
    [42] 赛汉胡尔,姚婕.粉煤灰的处理与综合利用.内蒙古环境保护,2004,4(16):21~23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700