用户名: 密码: 验证码:
微型Offner成像光谱仪和光谱数据处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
成像光谱技术是成像技术和光谱技术的结合,能够同时获取探测目标的空间信息和光谱信息,经过处理后可以转换得到包含二维空间信息和一维光谱信息的三维数据立方体,目前已被广泛应用于卫星遥感、林业、地质、海洋、医药、生产制造、生态学和军事等领域。
     本文基于国家高科技研究发展计划(863计划)“基于国产旋翼无人机的农业低空高光谱遥感技术”,提出了适用于惊细农业应用的成像光谱仪设计技术指标,介绍了微型Offner成像光谱仪系统和光谱仪数据信息系统,完成了仪器实验室测试和噪声分析改善工作,并开展了低空无人机遥感飞行实验。光谱仪结构包括前置光学系统、入射狭缝、Offner结构分光系统和图像采集传感器四个部分;配套了功能完善配套的数据信息系统,完成了成像光谱数据采集与处理的一系列功能,其中数抓采集和存储系统满足了传输速度高、海量数据和轻量化设计的要求;配合仪器推扫式工作原理,图像处理软件提供系统响应补偿、图像拼接、图像存储和图谱显示的功能,满足了仪器调试和不同使用条件下的需要。
     整体设计安装完成之后,在实验室内对微型Offner成像光谱仪进行了波长定标、辐射定标,以及光谱分辨率和空间分辨率的测试,并对Hg空心阴极元素灯光谱的空间分布进行了测量,结果证明光谱仪达到了设计要求。为了对光谱仪进行准确的噪声性能评估,采用一种普遍适用于色散型成像光谱仪的信噪比计算方法——等效电子法,得到了仪器的信噪比理论计算公式。微型Offner成像光谱仪内的噪声可以分为时域噪声和空域噪声,这两部分噪声是不相关,系统的总噪声功率等于两类噪声的均方和,详细分析了光谱仪的各噪声模型,对光谱仪图像传感器关键性能参数进行了测量,并通过积分球辐射定标实验验证了信噪比模型的可行性。通过成像光谱数据噪声改善,提升了仪器的噪声性能,结合实验结果给出改善前后的对比。
     文章最后介绍了微型Offner成像光谱仪低空无人机遥感实验的总体情况,依次给出了在旋翼无人机和固定翼无人机上获取的成像光潜数据结果,分析了飞行平台稳定性对光谱仪成像质量的影响;通过对比国内外高精度的位置和姿态测量系统,提出了获得高清晰光谱图像需要的改进方向。
The spectral imaging technology, by combining the imaging and spectroscopy technologies, can provide both spatial and spectral information of objects simultaneously. Through data processing, the acquired data can be constructed to a three-dimensional data cube which contains two-dimensional spatial information and one-dimensional spectral information. This technology has been widely used in satellite remote sensing, forestry, geology, oceanography, medicine, manufacturing, ecology and military, etc.
     In this paper, technical specifications for imaging spectrometer are figured out according to the application requirements of precision agriculture. Then a compact Offner imaging spectrometer and its information system is developed. The calibration, test, noise analysis, noise improvement and unmanned aerial vehicles remote sensing experiments are also performed. The imaging spectrometer consists of four parts: imaging optical system, entrance slit, Offner-type optical system with a convex grating and image sensor. The software is developed for spectrometer control, data acquisition and data processing. The data acquisition and storage software has the characteristics of high speed transmition and storage of massive data. Besides, the software provides the function of system response compensation, image stacking and display.
     After the Offner imaging spectrometer is finished the optical commissioning, its performance evaluation, wavelength calibration and radiometric calibration are performed in the laboratory. The results show that the spectrometer satisfies the design requirements. Then the spatial distribution of Hg hollow cathode lamp is measured. An equivalent electron method is applied in order to estimate the SNR precisely, and the theoretical SNR is obtained. Overall noise in the Offner imaging spectrometer consist of noise in the time domain and noise in the spatial domain, they are irrelevant to each other, the total noise powrer of system is equal to mean root of time domain noise and spatial domain noise. The various noise models are analyzed and the key parameters of image sensor are tested. The SNR calculation result is verified by the radiometric calibration experiment. The SNR can be improved by data denoise processing, which can be tested by experiment results.
     The spectrometer is tested by the unmanned aerial vehicles for remote sensing experiment. The results on the helicopter and fixed-wing UAV are given. The influence of stability of UAV to image quality is analyzed. The spectral image improvement for a clearer image is proposed.
引文
常威威,郭雷,刘坤2007. OMIS图像条带噪音消除方法研究[J].光子学报,36(11):2148-2152.
    陈秋林,薛永祺2000. OMIS成像光谱数据信噪比的估算[J].遥感学报,4(4):284-289.
    陈全胜,赵杰文,蔡建荣,等.2008.利用高光谱图像技术评判茶叶的质量等级[J].光学学报,28(4):669-674.
    崔博2007. CMOS图像传感器的噪声研究与抑制电路设计[D]:[硕士].武汉:华中科技大学.
    邓若汉,严奕,余金金,等2011. CMOS有源像素传感器像素级噪声的分析与抑制[J].激光与光电子学进展,48(5):44-48.
    董连凤.2007.高光谱影像预处理技术研究[D]:[硕士].西安:长安大学.
    黄元申,陈家璧.2007.凸面光栅Offner结构成像光谱仪的傅里叶分析[J].光学仪器,29(06):40-43.
    黄元申,陈南曙,张大伟,等.2008.一种凸面光栅Offner结构成像光谱仪的设计方法[J].仪器仪表学报,29(6):1236-1239.
    黄元申,倪争技,庄松林.2005.光栅成像光谱仪同心光学系统研究[J].光学仪器,27(6):38-42.
    蒋青松,王建宇.2003.实用型模块化成像光谱仪多光谱图像的信噪比估算及压缩方法研究[J].光学学报,23(11):1335-1340.
    姜小光,王长耀,王成.2001.成像光谱图像的噪声分析与消除方法研究——以北京顺义区成像光谱图像为例[J].干旱区地理,24(]):9-14.
    金锡哲,向阳,禹秉熙.2000.成像干涉光谱仪信噪比分析[J].遥感学报,4(3):194-196.
    刘成康,袁祥辉,张晓飞.2002CMOS读出电路中的噪声及抑制[J].半导体光电,23(3):170-173.
    刘银年,薛永祺,王建宇,等.2002.实用型模块化成像光谱仪[J].红外与毫米波学报,20(1):9-13.
    路威,余旭初,刘娟.2005.高光谱遥感数据自适应小波滤噪[J].信息工程大学学报,6(2):91-95.
    马玲,崔德琪,王瑞,等.2006.成像光谱技术的研究与发展[J].光学技术,32(z1):573-576.
    米本和也,等.2011CCD/CMOS图像传感器基础与应用[M].北京:科学出版社.
    孟楠,李自田,毛一斌.2008CMOS固定图形噪声分析及处理技术[J].科学技术与工程,8(20):5563-5566.
    裴志军,国澄明,姚素英,等2002. CMOS有源像素图像传感器的噪声控制技术[J].半导体光电,23(6):382-385.
    尚媛园,张伟功,宋宇,等2010. CMOS成像器件性能测试方法的研究[J].激光与光电子学进展,47(5):68-73.
    宋敏,郐新凯,郑亚茹.2005.CCD与CMOS图像传感器探测性能比较[J].半导体光电,26(1):5-9.
    苏俊英,舒宁.2008.一种基于非线性增益小波滤波的高光谱影像去噪技术研究[J].遥感技术与应用,23(4):434-439.
    孙蕾,谷德峰,罗建书.2009.高光谱遥感图像的小波去噪方法[J].光谱学与光谱分析,29(7):1954-1957.
    田庆久,郑兰芬,童庆禧.1998.基于遥感影像的大气辐射校正和反射率反演方法[J].应用气象学报,9(4):456-461.
    童庆禧.1995.电子光学遥感系统的过去、现在和未来[M].北京:科学出版社.
    佟亚军,吴刚,周全,等.2010Offner成像光谱仪的设计方法[J].光学学报,30(4):1148-1152.
    王换生,周坚华,武文斌.2009.小波分析在遥感图像处理中的应用[J].遥感信息,1:93-99.
    王纪华,王之杰,黄文江,等.2004.冬小麦冠层氮素的垂直分布及其光谱响应[J].遥感学报,8(4):309-316.
    王建宇.1990.成象光谱仪性能分析及设计[J1.系统工程与电子技术,6:8-15.
    王建宇,王跃明,李春来.2010.高光谱成像系统的噪声模型和对辐射灵敏度的影响[J].遥感学报,14(4):607-620.
    王柯,沈掌泉,王人潮.1999.植物营养胁迫与光谱特性[J].国土资源遥感,1:9-12.
    王丽霞,王慧,高军.2000.星载超光谱成像技术应用及现状分析[J].航天返回与遥感,21(1):40-47.
    王强.2006.航空高光谱遥感光谱域噪声滤波应用研究[D]:[博士].上海:华东师范大学.
    王强,束炯.2008.高光谱遥感图像光谱域去噪的小波变换方法[J].大气科学研究与应用,2:9-17.
    王栓平,朱俊,宗德春.2011.基于GPS/INS的高光谱影响几何粗校正[J].北京测绘,1:57-59.
    吴传庆,童庆禧,郑兰芬.2005.基于小波变换的高光谱图像消噪[J].遥感信息,4:10-12.
    徐蒙,冯旗,危峻.2006.遥感应用中短波红外探测器系统的信噪比计算[J].红外技术,28(10):588-590.
    薛庆生.2010.用于空间大气遥感的临边成像光谱仪研究[D]:[博士].长春:中国科学院研究生院长春光学精密机械与物理研究所.
    薛庆生,王淑荣,李福田,等.2010.临边成像光谱仪信噪比分析及实验研究[J].光谱学与光谱分析,30(6):1697-1701.
    薛永祺.1992.机载扫描成象系统的技术发展[J].红外与毫米波学报,11(3):169-]80.
    严奕,邓若汉,陈永平,等.2011.有源像素CMOS图像传感器非均匀性研究[J].科学技术与工程,11(15):3449-3455.
    殷世民,计忠瑛,崔燕,等.2010.傅里叶变换成像光谱仪CCD像元响应非均匀性校正[J].航天器工程,19(1):41-45.
    于磊,林冠宇,曲艺,等.2010.115~180nnm远紫外临边成像光谱仪信噪比分析与验证[J].光谱学与光谱分析,30(11):3156-3160.
    袁家虎.1998.受限于CCD光子噪声的探测能力分析[J].测试技术学报,12(3):71-75.
    袁家虎,高晓东.1998.CCD光电系统噪声受限的探测能力分析[J].数据采集与处理,13:79-82.
    原玉磊,邹亮,艾金鹏.2011.无光照条件下CMOS图像传感器噪声分析[J].测绘工程,20(4):31-34.
    禹秉熙.1991.单色仪的杂散光及其测量[J].计量学报,12(3):177-180.
    赵葆常,杨建峰,常凌颖,等.2009.嫦娥一号卫星成像光谱仪光学系统设计与在轨评估[J].光子学报,38(3):479-483.
    张兵.2002.时空信息辅助下的高光谱数据挖掘[D]:[博士].北京:中国科学院遥感应用研究所.
    赵春江,黄文江,王纪华.2002.不同品种、肥水条件下冬小麦光谱红边参数研究[J].中国农业科学,35(8):980-987.
    张淳民,相里斌,赵葆常,等.2000.干涉成像光谱仪技术的新发展[J].光学技术,26(3):232-234.
    张超,王人潮,赵春江,等.2006.山区高分辨率遥感影像地形辐射校正方法研究[J].浙江大学学报:农业与生命科学版,32(6):693-698.
    张军强,吴清文,颜昌翔.2010.星载超光谱成像仪杂散光及其测量[J].光谱学与光谱分析,30(10):2861-2865.
    郑玉权.2005.小型Offner光谱成像系统的设计[J].光学精密工程,13(06):650-657.
    郑玉权,禹秉熙.2002.成像光谱仪分光技术概览[J].遥感学报,6(1):75-80.
    周丹,王钦军,田庆久,等.2009.小波分析及其在高光谱噪声去除中的应用[J].光谱学与光谱分析,29(7):1941-1945.
    周启发,王人潮.1993.水稻氮素营养水平与光谱特征的关系[J].浙江农业大学学报,19(增刊):40-46.
    周全.2010.Offner田野成像光谱仪研制与图像处理[D]:[博士].合肥:中国科学技术大学,100-200.
    邹义平2009. CMOS图像传感器的图像降噪技术的研究[D]:[硕士].北京:北京邮电大学.
    Barducci A, De Cosmo V, Marcoionni P, et al.2004. ALISEO:a new stationary imaging interferometer[C]. SPIE,5546:262-270.
    Boardma, Joseph.1998. Post-ATREM polishing of AVIRIS apparent reflectance data using EFFORT:a lesson in accuracy versus precision [M]. Summaries of the Seventh Annual JPL Airborne Geoscience Workshop, Pasadena, CA.
    Boardman JW, Kruse FA.1997. Automated spectral analysis:a geological example using AVIRIS data, north Grapevine Mountains, Nevada[C]. Proceedings of the Tenth Thematic.
    Breckinridge J B.1996. Evolution of imaging spectrometer:Past, present and future[C]. SPIE, 2819:2-6.
    Brouk I, Nemirovsky A, Alameh K, et al.2010. Analysis of noise in CMOS image sensor based on a unified time-dependent approach[J]. SOLID-STATE ELECTRONICS,54(1):28-36.
    Chrisp M P.1999. Convex diffraction grating imaging spectrometer. U.S. Patent 5,880,834[P].
    Cocks T, Jenssen R, Stewart A, et al.1998. The HymapTM airborne hyperspectral sensor:the system, calibration and performance[M]. Proceeding of 1st Earsel Workshop on Imaging Spectroscopy,5:37-45.
    CURRAN PJ, DUNGAN JL.1989. Estimation of Signal-to-Noise:A New Procedure Applied to AVIRIS Data [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 27(5):620-628.
    Demarez V.1999. Seasonal variation of leaf chlorophyll content of a temperate forest[J]. Inversion of the PROSPECT model, International Journal of Remote Sensing,20(5):879-894,
    Elvidge C D, Chen Z, Groeneveld D P.1993. Detection of trace quantities of green vegetation in 1990 AVIRIS data[J]. Remote Sensing of Environment,44(2-3):271-279.
    Fisher J, Antoniades J, Rollins C, et al.1998. Hyperspectral imaging sensor for the coastal environment [C]. SPIE,3482:179-186.
    Fischer J, Vrba F, Toomey D, et al.2003. ASTROCAM:An Offner re-imaging 1024 x 1024 InSb camera for near-infrared astrometry on the USNO 1.55-m telescope [C]. SPIE,4841:564-577.
    Gao BC.1993. An operational method of estimating Signal-to-Noise ratios from data acquired with imaging spectrometers [J]. Remote Sensing Enviroment,43:23-33.
    Goets AFH, Rowan L C.1981. Geological remote sensing[J]. Science,211:781-791.
    Goss KC, Potter ME, Messier GG.2010. Signal-to-noise ratio performance for detection systems of quantum dot multiplexed optical encoding [C]. SPIE,7750:775023-1.
    Green AA, et al.1988. Transformation for Ordering Multispectral Data in Terms of Image Quality with Implications for Noise Removal[J]. IEEE Transactions on Geoscience and Remote Sensing,26(1):65-74.
    Green RO, Eastwood M L, Sarture C M, et al.1998. Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)[J]. Remote Sens. Environ.65,227-248.
    Green RO, Asner G, Ungar S, et al.2008. NASA Mission to Measure Global Plant Physiology and Functional Types[J]. IEEE AEROSPACE CONFERENCE,114-120.
    Harvey AR, Beale J, Greenaway AH, et al.2000. Technology options for imaging spectrometry[C]. SPIE,4132:13-24.
    Ji YQ, Shen WM.2008. Compact hyperspectral imaging system with a convex grating[C]. SPIE, 6834:Y8340.
    Johnson WR, Wilson DW, Bearman G.2005. All-reflective snapshot hyperspectral imager for ultraviolet and infrared applications [J]. Opt. Lett.,30(12):1464-1466.
    Johnson WR, Wilson DW, Diaz A.2010. Short wave infrared imaging spectrometer with simultaneous thermal imaging[C]. SPIE,7812 781202-1.
    Kaiser S, Sang B, Schubert J, et al.2008. Compact prism spectrometer of pushbroom type for hyperspectral imaging[C]. SPIE,7100:10014.
    Kim YS, Cho G, Bae JH.2006. Analysis of noise characteristics for the active pixels in CMOS image sensors for X-ray imaging [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A,565(1):263-267.
    Korsch D.1991. Reflective Optics [M]. Academic Press.
    Kwo D, Lawrence G, Chrisp M.1987. Design of a grating spectrometer from a 1:1 Offner mirror system [C]. SPIE,818:275-279.
    Lobb DR.1997. Imaging spectrometers using concentric optics[J]. SPIE,3118:339-347.
    Mouroulis P.1998. Low-distortion imaging spectrometer designs utilizing convex gratings [C]. SPIE,3482:594-601.
    Mouroulis P, Wilson DW, Maker PD, et al.1998. Convex grating type for concentric imaging spectrometer [J]. Appl. Opt.,37(31):7200-7208.
    Mouroulis P, Sellar R G, Wilson D W, et al.2007. Optical design of a compact imaging spectrometer for planetary mineralogy[J]. Opt. Eng.46(6),063001.
    Murchie S, Arvidson R, Beisser K, et al.2007. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO)[J]. Journal of Geophysical Research, 112, E05S03.
    Nieke J, Solbrig M, Neumann A.1999. Noise contributions for imaging spectrometers [J]. APPLIED OPTICS,38(24):5191-5194.
    Offner A.1973. Unit power imaging catoptric anastigmat. U.S. Patent 3,748,015[P].
    Othman H, Shen-En Q.2006. Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage [J]. Geoscience and Remote Sensing, IEEE Transactions on,44(2):397-408.
    Curran P J, Dungan J L.1989. Estimation of Signal-to-Noise:A New Procedure Applied to AVIRIS Data [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 27(5):620-628.
    Prieto-Blanco X, Montero-Orille C, Couce B, et al.2006. Analytical design of an Offner imaging spectrometer [J]. Opt. Express,14(20):9156-9168.
    Reininger FM, Coradini A, Capaccioni F, et al.1996. VIRTIS:visible infrared thermal imaging spectrometer for the Rosetta mission[C]. SPIE,2819:66-77.
    Robert L.Lucke.2007. Out-of-plane dispersion in an Offner spectrometer[J]. Optical Engineering, 46(7):073004.
    Rolands N, Neville RA, Powell IP.1994. Short-wave infrared (SWIR) imaging spectrometer for remote sensing[C]. SPIE,2269:237-247.
    Roger RE, Arnold JF.1996. Reliably estimating the noise in AVIRIS hyperspectral images [J]. International Journal of Remote Sensing,17(10):1951-1962.
    Rosenkranz P W, Staelin D H.1993. Atmospheric infrared sounder[M]. Massachusetts Inst. of Tech. Report, vol.1.
    Reiniger FM.2000. Imaging spectrometer/camera having convex grating. U.S. Patent 6,100,974[P].
    Schumann LW, Lomheim TS.2000. Infrared hyperspectral imaging Fourier transform and dispersive spectrometer:comparison of signal-to-noise based performance[C]. SPIE, 4480,1-11.
    Simi C, Winter E, Williams M, et al.2001. Compact airborne spectral sensor (COMPSS) [C]. SPIE,4382:129-136.
    Smith W H, Philip D H.1996. Digital array scanned interferometer:sensors and results[J]. App. Opt,35(16)2902-2909,
    Tian H, Fowler B, Gamal A F.2001. Analysis of temporal noise in CMOS photodiode active pixel sensor[J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS,36(1):92-101.
    Yang B, Liu CL, Ding X, et al.2010. Blaze Wavelength of Convex Blazed Grating in An Offner Spectrometer [C]. SPIE,7655 76550B-2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700