用户名: 密码: 验证码:
鱼类PKZ(Protein Kinase Containing Z-DNA Binding Domain)Zα与Z-DNA的结合
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真核细胞翻译起始因子2α(eIF2α)激酶是在进化中高度保守的丝氨酸/苏氨酸蛋白激酶,存在于哺乳类不同的组织和细胞中,通过调节eIF2α的活性参与机体内多种应激反应。新近报道的鱼类PKZ(包括鲫鱼CaPKZ,斑马鱼DrPKZ,大西洋鲑AsPKZ和稀有鮈鲫GrPKZ)可能是继HRI、PKR、PERK和GCN2等之后的一种新的eIF2α激酶。PKZ结构独特,C端为eIF2α激酶催化区,而在其N端具有2个Z-DNA结合域(Zα)。
     Z-DNA是不同于B-DNA的左手螺旋DNA,具有特殊的空间构象和重要的生物学功能。为了在体外模拟生理状态下的Z-DNA,我们构建了pMD-18T/d(GC)n(n=6,8,10,13),并利用甲基化抑制实验和抗Z-DNA抗体检测其构象。结果显示,这些插入至质粒的d(GC)n片断能够在负超螺旋维持下形成潜在的Z形构象,且其形成Z-DNA的能力依赖于d(GC)重复序列的数目。表明d(GC)n越长,形成Z-DNA的效率越高。同时,我们构建了pMD-18T/d(TA)n pMD-18T/d(non-GC-repeat)n重组质粒,同样通过抗Z-DNA抗体检测它们形成Z形构象的能力,结果发现它们均不能与抗Z-DNA抗体结合。
     鲫鱼PKZ(PKR-like)是首次报道的鱼类PKZ。为深入了解鲫鱼PKZ Za的功能,本研究以pET-22b(+)为表达载体,构建了野生型pET-22b(+)/Zα1Zα2和2个替换型pET-22b(+)/Zα1Zα1、pET-22b(+)/Zα2Zα2表达质粒,并运用PCR定点突变方法构建了9个点突变型重组表达质粒(K34A, S35A, N38A, R39A, Y42A, K56A, P57A, P58A和W60A)。这些重组表达载体转化至表达菌BL21(DE3)pLysS并诱导表达,经Ni-NTA亲和层析获得各种纯化的融合多肽。
     非变性PAGE电泳分析了野生型PZα1Zα2和替换型PZa1Zα1、PZα2Zα2蛋白的二聚化能力。结果显示,纯化的表达多肽PZα1Zα2在体外能够形成二聚体但没有多聚化现象。加入2-ME或SDS后,PZα1Zα2的二聚化则会被抑制,表明二硫键在稳定PZα1Zα2二聚体的过程中起着非常重要的作用。同时发现,pMD18-T/d(GC)6对PZα1Zα2的二聚化没有任何促进作用。与之不同,2个替换型PZα1Zα1、PZp2Zα2蛋白则没有发现的二聚化现象。
     利用琼脂糖凝胶阻滞实验分别分析了不同的体外表达多肽与pMD-18T/d(GC)n等各种重组质粒的亲和性。结果显示,野生型PZα1Zα2和替换型PZα1zα1对重组质粒pMD18-T/d(GC)n具有很高的亲和性,并且后者的结合能力强于前者。若解除pMD18-T/d(GC)n的负超螺旋,它们间的阻滞效应便会消失,这表明pMD18-T/d(GC)n的Z形构象是为其负超螺旋所维持的。同时,竞争性实验表明PZα1Zα2对于重组质粒pMD18-T/d(GC)n的结合具有特异性。另一方面,替换型PZα2Zα2以及9个点突变型蛋白却丧失了对pMD18-T/d(GC)n亲和能力。
     与此同时,通过琼脂糖凝胶阻滞实验还检测了PZα1Zα2与重组质粒pMD-18T/d(TA)n. pMD-18T/d(non-GC-repeat)n的亲和性。结果表明,PZα1Zα2与pMD-18T/d(non-GC-repeat)n、pMD-18T/d(TA)n的结合都很弱,尤以pMD-18T/d(TA)n表现为最弱。
     另外,我们还克隆了草鱼CiPKZ全长cDNA序列及其启动子序列。序列分析表明,草鱼CiPKZ基因序列与鲫鱼CaPKZ的具有极高的同源性。RT-PCR分析结果显示,草鱼CiPKZ具有广谱的组织表达特性,Poly I:C诱导后其表达均会上调。这些结果表明,鱼类PKZ能够为病毒所诱导、并可能参与宿主细胞的免疫应答过程。
Eukaryotic initiation factor 2a (eIF2a) kinases, a member of the highly conserved Ser/Thr protein kinases family, are distributed in different mammalian tissues and cells and mainly participated in a variety of emergency responses by regulating the activity of eIF2a. The eIF2a kinases mostly contain HRI, PKR, PERK and GCN2. PKZ, including CaPKZ, DrPKZ, AsPKZ, and GrPKZ, is the most recently discovered member of eIF2a kinase family in fish. PKZ has a special structure, which possessed a conserved eIF2a kinase catalytic domain in C-terminal and two Z-DNA binding domains (Za) in N-terminal. Therefore, PKZ belongs to the Za protein family together with ADAR1, DLM-1 and E3L.
     Z-DNA, different from B-DNA, adopted unique conformation and to be thougth to have many important biological functions. In order to mimic the Z-DNA under physiological conditions in vitro, we constructed the recombinant plasmids of pMD-18T/d(GC)n (n=6,8,10,13) that were detected by using inhibition of methylation experiments and anti-Z-DNA antibody. The results showed that most of the plasmids containing d(GC)n inserts were maintained in the Z-conformation. Moreover, the ability of the recombinant plasmid to form Z-DNA depended on the number of d(GC) repeats. It suggested that the longer the sequence of d(GC)n the more efficient it can form the Z-conformation. Meanwhile, we have also constructed the recombinant plasmids of MD-18T/d(TA)n and pMD-18T/d(non-GC-repeat)n that were detected by using anti-Z-DNA antibody. The results showed that both of them couldn't bind to the anti-Z-DNA antibody.
     CaPKZ is the first identified and reported PKZ in fish. To further investigate the function of CaPKZ Zα, we constructed three recombinant expression vectors of pET-22b(+)/Zα1Zα2, pET-22b(+)/Zα1Zα1 and pET-22b(+)/Zα2Zα2 by using pET-22b(+). Also, we constructed nine mutation vectors of pET-22b(+)/Zα(K34A, S35A, N38A, R39A,Y42A, K56A, P57A, P58A and W60A) by PCR site-directed mutagenesis method. These recombinant expression vectors were transformed into E.coli BL21 (DE3) plysS and then induced with IPTG. All kinds of purified peptides were obtained by using Ni-NTA His-Bind Resin affinity chromatography.
     The dimerization of PZα1Zα2, Pzα1Zα1 and PZα2Zα2 were analyzed by a 12%native polyacrylamide gel. The results showed that PZα1Zα2 could form dimer other than polymers in vitro. When incubated with 2-ME or SDS, the dimerization of PZα1Zα2 was inhibited. It suggested that disulfide bond could play a major role in stabilization of the dimer of PZα1Zα2.whereas pMD18-T/d(GC)6 had little effect on it. In contrast, no dimerization of PZα1Zα1 and PZα2Zα2 were detected.
     The recombinant plasmids of pMD18-T/d(GC)n, pMD-18T/d(TA)n and pMD-18T/d(non-GC-repeat)n binding activity of all kinds of fusion peptides were examined by using agarose gel mobility shift assay. At first, we found that both PZα1Zα2 and PZα1Zα1 had high affinity binding to the recombinant plasmids, and that of PZα1Zα1 could be stronger than of PZα1Zα2.If the negative supercoils of pMD18-T/d(GC)n were removed, the band shifts could disappeared. It suggested that the Z-conformation of pMD18-T/d(GC)n might be stabilized by negative supercoiling. At the same time, binding specificity of PZα1Zα2 to the plasmids of pMD18-T/d(GC)n was also examined by a competitive binding assay using the anti-Z-DNA antibody. On the other hand, PZα2Zα2 and nine site-directed mutation PZαcould not bind to pMD18-T/d(GC)n that lost its band shifting activity.
     In addition, we examined the binding activity of PZα1Zα2 to the recombinant plasmids of pMD-18T/d(TA)n and pMD-18T/d(non-GC-repeat)n by using agarose gel mobility shift assay. The results indicated that PZα1Zα2 has lower affinity binding to them, especially weakest to pMD-18T/d(TA)n.
     Additionally, the full length cDNA of grass carp(Ctenopharyngodon idellus) CiPKZ and its promoter sequence were cloned. Sequence analysis showed that grass carp CiPKZ shared the highest homology with crucian carp CaPKZ. The RT-PCR analysis showed that CiPKZ had a low level of constitutive expression in spleen, kidney and liver, and it was significantly up-regulated after challenged by Poly I:C. These results showed that the fish PKZ could be induced by virus, and and involved in host defense and immune response.
引文
1. 王镜岩,朱圣庚,徐长法.生物化学.北京:高等教育出版社;2002.
    2. Pohl FM, Jovin TM. Salt-induced co-operative conformational change of a synthetic DNA: equilibrium and kinetic studies with poly (dG-dC). J Mol Biol.1972,67:375-96.
    3. Wang AH, Quigley GJ, Kolpak FJ, Crawford JL, van Boom JH, van der Marel G, et al. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature.1979,282:680-6.
    4. Rich A, Zhang S. Timeline:Z-DNA:the long road to biological function. Nat Rev Genet. 2003,4:566-72.
    5. Morange M. What history tells us IX. Z-DNA:when nature is not opportunistic. J Biosci. 2007,32:657-61.
    6. Rich A, Nordheim A, Wang AH. The chemistry and biology of left-handed Z-DNA. Annu Rev Biochem.1984,53:791-846.
    7. Ha SC, Lowenhaupt K, Rich A, Kim YG, Kim KK. Crystal, structure of a junction between B-DNA and Z-DNA reveals two extruded bases. Nature.2005,437:1183-6.
    8. Yakovchuk P, Protozanova E, Frank-Kamenetskii MD. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res.2006, 34:564-74.
    9. 周盼盼,王丽娟,邱文元.DNA中的B-Z链接.化学通报.2006,11:822-5.
    10. Liu LF, Wang JC. Supercoiling of the DNA template during transcription. Proc Natl Acad Sci USA.1987,84:7024-7.
    11. Brown BA,2nd,Rich A. The left-handed double helical nucleic acids. Acta Bio Pol.2001, 48:295-312.
    12. Ho PS, Ellison MJ, Quigley GJ, Rich A. A computer aided thermodynamic approach for predicting the formation of Z-DNA in naturally occurring sequences. Embo J.1986, 5:2737-44.
    13. Schroth GP, Chou PJ, Ho PS. Mapping Z-DNA in the human genome. Computer-aided mapping reveals a nonrandom distribution of potential Z-DNA-forming sequences in human genes. JBiol Chem.1992,267:11846-55.
    14. Brown BA,2nd, Lowenhaupt K, Wilbert CM, Hanlon EB, Rich A. The zalpha domain of the editing enzyme dsRNA adenosine deaminase binds left-handed Z-RNA as well as Z-DNA. Proc Natl Acad Sci USA.2000,97:13532-6.
    15. Klysik J, Stirdivant SM, Larson JE, Hart PA, Wells RD. Left-handed DNA in restriction fragments and a recombinant plasmid. Nature.1981,290:672-7.
    16. Ellison MJ, Feigon J, Kelleher RJ,3rd, Wang AH, Habener JF, Rich A. An assessment of the Z-DNA forming potential of alternating dA-dT stretches in supercoiled plasmids. Biochemistry.1986,25:3648-55.
    17. Zacharias W, Larson JE, Kilpatrick MW, Wells RD. Hhal methylase and restriction endonuclease as probes for B to Z DNA conformational changes in d(GCGC) sequences. Nucleic Acids Res.1984,12:7677-92.
    18. Herbert A, Rich A. Left-handed Z-DNA:structure and function. Genetica.1999,106:37-47.
    19. McLean MJ, Blaho JA, Kilpatrick MW, Wells RD. Consecutive A X T pairs can adopt a left-handed DNA structure. Proc Natl Acad Sci USA.1986,83:5884-8.
    20. Ha SC, Choi J, Hwang HY, Rich A, Kim YG, Kim KK. The structures of non-CG-repeat Z-DNAs co-crystallized with the Z-DNA-binding domain, hZ alpha(ADAR1). Nucleic Acids Res.2009,37:629-37.
    21. Gessner RV, Quigley GJ, Wang AH, van der Marel GA, van Boom JH, Rich A. Structural basis for stabilization of Z-DNA by cobalt hexaammine and magnesium cations. Biochemistry.1985,24:237-40.
    22. Egli M, Williams LD, Gao Q, Rich A. Structure of the pure-spermine form of Z-DNA (magnesium free) at 1-A resolution. Biochemistry.1991,30:11388-402.
    23. Behe M, Felsenfeld G. Effects of methylation on a synthetic polynucleotide:the B--Z transition in poly(dG-m5dC).poly(dG-m5dC). Proc Natl Acad Sci USA.1981,78:1619-23.
    24. Moller A, Nordheim A, Kozlowski SA, Patel DJ, Rich A. Bromination stabilizes poly(dG-dC) in the Z-DNA form under low-salt conditions. Biochemistry.1984,23:54-62.
    25. Feigon J, Wang AH, van der Marel GA, Van Boom JH, Rich A. A one-and two-dimensional NMR study of the B to Z transition of (m5dC-dG)3 in methanolic solution. Nucleic Acids Res. 1984,12:1243-63.
    26. Aboul-ela F, Bowater RP, Lilley DM. Competing B-Z and helix-coil conformational transitions in supercoiled plasmid DNA. J Biol Chem.1992267:1776-85.
    27. Sheridan SD, Opel ML, Hatfield GW. Activation and repression of transcription initiation by a distant DNA structural transition. Mol Microbiol.2001,40:684-90.
    28. Wittig B, Dorbic T, Rich A. Transcription is associated with Z-DNA formation in metabolically active permeabilized mammalian cell nuclei. Proc Natl Acad Sci USA.1991, 88:2259-63.
    29. Wolfl S, Wittig B, Rich A. Identification of transcriptionally induced Z-DNA segments in the human c-myc gene. Biochim Biophys Acta.1995,1264:294-302.
    30. Wittig B, Wolfl S, Dorbic T, Vahrson W, Rich A. Transcription of human c-myc in permeabilized nuclei is associated with formation of Z-DNA in three discrete regions of the gene. Embo J.1992,11:4653-63.
    31. Peck LJ, Wang JC. Transcriptional block caused by a negative supercoiling induced structural change in an alternating CG sequence. Cell.1985,40:129-37.
    32. Vasudevaraju P, Bharathi, Garruto RM, Sambamurti K, Rao KS. Role of DNA dynamics in Alzheimer's disease. Brain Res Rev.2008,58:136-48.
    33. Rothenburg S, Koch-Nolte F, Rich A, Haag F. A polymorphic dinucleotide repeat in the rat nucleolin gene forms Z-DNA and inhibits promoter activity. Proc Natl Acad Sci USA.2001 98:8985-90.
    34. Liu H, Mulholland N, Fu H, Zhao K. Cooperative activity of BRG1 and Z-DNA formation in chromatin remodeling. Mol Cell Biol.2006,26:2550-9.
    35. Blaho JA, Wells RD. Left-handed Z-DNA and genetic recombination. Prog Nucleic Acid Res Mol Biol.1989,37:107-26.
    36. Wahls WP, Wallace LJ, Moore PD. The Z-DNA motif d(TG)30 promotes reception of information during gene conversion events while stimulating homologous recombination in human cells in culture. Mol Cell Biol.1990,10:785-93.
    37. Wang G, Christensen LA, Vasquez KM. Z-DNA-forming sequences generate large-scale deletions in mammalian cells. Proc Natl Acad Sci USA.2006,103:2677-82.
    38. Sabourin M, Nitiss JL, Nitiss KC, Tatebayashi K, Ikeda H, Osheroff N. Yeast recombination pathways triggered by topoisomerase Ⅱ-mediated DNA breaks. Nucleic Acids Res.2003, 31:4373-84.
    39. Zimmerman SB. The three-dimensional structure of DNA. Annu Rev Biochem.1982, 51:395-427.
    40.时俊华,陶敏,许丹,胡成钰.Z-DNA结合蛋白与Za结构域.生命的化学.2008,28:165-8.
    41.汤雅男,杨攀,胡成钰Z-DNA及其生物学功能.生命科学.2009,21:72-5.
    42.梁毅.结构生物学.北京:科学出版社;2005.
    43. Schwartz T, Rould MA, Lowenhaupt K, Herbert A, Rich A. Crystal structure of the Zalpha domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science.1999, 284:1841-5.
    44. Schwartz T, Behlke J, Lowenhaupt K, Heinemann U, Rich A. Structure of the DLM-1-Z-DNA complex reveals a conserved family of Z-DNA-binding proteins. Nat Struct Biol.2001,8:761-5.
    45. Arscott PG, Lee G, Bloomfield VA, Evans DF. Scanning tunnelling microscopy of Z-DNA. Nature.1989,339:484-6.
    46. Cherny DI, Jovin TM. Electron and scanning force microscopy studies of alterations in supercoiled DNA tertiary structure. J Mol Biol.2001,313:295-307.
    47. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett.1986,56:930-3.
    48. Bustamante C, Vesenka J, Tang CL, Rees W, Guthold M, Keller R. Circular DNA molecules imaged in air by scanning force microscopy. Biochemistry.1992,31:22-6.
    49. Lushnikov AY, Brown BA,2nd, Oussatcheva EA, Potaman VN, Sinden RR, Lyubchenko YL. Interaction of the Zalpha domain of human ADAR1 with a negatively supercoiled plasmid visualized by atomic force microscopy. Nucleic Acids Res.2004,32:4704-12.
    50. Herbert A, Schade M, Lowenhaupt K, Alfken J, Schwartz T, Shlyakhtenko LS, et al. The Zalpha domain from human ADAR1 binds to the Z-DNA conformer of many different sequences. Nucleic Acids Res.1998,26:3486-93.
    51. Patel DJ, Kozlowski SA, Nordheim A, Rich A. Right-handed and left-handed DNA:studies of B-and Z-DNA by using proton nuclear Overhauser effect and P NMR. Proc Natl Acad Sci USA.1982,79:1413-7.
    52. Ikuta S, Wang YS. Conformation and dynamics of Z-DNA oligomer duplex of d[(CG)3TATA(CG)3] in solution. Nucleic Acids Res.1989,17:4131-44.
    53. Kypr J, Kejnovska I, Renciuk D, Vorlickova M. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res.2009,37:1713-25.
    54. Herbert A, Alfken J, Kim YG, Mian IS, Nishikura K, Rich A. A Z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase. Proc Natl Acad Sci USA.1997,94:8421-6.
    55. Schade M, Behlke J, Lowenhaupt K, Herbert A, Rich A, Oschkinat H. A 6 bp Z-DNA hairpin binds two Z alpha domains from the human RNA editing enzyme ADAR1. FEBS Lett.1999, 458:27-31.
    56. Peck LJ, Wang JC. Energetics of B-to-Z transition in DNA. Proc Natl Acad Sci USA.1983, 80:6206-10.
    57. Vardimon L, Rich A. In vitro methylation of B-DNA and Z-DNA. Prog Clin Biol Res.1985, 198:23-35.
    58. Kim YG, Lowenhaupt K, Maas S, Herbert A, Schwartz T, Rich A. The zab domain of the human RNA editing enzyme ADAR1 recognizes Z-DNA when surrounded by B-DNA. J Biol Chem.2000,275:26828-33.
    59. Lafer EM, Moller A, Nordheim A, Stollar BD, Rich A. Antibodies specific for left-handed Z-DNA. Proc Natl Acad Sci USA.1981,78:3546-50.
    60. Lafer EM, Sousa R, Ali R, Rich A, Stollar BD. The effect of anti-Z-DNA antibodies on the B-DNA-Z-DNA equilibrium. JBiol Chem.1986,261:6438-43.
    61. Lafer EM, Sousa R, Rich A. Anti-Z-DNA antibody binding can stabilize Z-DNA in relaxed and linear plasmids under physiological conditions. Embo J.1985,4:3655-60.
    62. Cerna A, Cuadrado A, Jouve N, Diaz de la Espina SM, De la Torre C. Z-DNA, a new in situ marker for transcription. Eur J Histochem.2004,48:49-56.
    63. Kahmann JD, Wecking DA, Putter V, Lowenhaupt K, Kim YG, Schmieder P, et al. The solution structure of the N-terminal domain of E3L shows a tyrosine conformation that may explain its reduced affinity to Z-DNA in vitro. Proc Natl Acad Sci USA.2004,101:2712-7.
    64. Oh DB, Kim YG, Rich A. Z-DNA-binding proteins can act as potent effectors of gene expression in vivo. Proc Natl Acad Sci USA.2002,99:16666-71.
    65. Schade M, Turner CJ, Lowenhaupt K, Rich A, Herbert A. Structure-function analysis of the Z-DNA-binding domain Zalpha of dsRNA adenosine deaminase type 1 reveals similarity to the (alpha+beta) family of helix-turn-helix proteins. Embo J.1999,18:470-9.
    66. Athanasiadis A, Placido D, Maas S, Brown BA,2nd, Lowenhaupt K, Rich A. The crystal structure of the Zbeta domain of the RNA-editing enzyme ADAR1 reveals distinct conserved surfaces among Z-domains. Journal of molecular biology.2005,351:496-507.
    67. Ha SC, Van Quyen D, Hwang HY, Oh DB, Brown BA,2nd, Lee SM, et al. Biochemical characterization and preliminary X-ray crystallographic study of the domains of human ZBP1 bound to left-handed Z-DNA. Biochim Biophys Acta.2006,1764:320-3.
    68. Schwartz T, Lowenhaupt K, Kim YG, Li L, Brown BA,2nd, Herbert A, et al. Proteolytic dissection of Zab, the Z-DNA-binding domain of human ADAR1. J Biol Chem.1999, 274:2899-906.
    69. Bass BL. RNA editing and hypermutation by adenosine deamination. Trends Biochem Sci. 1997,22:157-62.
    70. Herbert A, Lowenhaupt K, Spitzner J, Rich A. Chicken double-stranded RNA adenosine deaminase has apparent specificity for Z-DNA. Proc Natl Acad Sci USA.1995,92:7550-4.
    71. Patterson JB, Thomis DC, Hans SL, Samuel CE. Mechanism of interferon action: double-stranded RNA-specific adenosine deaminase from human cells is inducible by alpha and gamma interferons. Virology.1995,210:508-11.
    72. Saunders LR, Barber GN. The dsRNA binding protein family:critical roles, diverse cellular functions. Faseb J.2003,17:961-83.
    73. Liu Y, George CX, Patterson JB, Samuel CE. Functionally distinct double-stranded RNA-binding domains associated with alternative splice site variants of the interferon-inducible double-stranded RNA-specific adenosine deaminase. J Biol Chem.1997, 272:4419-28.
    74. Strehblow A, Hallegger M, Jantsch MF. Nucleocytoplasmic distribution of human RNA-editing enzyme ADAR1 is modulated by double-stranded RNA-binding domains, a leucine-rich export signal, and a putative dimerization domain. Mol Biol Cell.2002, 13:3822-35.
    75. Kim YG, Lowenhaupt K, Schwartz T, Rich A. The interaction between Z-DNA and the Zab domain of double-stranded RNA adenosine deaminase characterized using fusion nucleases. J Biol Chem.1999,274:19081-6.
    76. Liu Y, Herbert A, Rich A, Samuel CE. Double-stranded RNA-specific adenosine deaminase: nucleic acid binding properties. Methods.1998,15:199-205.
    77. Herbert A, Rich A. The role of binding domains for dsRNA and Z-DNA in the in vivo editing of minimal substrates by ADAR1. Proc Natl Acad Sci USA.2001,98:12132-7.
    78. Liu Y, Samuel CE. Mechanism of interferon action:functionally distinct RNA-binding and catalytic domains in the interferon-inducible, double-stranded RNA-specific adenosine deaminase. J Virol.1996,70:1961-8.
    79. Patterson JB, Samuel CE. Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells:evidence for two forms of the deaminase. Mol Cell Biol.1995,15:5376-88.
    80. Herbert A, Wagner S, Nickerson JA. Induction of protein translation by ADAR1 within living cell nuclei is not dependent on RNA editing. Molecular cell.2002,10:1235-46.
    81. Rothenburg S, Schwartz T, Koch-Nolte F, Haag F. Complex regulation of the human gene for the Z-DNA binding protein DLM-1. Nucleic Acids Res.2002,30:993-1000.
    82. Deigendesch N, Koch-Nolte F, Rothenburg S. ZBP1 subcellular localization and association with stress granules is controlled by its Z-DNA binding domains. Nucleic Acids Res.2006, 34:5007-20.
    83. Pham HT, Park MY, Kim KK, Kim YG, Ahn JH. Intracellular localization of human ZBP1: Differential regulation by the Z-DNA binding domain, Zalpha, in splice variants. Biochem Biophys Res Commun.2006,348:145-52.
    84. Ishii KJ, Coban C, Kato H, Takahashi K, Torii Y, Takeshita F, et al. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat Immunol.2006,7:40-8.
    85. Pichlmair A, Reis e Sousa C. Innate recognition of viruses. Immunity.2007,27:370-83.
    86. Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, Ban T, et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature.2007,448:501-5.
    87. Fu Y, Comella N, Tognazzi K, Brown LF, Dvorak HF, Kocher O. Cloning of DLM-1, a novel gene that is up-regulated in activated macrophages, using RNA differential display. Gene. 1999,240:157-63.
    88. Chang HW, Watson JC, Jacobs BL. The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA-dependent protein kinase. Proc Natl Acad Sci USA.1992,89:4825-9.
    89. Sharp TV, Moonan F, Romashko A, Joshi B, Barber GN, Jagus R. The vaccinia virus E3L gene product interacts with both the regulatory and the substrate binding regions of PKR: implications for PKR autoregulation. Virology.1998,250:302-15.
    90. Kim YG, Muralinath M, Brandt T, Pearcy M, Hauns K, Lowenhaupt K, et al. A role for Z-DNA binding in vaccinia virus pathogenesis. Proc Natl Acad Sci USA.2003,100:6974-9.
    91. Quyen DV, Ha SC, Lowenhaupt K, Rich A, Kim KK, Kim YG. Characterization of DNA-binding activity of Z alpha domains from poxviruses and the importance of the beta-wing regions in converting B-DNA to Z-DNA. Nucleic Acids Res.2007,35:7714-20.
    92. Kwon JA, Rich A. Biological function of the vaccinia virus Z-DNA-binding protein E3L: gene transactivation and antiapoptotic activity in HeLa cells. Proc Natl Acad Sci USA.2005, 102:12759-64.
    93. Langland JO, Jacobs BL. Inhibition of PKR by vaccinia virus:role of the N-and C-terminal domains of E3L. Virology.2004,324:419-29.
    94. Langland JO, Jacobs BL. The role of the PKR-inhibitory genes, E3L and K3L, in determining vaccinia virus host range. Virology.2002,299:133-41.
    95. Xiang Y, Condit RC, Vijaysri S, Jacobs B, Williams BR, Silverman RH. Blockade of interferon induction and action by the E3L double-stranded RNA binding proteins of vaccinia virus. J virol.2002,76:5251-9.
    96. Liu Y, Wolff KC, Jacobs BL, Samuel CE. Vaccinia virus E3L interferon resistance protein inhibits the interferon-induced adenosine deaminase A-to-I editing activity. Virology.2001, 289:378-87.
    97. Hu CY, Zhang YB, Huang GP, Zhang QY, Gui JF. Molecular cloning and characterisation of a fish PKR-like gene from cultured CAB cells induced by UV-inactivated virus. Fish Shellfish Immunol.2004,17:353-66.
    98. Rothenburg S, Deigendesch N, Dittmar K, Koch-Nolte F, Haag F, Lowenhaupt K, et al. A PKR-like eukaryotic initiation factor 2alpha kinase from zebrafish contains Z-DNA binding domains instead of dsRNA binding domains. Proc Natl Acad Sci USA.2005,102:1602-7.
    99. Bergan V, Jagus R, Lauksund S, Kileng O, Robertsen B. The Atlantic salmon Z-DNA binding protein kinase phosphorylates translation initiation factor 2 alpha and constitutes a unique orthologue to the mammalian dsRNA-activated protein kinase R. Febs J.2008,275:184-97.
    100. Su J, Zhu Z, Wang Y. Molecular cloning, characterization and expression analysis of the PKZ gene in rare minnow Gobiocypris rarus. Fish Shellfish Immunol.2008,25:106-13.
    101. Cai R, Williams BR. Mutations in the double-stranded RNA-activated protein kinase insert region that uncouple catalysis from eIF2alpha binding. JBiol Chem.1998,273:11274-80.
    102. Craig AW, Cosentino GP, Donze O, Sonenberg N. The kinase insert domain of interferon-induced protein kinase PKR is required for activity but not for interaction with the pseudosubstrate K3L. JBiol Chem.1996,271:24526-33.
    103.吴初新,林刚,胡成钰.鱼类eIF2a激酶和PKZ.生命的化学.2009,29:529-33.
    104.陶敏,吴初新,杨攀,胡成钰.鲫鱼PKR-like Zα与d(GC)13质粒的结合及其适应性进化.细胞生物学杂志.2008,30:494-8.
    105.张义兵,张奇亚,徐德全,桂建芳.从灭活病毒诱导的培养细胞中鉴定鱼类抗病毒相关基因.科学通报.2003,5:457-63.
    106.张义兵.鲫鱼干扰素系统基因的克隆鉴定及其特征分析:中国科学院理学博士学位论文;2003.
    107. Sambrook J RD,黄培堂,等译.分子克隆实验指南.北京:科学出版社;2002.
    108. Kunkel TA. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci USA.1985,82:488-92.
    109.陶敏.鲫鱼PKR-like Za结构域与核酸的亲和性及趋化因子等蛋白质的适应性进化:南昌大学理学硕士学位论文;2008.
    110. Hershey JW. Translational control in mammalian cells. Annu Rev Biochem.199160:717-55.
    111. Proud CG. Protein phosphorylation in translational control. Curr Top Cell Regul. 1992,32:243-369.
    112. Wek RC. eIF-2 kinases:regulators of general and gene-specific translation initiation. Trends Biochem Sci.1994,19:491-6.
    113. Kaufman RJ. Control of gene expression at the level of translation initiation. Curr Opin Biotechnol.1994,5:550-7.
    114. Clemens MJ. Regulation of eukaryotic protein synthesis by protein kinases that phosphorylate initiation factor eIF-2. Mol Biol Rep.1994,19:201-10.
    115. Ventoso I, Sanz MA, Molina S, Berlanga JJ, Carrasco L, Esteban M. Translational resistance of late alphavirus mRNA to eIF2alpha phosphorylation:a strategy to overcome the antiviral effect of protein kinase PKR. Genes Dev.2006,20:87-100.
    116. Rhoads RE. Regulation of eukaryotic protein synthesis by initiation factors. J Biol Chem. 1993,268:3017-20.
    117. Samuel CE. The eIF-2 alpha protein kinases, regulators of translation in eukaryotes from yeasts to humans. J Biol Chem.1993,268:7603-6.
    118. Chen JJ, Throop MS, Gehrke L, Kuo I, Pal JK, Brodsky M, et al. Cloning of the cDNA of the heme-regulated eukaryotic initiation factor 2 alpha (eIF-2 alpha) kinase of rabbit reticulocytes:homology to yeast GCN2 protein kinase and human double-stranded-RNA-dependent eIF-2 alpha kinase. Proc Natl Acad Sci USA.1991, 88:7729-33.
    119. Meurs E, Chong K, Galabru J, Thomas NS, Kerr IM, Williams BR, et al. Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell.1990,62:379-90.
    120. Shi Y, Vattem KM, Sood R, An J, Liang J, Stramm L, et al. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol Cell Biol.1998,18:7499-509.
    121. Hinnebusch AG. Translational regulation of yeast GCN4. A window on factors that control initiator-trna binding to the ribosome. JBiol Chem.1997,272:21661-4.
    122. Inuzuka T, Yun BG, Ishikawa H, Takahashi S, Hori H, Matts RL, et al. Identification of crucial histidines for heme binding in the N-terminal domain of the heme-regulated eIF2alpha kinase. JBiol Chem.2004,279:6778-82.
    123. Lu L, Han AP, Chen JJ. Translation initiation control by heme-regulated eukaryotic initiation factor 2alpha kinase in erythroid cells under cytoplasmic stresses. Mol Cell Biol.2001, 21:7971-80.
    124. Zhu R, Zhang YB, Chen YD, Dong CW, Zhang FT, Zhang QY, et al. Molecular cloning and stress-induced expression of paralichthys olivaceus heme-regulated initiation factor 2alpha kinase. Dev Comp Immunol.2006,30:1047-59.
    125.朱蓉.牙鲆eIF2α激酶基因HRI和PKR的克隆表达及功能分析:中国科学院博士学位论 文:2006.
    126. Sood R, Porter AC, Ma K, Quilliam LA, Wek RC. Pancreatic eukaryotic initiation factor-2alpha kinase (PEK) homologues in humans, Drosophila melanogaster and Caenorhabditis elegans that mediate translational control in response to endoplasmic reticulum stress. Biochem J.2000,346:2:281-93.
    127. Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol cell.2000 5:897-904.
    128. Jr MG KM. Molecular mechanisms of interferon resistance mediated by viral-directed inhibition of PKR, interferon-induced protein kinase. Pharmacol Ther.1998,78:29-46.
    129. Kuhen KL, Shen X, Carlisle ER, Richardson AL, Weier HU, Tanaka H, et al. Structural organization of the human gene (PKR) encoding an interferon-inducible RNA-dependent protein kinase (PKR) and differences from its mouse homolog. Genomics.1996,36:197-201.
    130. Barber GN, Edelhoff S, Katze MG, Disteche CM. Chromosomal assignment of the interferon-inducible double-stranded RNA-dependent protein kinase (PRKR) to human chromosome 2p21-p22 and mouse chromosome 17 E2. Genomics.1993,16:765-7.
    131. Tanaka H, Samuel CE. Mechanism of interferon action:structure of the mouse PKR gene encoding the interferon-inducible RNA-dependent protein kinase. Proc Natl Acad Sci USA. 1994,91:7995-9.
    132. Hanks SK, Quinn AM, Hunter T. The protein kinase family:conserved features and deduced phylogeny of the catalytic domains. Science.1988,241:42-52.
    133. Kaufman RJ. SS. PKR:a general transducer of the cellular stress response leading to apoptosis in translational control. NY:cold Spring Harbor Larboratoyies, cold Spring Harbor; 1996.
    134. Salzberg S, Mandelboim M, Zalcberg M, Shainberg A, Mandelbaum M. Interruption of myogenesis by transforming growth factor beta 1 or EGTA inhibits expression and activity of the myogenic-associated (2'-5') oligoadenylate synthetase and PKR. Exp Cell Res.1995, 219:223-32.
    135. Jiang Z, Zamanian-Daryoush M, Nie H, Silva AM, Williams BR, Li X. Poly(I-C)-induced Toll-like receptor 3 (TLR3)-mediated activation of NFkappa B and MAP kinase is through an interleukin-1 receptor-associated kinase (IRAK)-independent pathway employing the signaling components TLR3-TRAF6-TAK1-TAB2-PKR. J Biol Chem.2003,278:16713-9.
    136. Hovanessian AG. Interferon-induced dsRNA-activated protein kinase (PKR)*: antiproliferative, antiviral and antitumoral functions. Seminars in Virology.1993 4:237-45.
    137. Clemens MJ. PKR--a protein kinase regulated by double-stranded RNA. Int J Biochem Cell Biol.1997,29:945-9.
    138. Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, et al. Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol..2001,21:4347-68.
    139.胡成钰.鲫鱼PKR-like基因的鉴定及其特征分析:中国科学院理学博士学位论文;2004.
    140.彭悟,汤雅男,胡成钰.CaPKR-like在鲫鱼与草鱼组织中的表达特性分析.动物学研究.2007,28:465-9.
    141. Clemens MJ, Elia A. The double-stranded RNA-dependent protein kinase PKR:structure and function. J Interferon Cytokine Res.1997,17:503-24.
    142. Dey M, Cao C, Dar AC, Tamura T, Ozato K, Sicheri F, et al. Mechanistic link between PKR dimerization, autophosphorylation, and eIF2alpha substrate recognition. Cell,2005, 122:901-13.
    143. Lemaire PA, Lary J, Cole JL. Mechanism of PKR activation:dimerization and kinase activation in the absence of double-stranded RNA. J Mol Biol.2005,345:81-90.
    144. Tian B, Mathews MB. Functional characterization of and cooperation between the double-stranded RNA-binding motifs of the protein kinase PKR. J Biol Chem.2001, 276:9936-44.
    145.谢宗波.鲫鱼PKR-like Za结构域的表达及其与核酸的亲和性分析.:南昌大学理学硕士学位论文;2006.
    146. Xu J, Zhang J, Wang L, Zhou J, Huang H, Wu J, et al. Solution structure of Urm1 and its implications for the origin of protein modifiers. Proc Natl Acad Sci USA.2006, 103:11625-30.
    147.徐珺劼.类泛素修饰蛋白Saccharomyces cerevisae Urml的溶液结构测定、进化意义分析及功能研究:中国科学技术大学博士学位论文;2007.
    148. Herbert AG, Rich A. A method to identify and characterize Z-DNA binding proteins using a linear oligodeoxynucleotide. Nucleic Acids Res.1993,21:2669-72.
    149. Duan MR, Nan J, Liang YH, Mao P, Lu L, Li L, et al. DNA binding mechanism revealed by high resolution crystal structure of Arabidopsis thaliana WRKY1 protein. Nucleic Acids Res. 2007,35:1145-54.
    150.胡成钰,谢宗波,张义兵,陈玉栋,邓政东,蒋珺,桂建芳.鲫鱼蛋白激酶PKR-like的Za结构域与聚肌胞苷酸的结合.动物学研究.2005,26:237-42.
    151. Zhang YB, Gui JF. Identification of two novel interferon-stimulated genes from cultured CAB cells induced by UV-inactivated grass carp hemorrhage virus. Dis Aquat Organ.2004, 60:1-9.
    152.张义兵,石耀华,桂建芳.鱼类培养细胞抗病毒基因差减cDNA文库的构建.水生生物学报.2003,27:113-8.
    153.张义兵,王铁辉,李戈强,贾方钧,俞小牧.鲫鱼囊胚细胞干扰素的诱导及部分特性的研究.中国病毒学.2000,15:163-9.
    154.王铁辉,张义兵,李戈强,刘汉勤,易咏兰,朱作言.鱼类培养细胞干扰素的诱导.病毒学报.1999 15:43-9.
    155.张义兵,张奇亚,徐德全,胡成钰,桂建芳.从灭活病毒诱导的培养细胞中鉴定鱼类抗病毒相关基因.科学通报.2003,48:581-8.
    156.张义兵,张奇亚,桂建芳.鱼类的干扰素系统和干扰素系统基因的鉴定.水生生物学报.2004,28:317-22.
    157. Zhang Y, Gui J. Molecular characterization and IFN signal pathway analysis of Carassius auratus CaSTAT1 identified from the cultured cells in response to virus infection. Dev Comp Immunol.2004,28:211-27.
    158. Zhang YB, Hu CY, Zhang J, Huang GP, Wei LH, Zhang QY, et al. Molecular cloning and characterization of crucian carp (Carassius auratus L.) interferon regulatory factor 7. Fish Shellfish Immunol.2003,15:453-66.
    159. Zhang YB, Gui JF. Identification and expression analysis of two IFN-inducible genes in crucian carp (Carassius auratus L.). Gene.2004,325:43-51.
    160. Zhang YB, Li Q, Gui JF. Differential expression of two Carassius auratus Mx genes in cultured CAB cells induced by grass carp hemorrhage virus and interferon. Immunogenetics. 2004,56:68-75.
    161. Bouwman P, Philipsen S. Regulation of the activity of Spl-related transcription factors. Mol Cell Endocrinol.2002,195:27-38.
    162. Tapias A, Ciudad CJ, Noe V. Transcriptional regulation of the 5'-flanking region of the human transcription factor Sp3 gene by NF-1, c-Myb, B-Myb, AP-1 and E2F. Biochim Biophys Acta. 2008,1779:318-29.
    163. Serfling E, Berberich-Siebelt F, Chuvpilo S, Jankevics E, Klein-Hessling S, Twardzik T, et al. The role of NF-AT transcription factors in T cell activation and differentiation. Biochim Biophys Acta.2000,1498:1-18.
    164. Fu XY, Kessler DS, Veals SA, Levy DE, Darnell JE, Jr. ISGF3, the transcriptional activator induced by interferon alpha, consists of multiple interacting polypeptide chains. Proc Natl Acad Sci USA.1990,87:8555-9.
    165. Kumar R, Korutla L. Induction of expression of interferon-stimulated gene factor-3 (ISGF-3) proteins by interferons. Exp Cell Res.1995,216:143-8.
    166. Tanaka H, Samuel CE. Mouse interferon-inducible RNA-dependent protein kinase Pkr gene: cloning and sequence of the 5'-flanking region and functional identification of the minimal inducible promoter. Gene.2000,246:373-82.
    167. Ooi EL, Hirono I, Aoki T. Functional characterisation of the Japanese flounder, Paralichthys olivaceus, Mx promoter. Fish Shellfish Immunol.2006,21:293-304.
    168. Jiang J, Zhang YB, Li S, Yu FF, Sun F, Gui JF. Expression regulation and functional characterization of a novel interferon inducible gene Gig2 and its promoter. Mol Immunol. 2009,46:3131-40.
    169. Goodbourn S, Didcock L, Randall RE. Interferons:cell signalling, immune modulation, antiviral response and virus countermeasures. J Gen Virol.2000,81:2341-64.
    170. Reis LF, Harada H, Wolchok JD, Taniguchi T, Vilcek J. Critical role of a common transcription factor, IRF-1, in the regulation of IFN-beta and IFN-inducible genes. Embo J. 1992,11:185-93.
    171.陈柏君,孙超,王勇,胡鸢雷,林忠平.锚定PCR(Anchored PCR):一种新的染色体步行方法.科学通报.2004,49:1569-71.
    172.汤雅男.PKZ在草鱼组织中表达特性及原子力显微镜观察PKZ PZα结合d(GC)13重组质粒:南昌大学理学硕士学位论文;2009.
    173. Pal JK. Hsp90 regulates protein synthesis by activating the heme-regulated eukaryotic initiation factor 2α (eIF-2α) kinase in rabbit reticulocyte lysates. J Biosci.1998,23:353-60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700