用户名: 密码: 验证码:
水稻白叶枯病菌和条斑病菌对噻枯唑和链霉素的抗药性机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻白叶枯病和水稻条斑病是水稻上的两种重要细菌性病害,噻枯唑和链霉素则是我国防治这两种病害的主要药剂。噻枯唑和链霉素在我国使用分别已有30年和50年的历史,在靶标病原群体中也均已出现抗药性。因此开展噻枯唑和链霉素抗性机理研究,对于抗药性治理和抗性诊断技术发展具有十分重要的意义。本论文围绕抗性机理进行了以下研究:1.水稻白叶枯病菌抗噻枯唑菌株粘粒基因组文库构建;2.抗噻枯唑水稻白叶枯菌株基因组文库的活体筛选和基因分析;3.水稻条斑病菌和白叶枯病菌抗链霉素分子机理研究;4.水稻白叶枯病菌、条斑病菌、大白菜软腐病菌以及柑橘溃疡疾菌抗药基因rpsL的分子检测。
     1.水稻白叶枯病菌噻枯唑抗性菌株粘粒基因组文库构建
     为了探索水稻白叶枯病菌Xanthomonas oryzae pv. oryzae (Xoo)对噻枯唑的抗性机制,本研究建立了白叶枯病菌噻枯唑抗性菌株2-1-1的粘粒基因组文库。通过对2-1-1基因组提取并不完全酶切,回收>23.13kb基因片段,用来自溶源菌BHB2688和BHB2690、效价达1×108pfu/μgDNA的包装蛋白包装,感染宿主大肠杆菌S17-1,在含LB+Km+Sp的平板上进行筛选,随机挑选1200个转化子进行扩增保存,库容达到2.7倍;随机挑选15个转化子进行酶切验证,均有外源片段插入粘粒载体中,插入片段大小23-40kb,成功构建了抗噻枯唑白叶枯病菌2-1-1的粘粒基因组文库。
     2.水稻白叶枯菌噻枯唑抗性菌株基因组文库的活体筛选和基因分析
     将构建好的白叶枯病菌噻枯唑抗性菌株2-1-1粘粒基因组文库,1200个转化子通过两亲交配转染白叶枯病菌野生敏感菌株PXO99,获得的结合子再剪叶接种经300μg/ml噻枯唑处理的稻苗,筛选发现646、518等2个结合子表现抗药性;同时通过在清水对照处理的水稻上筛选,发现5、33、115、152、119、102、172、519、537、611、643、501、694、518、612、654、308、919、670等多个转化子在致病性上强于2-1-1和PXO99。通过对646和518片段进行亚克隆,进一步缩小功能片段,发现抗性菌株有两个基因发生突变。两基因分别为raxR2基因和conserved hypothetical protein (Chp)基因发生突变。其中raxR2基因有7个碱基发生突变,但未造成氨基酸序列变化;Chp基因发生一个碱基突变,引起了氨基酸变化(Val变成Gly)。
     3.水稻白叶枯病菌和条斑病菌链霉素抗性机理研究
     通过室内紫外诱变和药剂驯服获得了水稻条斑病菌和白叶枯病菌链霉素抗性突变体。这些突变体可以在含100μg/mL链霉素平板上生长,而敏感菌株在5μg/mL浓度下则不能生长。通过田间致病力测定,发现抗性菌株在水稻叶片上的致病力与敏感出发菌株无明显差异。从水稻条斑病菌和白叶枯病菌野生敏感菌株及室内诱导抗性菌株中分别扩增到编码核糖体蛋白S12编码基因(rpsL)全序列,序列分析表明rpsL基因中第43位或第88位氨基酸由赖氨酸(AAG)突变为精氨酸(AGG)。rpsL基因全长375bp,编码125个氨基酸。序列分析结果表明水稻条斑病菌与水稻白叶枯病菌rpsL基因同源性达97%,编码氨基酸同源性达100%;与柑橘溃疡病菌氨基酸同源性达98%,与大白菜软腐病菌氨基酸同源性达99%。设计合成1对含有酶切位点(EcoRI)的特异性引物,从抗药性菌株UV-R-1(含rpsL基因43位点突变)和UV-R-3(含rpsL基因88位点突变)中扩增出含启动区的rpsL基因,成功构建了重组质粒pUFRRS知pUFRRX。功能验证证明,质粒pUFRRS和pUFRRX能够互补敏感菌株的抗药性功能,结合子RS1、RS2、RS3、PS1、PS2对链霉素敏感性测定结果证实rpsL基因序列发生点突变是水稻白叶枯病菌和条斑病菌对链霉素产生抗药性的主要原因。同时转化子的致病力与敏感出发菌株和抗药突变体的致病力无明显差异。
     4.水稻白叶枯病菌、条斑病菌、大白菜软腐病菌以及柑橘溃疡病菌抗药基因rpsL的分子检测
     通过室内药剂驯化和紫外诱导,获得大白菜软腐病菌链霉素抗性突变体12个,柑橘溃疡病菌突变体11个,番茄细菌性斑点病菌突变体12个。分别比较番茄细菌性斑点病菌、柑橘溃疡病菌、大白菜软腐病菌链霉素抗性突变体与他们的敏感亲本菌株的序列,发现所有抗链霉素菌株的rpsL基因中第43位或第88位氨基酸均由赖氨酸(AAG)突变为精氨酸(AGG)。由于psL基因43位点是MboⅡ的酶切位点,因此通过PCR-RFLP方法可以检测出上述细菌rpsL基因43位点突变情况。通过设计一对特异性引物,扩增rpsL基因部分片段304bp,若43位点发生突变,则酶切位点消失,304bp则被酶切成201bp和103 bp片段;若43位点不发生突变,304bp则被酶切成201bp、103bp和55 bp片段。研究结果表明PCR-RELP方法可以快速、准确的检测出rpsL基因43位点突变情况,检测结果与直接测序结果完全一致,且操作简便。
Bacterial blight of rice (BB) and bacterial leaf streak of rice (BLS) were caused by Xanthomonas oryzae pv. oryzae(Xoo) and X. oryzae pv. oryzicola (Xooc), respectively. BB is one of the most serious diseases of rice, and BLS is emerging in importance. Application of bactericides is an indispensable complementary tool, especially in regions where susceptible cultivars are frequently planted. Bismerthiazol and streptomycin are mainly bactericides which have been used for the control of bacterial plant disease. But bismerthiazol and streptomycin have been used for more than thirty years. Thus, to study the resistance mechanism becomes very important.In this paper, there are five points about resisitance mechanism that were studied:
     Construction of cosmid gene library of bismerthiazol-resistant Xoo.
     In vivo selection of the cosmid library of bismerthiazol-resistant Xoo and gene analysis.
     Study on the molecule mechanism of the streptomycin resistance in Xoo and Xooc.
     Detection of the resistance to streptomycin in Xoo、Xooc、Erwinia carotovora (Ec) and Xanthomonas axonopodis pv.citri (Xac) by PCR-RFLP within the mutation at codon 43 of the rpsL gene.
     1. Construction of the cosmid library of bismerthiazol-resistant Xoo
     In order to explore the resistance mechanism of bismerthiazol, the cosmid genome library of the bismerthiazol-resistant Xoo mutant 2-1-1 was constructed. Through incomplete digestion of the genome of 2-1-1, the>23.13 kb gene fragments were gathered. Then, the packaging protein was extracted with the lysogen BHB2688、BHB2690, and the potency came up to 1×108pfu/μgDNA. The gathered gene fragments were connected, packed with packaging protein, and infected with the host S17-1. Then the combined mutants were selected on the LB+Km+Sp plates. A total of 1200 transformants were randomly selected at last and stored. The reservoir storage came up to 2.7 times. Fifteen transformants were randomly selected and digested with enzymes, the results indicated all the cosmids contained heterogenous insertional fragments and the cosmid genome library was successfully constructed, with average 23-40 kb gene fragments inserted.
     2. In vivo selection of the cosmid library of bismerthiazol-resistant Xoo and gene analysis
     The 1200 transformants described above were transformed by conjugation into PXO99 (a bismerthiazol-sensitive strain). Then, the in-vivo selection was done on the treated rice plants (sprayed with 300μg/ml bismerthiazol or water) inoculated with the Xoo which had been transformed with exogenous fragment.
     The results suggested that transformants numbered 646 and 518 confirmed their resistance to bismerthiazol, and the transformants numbered 5、33、115、152、119、102、172、519、537、611、643、501、694、518、612、654、308、919、670 were obviously stronger than that of the mutants 2-1-land PXO99. The transformants numbered 646 and 518 were subcloned, and the results revealed that two genes mutated. The two genes were raxR2 gene and conserved hypothetical protein(chp) gene. Seven bases mutated in the gene raxR2, but the amino acid sequence remained unchanged. Only one base mutated in the chp gene, resulting in the change of amino acid.
     3. Study on the molecule mechanism of the streptomycin resistance in Xoo and Xooc
     Xoo and Xooc were found to be sensitive to streptomycin, which is an inhibitor of protein synthesis resulting from interference with translational proofreading. Nineteen Xooc and eleven Xoo streptomycin resistant mutants were obtained by UV induction or streptomycin selection. These mutants could grow at 100μg mL-1 of streptomycin while the wild-type strain (RS105 and PXO99) cannot grow at 5μg mL"1 of streptomycin. The mutations at codon 43 and 88 in the rpsL gene might not be related to the reduced pathogenicity of Xoo and Xooc. Sequencing indicated that the rpsL gene has 375 bp encoding 125 amino acid residues. Blasting of the NCBI database indicated that the ORF had 97% similarity in nucleotide sequence and 100% similarity in deduced amino acid sequence with Xoo. In all resistant strains, a mutation in which AAG was substituted for AGG (Lys→Arg) occurred either at codon 43 or 88. Two plasmids, pUFRRS (containing a mutation at codon 43 of rpsL) and pUFRRX (containing a mutation at codon 88 of rpsL), were constructed by ligating the rpsL gene into the cosmid pUFR034. The plasmids pUFRRS and pUFRRX containing the Lys→Arg mutation of the rpsL gene conferred streptomycin resistance to the sensitive wild-type strain by electroporation. The transformants, RS1、RS2、PS1 and PS2, could grow in the medium containing 50μg mL-1 of streptomycin. A mutation at codon 43 or 88 in rpsL could result in resistance of Xoo to streptomycin. Meanwhile, The transformants with point mutation at codon 43 or 88 in the rpsL gene might not be related to the pathogenicity of Xoo and Xooc.
     4. Detection of mutation at codon 43 of the rpsL gene in Xoo、Xooc、Ec and Xac by
     PCR-RFLP
     Twelve Ec、eleven Xac and twelve Ps streptomycin resistant mutants were obtained by UV induction or streptomycin selection. Sequencing indicated that the rpsL gene had a mutation at codon 43 or 88, which AAG was substituted for AGG (Lys→Arg).To develop a new method for detecting the point mutation of ribosomal S12 protein (rpsL) gene in streptomycin-resistant strains of Xoo, Xooc, Ec and Xac, the PCR-RELP method was developed to detect the point mutation of codon 43 of the rpsL gene in Xoo、Xooc、Ec and Xac. The 304-bp PCR product from the rpsL gene was digested by MboⅡinto two fragments (201 and 103 bp) if there was a mutation at codon 43, or into three fragments (146,103, and 55 bp) if there was no mutation. Compared with the results of nucleotide sequencing, the PCR-RFLP method was feasible in detecting the mutation in codon 43. The PCR-RFLP method could be used in the detection of the point mutation at codon 43 of the rpsL gene in streptomycin-resistant strains of Xoo, Xooc, Ec and Xac. PCR-RFLP is a simple, rapid, and reliable method for detection of the point mutation of codon 43 in the rpsL gene.
引文
Anthony D,et al. TIBTECH,1994,12:280-286
    Bradbury, J.F. Genus Ⅱ. Xanthomonas Dowson. In:Bergey's Manual of Systematic Bacteriology (Krieg, N.R. and Holt, J.G., eds), pp.1984,199-210
    Bradbury, J. F. Nomenclature of the bacterial leaf streak pathogen of rice. Inter. Jon. of Syst. Bacteriology.1971,21:72
    Burke DT,et al. Science,1987,236:806-811
    Cattaneo,et al. Nucleic Acids Res,1981,9:27773
    Choi, S, H., and J. E. Leach.1994. Genetic manipulation of Xanthomonas oryzae pv. oryzae. International Rice Research Notes.19(2):31-32
    Federico, K., B. M. Anke, I. Veronica, G. O. Cristian, I. Luis.1999. New mobilizable vectors suitable for gene replacement in Gram-negative bacteria and their use in mapping of the 3'ene of the Xabthomonas campestris pv.campestris gum operon. Appl. Environ. Microbiol.65:278-282
    Goto, M. Nomenclature of the bacteria causing bacterial leaf streak and bacterial stripe of rice. Bulletin of the Faculty of Agriculture [J]. Shizuoka University 1964,14:3-10
    Grosveld,et al. Nuceic Acids Res,1982,10:67159
    Hamilton,et al. PNAS USA,1996,93:9975-9979
    Hilaire, E., Young, S.A., Willard, L.H., McGee, J.D., Sweat, T., Chittoor,J.M., Guikema, J.A. and Leach, J.E. (2001) Vascular defense responses in rice:peroxidase accumulation in xylem parenchyma cells and xylemwall thickening. Mol. Plant-Microbe Interact.14,1411-1419
    Long J Y(龙菊英),Zhang G Y(张桂英),Wang J S(王金生)2006 Knock-out of pathogenicity-related genes in Xanthmonas oryzae pv. oryzicola and Xanthomonas oryzae pv. oryzae. Journal of Nanjing Agricultural University.29(2):50-56
    Meyeromitz,et al. Gene,1980,11:2772
    Mongkolsuk, S., S. Rabibibhadana, R. Sukchavalit, and G. Vaughn.1998. Construction and physiological analysis of a Xanthomonas oryzae pv. oryzae recA mutant. FEMS Microbiol. Lett. 169:269-275
    Murray,et al. Nature,1974,251:476
    Noda, T., Yamamoto, T., Kaku, H. and Horino, O. (1996) Geographical distribution of pathogenic races of Xanthomonas oryzae pv. oryzae Japan in 1991 and 1993. Ann. Phytopathol. Soc. Japan,62, 549-553
    Ou, S.H. Rice Diseases. Kew, Surrey:Commonwealth Mycological Institute.1972
    Ou, S.H. Rice Diseases. Kew, Surrey:Commonwealth Agricultural.1985
    Pordesimo, A. N. Bacterial blight of rice. Philippine Agriculture.1958,42:115-128
    Reyrat et al.1998. For a nice review of counterselectable markers. Infection Immunity 66:4011-4017
    Royal A,et al. Nature,1979,279:125
    Shizuya,et al. PNAS USA,1992,89:8794-8797
    Simon, R.1984. High frequency mobilization of gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon. Mol. Gen. Genet.196:413-420
    Stewart, V., and Taylor, R. Modified from Maloy, S.,1996. Genetic Analysis of Bacterial Pathogens, CSHL Press, NY
    Sugio, A., B. Yang, and F. F. White.2005. Characterization of the hrpF pathogenicity peninsula of Xanthomonas oryzae pv. oryzae. Mol. Plant-Microbe Interact.18:546-554
    Swings, J., Van Den Mooter, M., Vauterin, L., Hoste, B., Gillis, M., Mew, T.W. and Kersters, K. (1990) Reclassification of the causal agents of bacterial blight Xanthomonas campestris pathovar oryzae and bacterial
    Zhang, X. Z., X. Yan, Z. L. Cui, Q. Hong, and S. P. Li.2006. SmazF,a. novel counter-selectable marker for unmarked chromosomal manipulation in Bacillus subtilis. Nucleic Acids Research.34,No.9
    陈凡国,张学勇.大片段DNA插入文库的研究进展.生物技术通报,2002(2):1-5
    陈利峰,徐敬友主编.农业植物病理学[M].北京:中国农业出版社,2001.5
    陈卫良,徐平,龚鸿飞,等.Enterobacter cloacaeB8在水稻叶部定殖及防治水稻白叶枯病的研究[J].农业生物技术学报,1994,2(2):61-66
    方中达,许志刚,过崇俭,等.水稻白叶枯病菌致病性的变异.南京农业大学学报,1981,1:1-10
    何晨阳,饶军华,王金生.水稻白叶枯病菌毒性基因缺失菌株的构建及其在植物病害生物防治中的作用[J].南京农业大学学报,1994,17(增):17~22
    马忠华,周明国,叶钟音.水稻白叶枯病化学防治研究进展.中国植物病害化学防治研究(第一卷):7-11
    田波,李卫,周世力.关于噬菌体在防治水稻白叶枯病上的研究[J].福建稻麦科技,2004,22(2):24-26
    伍尚忠.水稻白叶枯病及其防治.上海科学技术出版社,1983
    周明国,王建新,沈永男.新一代种子处理剂——多效浸种灵.中国植物病害化学防治研究(第一卷):303-306
    Lisker K, Meiri A. Control of Rhizoctonia solani damping-off in cotton by seed treatment with fungicides. Crop Protection,1992,11 (2):155-159
    Marley P S, Adeoti A A. Effect of seed treatment chemicals on seedling emergence, establishment and control of foot and root rot diseases of wheat in Nigeria. Crop Protection,1995,14(4):271-274
    Moreno-Marti nez E, Rivera A, Vazquez B M. Effect of fungi and fungicides on the preservation of wheat seed stored with high and low moisture content. Journal of Stored Products Research,1998, 34 (4):231-236
    陈柏林,李彦华,何伟发.用高效液相色谱法快速测定稻米中残留的新杀菌剂“川化018”及代谢产物[J].分析化学,1985,13(9):685-687
    程薇波,孙丁,李群英等.二巯基敌枯双生物作用的实验研究Ⅱ:组织化学观察[J],现代预防医学,2003,30(3):309-311
    程薇波,孙丁,李群英等.甲状腺激素干扰物体内甄别实验初探[J].四川大学学报,2003,34(3):472-475
    程薇波,孙丁,王文东等.甲状腺激素干扰物二巯基敌枯双生物作用的实验研究Ⅰ:观察指标的探讨[J].现代预防医学,2003,30(2):129-131
    陈锡岭,樊德方等.杀菌剂叶青双水解动态研究[J].农业环境保护,2000,19(3):164-166
    陈锡铃,樊德方等.杀菌剂叶青双的水解及在池塘中降解的研究[J].环境科学,1993,12(1):53-57
    陈锡岭,石明旺等.杀菌剂叶青双光解动态研究[J].农业环境保护,2000,19(4):164-166
    李希平.农药使用手册[M],江苏科学技术出版社,1991
    雷幼导,崔联和,徐维光等.新农药二巯基敌枯双对大鼠甲状腺功能的损害[J].四川医学院学报,1983;14(3):263-268
    李宗清,谭乃敦,李常胜.地面中微量二疏基敌枯双的分光光度法测定[J].环境科学,1986,7(1):67-70
    马忠华,周明国,叶钟音.噻枯唑对水稻白叶枯病菌作用机制研究初报[J].植物病理学报,1997,27(3):237-241
    孙丁.环境甲状腺素干扰物甄别方法及其作用机制的初步研究[D].四川成都:四川大学华西公共卫生学院,2003
    孙丁,吴德生,王津涛等.表药叶枯宁对犬鼠血清甲状腺素水平影响的时效关系[J].环境与职业医学,2003,20(3):148-150
    孙丁,王津涛,潘红梅等.甲状腺激素干扰物对甲状腺滤泡细胞分泌甲状腺球蛋白功能的影响[J]. 环境与健廉杂志,2003,20(4):210-212
    沈光斌.水稻白叶枯病菌对噻枯唑抗药性监测及治理基础研究[D].南京:南京农业大学,2001
    王津涛.环境甲状腺素干扰物体外作用机制及发育毒性研究[D].四川成都:四川大学华西公共卫生学院,2004
    王津涛,孙丁,张浩等.二巯基敌枯双干扰甲状腺功能的时效关系研究[J].四川大学学报,2004,35(6):770-773
    王文相,顾江涛,夏静.水稻白叶枯病菌抗药性现象的室内研究[J].植物保护学报,1998,25(2):171-174
    肖邦良,徐维光,王远萍等.二巯基敌枯双致甲状腺滤泡细胞酶组织化学及超微结构的改变[J].四川医学院学报,1984;15(1):6-11
    薛慰灵,黄克武,裴雅群.稻米中农药敌枯双降解物的高效液相色谱测定法[J].环境化学,1986,5(1):30
    徐颖.水稻白叶枯病菌(Xanthomonas oryzae pv. oryzae)对链霉素和噻枯唑抗药性监测和抗药性机制的研究[D].南京:南京农业大学,2010
    叶挺镐,黄瑞明.叶青双研究简报[J].农药,1984,4:2-4
    叶挺镐,俞增.叶青双结构研究报告[J].农药,1985,5:1-6
    浙江农科院.叶青双在水稻上残留动态研究[J].1984
    浙江农业大学.水稻上叶青双的残留研究[J].浙江测试技术中心研究所,1984
    周明国,马忠华,党香亮等.对噻枯唑具有抗性的水稻白叶枯病菌菌株的性质[J].植物保护学报,1997,24(2):155-158
    祝晓芬.水稻白叶枯病菌(Xanthomonas oryzae pv.oryzae)和条斑病菌(X. oryzae pv. oryzicola)对噻枯唑和链霉素的抗药性监测及室内抗药性风险评估[D].南京:南京农业大学,2010
    张宇俊.拌种灵对水稻白叶枯病菌(Xanthomonas oryzae pv. oryzae)的作用方式及抗药性遗传研究[D].南京:南京农业大学,2005
    Abal AT, Ahmad S, Mokaddas E. Variations in the occurrence of the S315T mutation within the kat G gene in isoniazid resistant clinical Mycobacterium tuberculosis isolates. Micro Drug Resist,2002, 8:992105
    Birge E A, Kurland C G. Altered Ribosomal Protein in Streptomycin-Dependent Escherichia coli[J]. Science,1969,166(3910):1282-1284
    Carter A P, Clemons W M, Brodersen D E, Morgan W R J, Wimberly B T, Ramakrishnan V. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics[J]. Nature,2000,407:340-348
    Chiou C S, Jones A L. Expression and identification of the strA-strB gene pair from streptomycin-resistant Erwinia amylovora[J]. Gene,1995,152:47-51
    Chiou C S, Jones A L. Molecular analysis of high-level streptomycin resistance in Erwinia amylovora[i]. Phytopathology,1995,85(3):324-328
    Coyier DL, Covey RP. Tolerance of Erwinia amylovora to streptomycin sulfate in Oregon and Washington[J]. Plant Dis.Rep.1975,59:849-852
    Funatsu G, Wittmann H G. Location of amino acid replacements in protein S12 isolated from Escherichia coli mutants resistant to streptomycin[J]. Journal of Molecular Biology, 1972,68:547-550
    Funatsu G, Yaguchi M, Wittmann-Liebold B. Primary structure of protein S12 from the small Escheriehia coli ribosomal subunit[J]. FEBS Lett,1977,73:12-17 Gravel M.,Melancon P, Brakier-Gingras L. Cross-linking of streptomycin to the 16S ribosomal RNA of Escherichia coli[J]. Biochemistry,1987,26(19):6227-6232
    Heinzel P, Werbitzky O, Distler J, Piepersberg W. A second streptomycin resistance gene from Streptomyces griseus codes for streptomycin-3"-phosphotransferase. Relationships between antibiotic and protein kinases[J]. Arch Microbiol,1988,150:184-192
    Honore N, Marchal G, Cole ST. Novel Mutat ion in 16SrRNA associated with streptomycin dependence in MTB.Antimicro Agents Chemother,1995,39:769-770
    Karimi R, Ehrenberg M. Dissociation rate of cognate peptidyl-tRNA from the A-site of hyperaccurate and error-prone ribosomes[J]. European Journal of Biochemistry,1944,226(2):355-360
    Karimi R, Ehrenberg M. Dissociation rates of peptidyl-tRNA from the P-site of E. coli ribosomes[J]. EMBO J,1996,15(5):1149-1154
    Kim BJ, Kim SY,7Park BH, et al. Mutations in the rpoB gene of Mycobacterium tuberculosis that interfere with PCR single strand conformation polymorphism analysis for rifampin susceptibility testing. J Clin Microbiol,1997,35:4922494
    Lewin B. Genes.8th ed. Upper Saddle River, NJ:Pearson Prentice Hall,2004
    Llano-Sotelo B, Azucena E F, Kotra L P, Mobashery S, Chow C S. Aminoglycosides modified by resistance enzymes display diminished binding to the bacterial ribosomal aminoacyl-tRNA site[J]. Chemistry Biology,2002,9(4):455-463
    McManus P S, Stockwell V O, Sundin G W, Jones A L. Antibiotic use in plant agriculture[J]. Annu Rev Phytopatho,2002,40:443-465
    McManus P S, Jones A L. Genetic fingerprinting of Erwinia amylovora strains isolated from tree-fruit crops and Rubus spp[J]. Phytopathology,1995,85(12):1547-53
    Meier AP, Kirschner FC, Bange UV, et al. Genet ic alterations in streptomycin-resistant Mycobacterium tuberculosis:mapping of mutations conf erring resistance.Antimicrob.Agents Chemother,1994,38: 228-233
    Melancon P, Lemieux C, Brakier-Gingras L. A mutation in the 530 loop of Escherichia coli 16S ribosomal RNA causes resistance to streptomycin[J]. Nucleic Acids Research,1988,16(20): 9631-9639
    Middlebrook G, Yegian D.M Certain effects of streptomycin on mycobacteria in vitro[J]. Am. Rev. Tuberc,1946,54(6):553-558
    Miller TD, Schroth MN. Monitoring the epiphytic population of Erwinia amylovora on pear with a selective medium[J]. Phytopathology.1972,62:1175-1182
    Nachamkin I, Kang C, Weinstein MP. Detection of resistance to isoniazid, rifampin, and streptomycin in clinical isolates of Mycobacterium tuberculosis by molecular methods. Clin Infect Dis,1997, 24-.8942900
    Nash KA, Gaytan A, Inderlied CB. Detection of rifampin resistance in Mycobacterium tuberculosis by use of a rapid, simple, and specific RNA/RNA mismatch assay. J Infect Dis,1997,176:5332536
    Ozaki M, Mizushima S, Nomura M. Identification and Functional Characterization of the Protein controlled by the Streptomycin-resistant Locus in E. coli [J]. Nature,1969,222:333-339
    Patnaik M, Liegmann K, Peter JB. Rapid detection of smear negative Mycobacterium tuberculosis by PCR and sequencing for rifampin resistance with DNA extracted directly from slides. J Clin Microbiol,2001,39:51
    Pinard R., Payant C, Melancon P, Brakier-Gingras L. The 59 proximal helix of 16S rRNA is involved in the binding of streptomycin to the ribosome[J]. FASEB J,1993,7:173-176
    Piatek AS, Tyagi S, Pol AC, et al. Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis. Nat Biotechnol,1998,16:3592363
    Piatek AS, Tyagi S, Pol AC, et al. Molecular beacon sequence analysis for detect ing drug resistance in Mycobacterium tuberculosis.Nat Biotech,1998,16:359-363
    Ruusala T, Kurland C G. Streptomycin preferentially perturbs ribosomal proofreading[J]. Molecular and General Genetics MGG,1984,198:100-104
    Shaw K J, Rather P N, Hare R S, Miller G H. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes [J]. Microbiological Reviews, 1993,57(1):138-163
    Sundin G W. Examination of base pair variants of the strA-strB streptomycin resistance genes from bacterial pathogens of humans, animals and plants[J]. Antimicrobial Chemotherapy,2000, 46:848-849
    Tauch A, Krieft S, Kalinowski J, Puhler A. The 51,409-bp R-plasmid pTP10 from the multiresistant clinical isolate Corynebacterium striatum M82B is composed of DNA segments initially identified in soil bacteria and in plant, animal, and human pathogens[J]. Molecular & General Genetics, 2000,263(1):1-11
    Torres MJ, Criado A, Palomares JC, et al. Use of real2time PCR and flurimetry for rapid detection of rifampin and isoniazid resistance associated mutations in Mycobacterium tuberculosis. J Clin Microbiol,2000,38:319423199.
    Wei W, Hongmin Li, Xueqiong W, et al. Clinical application and evaluation of the detection of five drugs resisitance genes in Mycobacterium tuberculosis. Chin J Tuberc Respir Dis,2002, 25:6702673
    Youmans G P, Williston E H, Feldman W H, Hinshaw H C. Increase in resistance of tubercle bacilli to streptomycin:a preliminary report. Proc[J]. Staff Meetings, Mayo Clinic,1946,21:126-127
    陈代杰.抗菌生物与细菌耐药性[M].上海:华东理工大学出版社,2001,90-111
    李梅云.烟草野火病病原菌对农用链霉素的抗药性测定[J].中国农学通报,2007,23(12):328-332
    罗君琴,王洪祥.农用链霉素WP防治柑橘溃疡病的药效试验[J].浙江柑橘,2000,17(4):44
    任新国,黄佳仁,向建国,陈寅,吴婉娟,李碧文,彭飞.水稻条斑病防治技术研究[J].湖南农业大学学报,1993,19(6):591-599
    向平安,周燕,高必达辣椒疮痂病菌(Xanthomonas vesicatoria)和水稻条斑病菌(X. oryzae pv.oryzicola)的质粒及其与耐链霉素和耐铜性关系[J].植物病理学报,2003,33(4):330-333
    徐颖.水稻白叶枯病菌(Xanthomonas oryzae pv. oryzae)对链霉素和噻枯唑抗药性监测和抗药性机制的研究[D].南京:南京农业大学,2010
    薛元海.应用生物源农药防治水稻病害[J].江西植保,2002,25(3):68-71
    杨智洪,杜根成,乔宏兴等.链霉素残留检测方法的研究进展[J].上海畜牧兽医通讯,2005: (5)2-3
    祝晓芬.水稻白叶枯病菌(Xanthomonas oryzae pv.oryzae)和条斑病菌(X. oryzae pv. oryzicola)对噻枯唑和链霉素的抗药性监测及室内抗药性风险评估[D].南京:南京农业大学,2010
    张宇君,李俊,赵伟,周明国.水稻白叶枯病菌对拌种灵抗药性分子机制研究[J].中国农业科学,2005,38(1):64-69
    张致平.微生物药物学[M].北京:化学工业出版社,2003,228-239
    Chen L P, Ye J P, Liu Y, Wang J H, Su W T, Yang F T, Nie W H.2007. Construction, characterization, and chromosomal mapping of a fosmid library of the white-cheeked gibbon(Nomascus leucogenys). Geno.Prot. Bioinfo.,5:3-4
    Fitz-Gibbon S, Choi A J, Miller J H, Stetter K O, Simon M I.Swanson R, Kim U. A fosmid-based genomic map and identification of 474 genes of the hyperthermophilic archaeon Pyrobaculum aerophilum. Extremophiles.1997.1:36-51
    Kim C G, Fujiyama A, Saitou N.2003. Construction of a gorilla fosmid library and its PCR screening system.Genomics,82:571-575
    Liang C Y, Xi Y, Shu J, Li J, Yang J L, Che K P, Jin D M, Liu X L, Weng M L, He Y K, Wang B.2004. Construction of a BAC library of Physcomitrella patens and isolation of a LEA gene. Plant Sci., 167:491-498
    Ling N, Mao Y X, Zhang X C, Mo Z L, Wang G C, Liu W.2007. Sequence analysis of Arthrospira maxima based on fosmid library. J. Appl. Phycol.,19:333-346
    Magrini V, Wesley C, Warren J W, William E G, Xu J, Mardis E R, John D.2004. Fosmid-based physical mapping of the Histoplasma capsulatum Genome. Genome Res.,14:1603-1609
    Meyer J D, Deleu W, Garcia-Mas J, Havey M J.2008.Construction of a fosmid library of cucumber (Cucumis sativus) and comparative analyses of the eIF4E and eIF(iso)4E regions from cucumber and melon(Cucumis melo). Mol. Genet. Genomics.,279:473-80
    Priefer,U.et al. Cloning with cosmids In:Advanced Molecular genetics.A.Puhler and K.N.Timmis(eds) Springer Verlag,pp.1984.160-170
    Seed,B.,R.C.Parker,and N.Davidson.Representation of DNA sequences in recombinant DNA libraries prepared by restriction enzyme partial digestion[J].Gene.1982
    Zhang L L, Bao Z M, Cheng J, Li H, Huang X T, Wang S,Zhang C, Hu J J.2007. Fosmid library construction and initial analysis of end sequences in Zhikong scallop(Chlamys farreri). Mar. Biotech.,9:606-612
    陈凡国,张学勇.大片段DNA插入文库的研究进展[J].生物技术通报,2002(2):1-5
    秦学斌,张军,钟自力,等等.中国人粘粒基因组文库构建[J].中国医学科学院学报,1996,18(5):333-337
    杨立,刘山鸣,张小晓,等等.河豚鱼基因组格式化粘粒文库的构建[J].中国医学科学院学报,1999,21(2):99-104
    Appleby J L, Parkinson J S, Bourret R B.Signaltransduction via the multi-step PhosPhorelay:Not neeessarily a road less traveled.Cell,1996,86(6):845-848
    Chang C, Stewart R C. The two component system:Regulation of diverse signaling pathways in prokaryotes and eukaryotes[J].Plant Physiol,1998,117 (3):723-731
    Daniels,M.J.,el al. Cloning of genes involved in pathogenicity of Xanthomonas campestris pv.campestris using the broad host rang cosmid Plarf1.EMBO J.1984,3:3323-28
    Galcheva-Gargova Z,Derijard B,Wu I-H,etal.An osomsensing signal transduction Pathway in mammalian cells.Science,1994,265(5173):806-808
    Kelemu,s.,Leach,J.E.Cloning and characterization of an avirulence gene from Xanthomonas oryzae pv.oryzae.MPMl 1990.3:59-65
    Maeda T, Wurgler-Murphy S M, Saito H.A two-component system that regulates an osmosensing MAP kinase cascade in yeast.Nature,1994,369(6477):242-245
    Ota I M,Varshavsjy A. A yeast protein similar to bacterial two-component regulators.science,1993, 262(5133):566-569
    Posas F, Wurgler-Murphy S M, Maeda T, el al.Yeast HOGI MAP kinase cascade is Regulated by a multistep phosphorelay mechanism in the SLNI-YPDI-SSK "two-component" osmosensor. Cell, 1996,86(6):865-875
    Wurgler-Murphy S M,Saito H.Two-component signal transducers and MAPK cascades. TIBS, 1997,22(1):172-176
    曹更生,李宁,赵要风,冯继东.用一种改进的粘粒文库筛选方法克隆人a-乳清白蛋白基因[J].农业生物技术学报,2000,8(2)169-172
    马忠华,周明国,叶钟音.噻枯唑对水稻白叶枯病菌作用机制研究初报[J].植物病理学报,1997,27(3):237-241
    沈光斌.水稻白叶枯病菌对噻枯唑抗药性监测及治理基础研究[D].南京:南京农业大学,2001
    Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG and Smith JA, Current Protocols in Molecular Biology. Wiley, New York, NY (1987)
    Chiou CS and Jones AL. (1991). The analysis of plasmid-mediated streptomycin resistance in Erwinia amylovora. Phytopathology 81:710-714
    Chiou C and Jones A. (1995). Molecular analysis of high-level streptomycin resistance in Erwinia amylovora. Phytopathology 85:324-328
    Finken M, Kirschner P, Meier A, Wrede A and Botger EC. (1993). Molecular basis of streptomycin resistance in Mycobacterium tuberculosis:alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol Microbiol 9: 1239-1246
    Funatsu G, Wittmann H G. Location of amino acid replacements in protein S12 isolated from Escherichia coli mutants resistant to streptomycin[J]. Journal of Molecular Biology, 1972,68:547-550
    Funatsu G, Yaguchi M, Wittmann-Liebold B. Primary structure of protein S12 from the small Escheriehia coli ribosomal subunit[J]. FEBS Lett,1977,73:12-17
    Gregory ST, Cate JHD and Dahlberg AE. (2001). Streptomycin-resistant and streptomycin-dependent mutants of the extreme thermophile Thermus thermophilus. J Mol Biol 309:333-338
    Honore N, Marchal G, Cole ST. Novel Mutat ion in 16SrRNA associated with streptomycin dependence in MTB.Antimicro Agents Chemother,1995,39:769-770
    Kauffman HE, Reddy APK, Hsieh SPY, Merca SD, An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Dis 57:537-541(1973)
    Li J, Zhou M, Li H, Chen C, Wang J and Zhang Y. (2006). A study on the molecular mechanism of resistance to amicarthiazol in Xanthomonas campestris pv. citri. Pest Manag Sci 62:440-445
    Mathre DE. Uptake and binding of oxanthiin systemtic fungicides by resistant and sensitive fungi[J]. Phytopathology.1968,58:1464-1469
    McManus PS and Jones AL. (1994). Epidemiology and genetic analysis of streptomycin resistant Erwinia amylovora from Michigan and evaluation of oxytetracycline for control. Phytopathology 84:627-633
    Shi R R, Zhang J Y, Li C Y, Kazumi Y, Sugawara I. Detection of streptomycin resistance in Mycobacterium tuberculosis clinical isolates from China as determined by denaturing HPLC analysis and DNA sequencing[J]. Microbes and Infect,2007,9:1538-1544
    Sundin GW. (2002). Distinct recent lineages of the strA-strB streptomycin-resistance genes in clinical and environmental bacteria. Curr Microbiol 45:63-69
    Tang D, Wu W, Li W, Lu H and Worland AJ. (2000). Mapping of QTLs conferring resistance to bacterial leaf streak in rice. Theor Appl Genet 101:286-291
    Wang W-Q, Liu G-R, Zhang X-F and Ma Z-Q. (2000). Studies on resistance risk to three fungicides in Plasmopara viticola and phytophthora infestans. Acta phytopathol sin 30:48-52
    Xie G and Wang H. (1991). Comparison of several bactericides against bacterial leaf streak of rice. J Zhejiang Agric Sci 5:233-235
    Zhu M, Ye D, Zhang Z, Liu G and Wu X. (1992). Test on control effect of new zhimeisu et al. medicament to principle diseases of rice. Plant Prot 18:26-27
    徐颖.水稻白叶枯病菌(Xanthomonas oryzae pv. oryzae)对链霉素和噻枯唑抗药性监测和抗药性机制的研究[D].南京:南京农业大学,2010
    周明国,马忠华,党香亮,等.对噻枯唑具有抗性的水稻白叶枯病菌菌株的性质[J].植物保护学报,1997,24(2):155-158
    张宇君,李俊,赵伟,周明国.水稻白叶枯病菌对拌种灵抗药性分子机制研究[J].中国农业科学,2005,38(1):64-69
    Abal AT, Ahmad S, Mokaddas E. Variations in the occurrence of the S315T mutation within the kat G gene in isoniazid2resistant clinical Mycobacterium tuberculosis isolates. Micro Drug Resist. 2002,8:992105
    Al Dahouk S, Tomaso H, Prenger-Berninghoff E, Splettstoesser WD, Scholz HC and Neubauer H. (2005). Identification of brucella species and biotypes using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Crit Rev Microbiol; 31:191-196
    Chiou C and Jones A. (1995). Molecular analysis of high-level streptomycin resistance in Erwinia amylovora. Phytopathology 85:324-328
    Gregory ST, Cate JHD and Dahlberg AE. (2001). Streptomycin-resistant and streptomycin-dependent mutants of the extreme thermophile Thermus thermophilus. J Mol Biol 309:333-338
    Honore N, Marchal G, Cole ST. Novel Mutat ion in 16SrRNA associated with streptomycin dependence in MTB.Antimicro Agents Chemother,1995,39:769-770. (Honore N et al,1995)
    Katsukawa C, Tamaru A, Miyata Y, Abe C, Makino M, Suzuki Y. (1997).Characterization of the rpsL and rrs genes of streptomycin-resistant clinical isolates of Mycobacterium tuberculosis in Japan. J Appl Microbiol,83:634-640
    Kim BJ, Kim SY,7Park BH, et al. Mutations in the rpoB gene of Mycobacterium tuberculosis that interfere with PCR single strand conformation polymorphism analysis for rifampin susceptibility testing. J Clin Microbiol,1997,35:4922494
    Orita MH, Iwahana H, Kanazawa K, et al. Detect ion of polymorphisms of human DNA by gel electrophoresis as single strand conformation polymorphisms.Proc Natl Acad Sci,1989,86:2766-2770
    Wei W, Hongmin Li, Xueqiong W, et al. Clinical application and evaluation of the detection of five drugs resisitance genes in Mycobacterium tuberculosis. Chin J Tuberc Respir Dis,2002, 25:6702673
    徐颖.水稻白叶枯病菌(Xanthomonas oryzae pv. oryzae)对链霉素和噻枯唑抗药性监测和抗药性机制的研究[D].南京:南京农业大学,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700