用户名: 密码: 验证码:
生活垃圾堆肥过程污染气体减排与管理的生命周期评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究针对目前我国生活垃圾源头不分类,管理方式不清晰,造成末端处理处置难度大和资源浪费的问题,从工厂和区域两个尺度对生活垃圾处理技术和管理方式进行优化研究。工厂尺度上,研究厨余垃圾堆肥过程中典型污染气体的减排技术,包括调节堆肥工艺参数、添加膨松剂、化学添加剂等,最大限度的减少堆肥过程中的污染物输出。区域尺度上,以北京市东西城南部为目标区域,进行不同生活垃圾管理情景的全过程生命周期评价,提出生活垃圾最优管理方案。研究结果表明:
     (1)不同C/N比(15、20、25)、含水率(60%、65%、70%)、通风率(0.2、0.4、0.6L·kg-1DM-min-1)的厨余垃圾和玉米秸秆混合堆肥,通风率与CH4的产生速率之间呈负相关关系,与N20和NH3的产生量呈正相关关系;C/N比与CH4和NH3的排放量呈负相关关系,但并未发现C/N比对N20排放量有显著影响;含水率对CH4, N2O、NH3的排放无显著影响;厨余垃圾与玉米秸秆联合堆肥的最优方案为通风率0.4L·kgDM-1·min-1、C/N比25、含水率60%。
     (2)厨余垃圾和玉米秸秆混合堆肥,间歇通风处理CH4和NH3累积产生量比连续通风处理分别减排23.5%和21.5%(每吨干物质),但在N20的减排上连续通风比间歇通风有略微的优势,每吨干物质减排6.5%。
     (3)10%堆肥物料湿重的腐熟堆肥覆盖在堆体表面和与物料混匀,与对照处理相比,二者每吨干物质分别减少36.2%和44.8%的CH4排放;N20的累积排放量分别减少37.7%和73.6%,腐熟堆肥覆盖处理的NH3排放与对照处理并无明显差异,而腐熟堆肥混匀处理的NH3排放比对照处理明显降低22.2%(每吨干物质)。
     (4)5%初始干重磷石膏和过磷酸钙的添加使CH4累积排放量比对照处理分别降低了85.8%和80.5%,NH3累积排放量分别降低23.5%和18.9%,但N20累计排放量分别增加了3.2%和14.8%(每吨干物质)。
     (5)厨余垃圾堆肥中添加物料初始湿重15%的玉米秸秆、锯末和菌糠作为膨松剂,与对照处理相比,CH4累积排放量分别减少59.2%、55.0%和66.6%,N20累积排放量分别减少46.7%、73.1%和44.7%,NH3排放分别减少30.9%、40.5%和41.5%(每吨干物质);三者渗滤液减排量均为100%。CH4和NH3的累积排放量与菌糠添加比例呈负相关关系,但添加35%质量比的菌糠会明显增加N20排放;只有添加质量比为15%的菌糠能够同时减少CH4、N2O和NH3排放,减排量分别为60.6%、29.0%和14.8%。
     (6)不同生活垃圾管理情景生命周期评价结果表明:生活垃圾源头大类粗分模式,可明显降低生活垃圾管理系统中的总环境影响潜势,在此基础上,采用厨余垃圾堆肥典型污染气体减排技术措施,可进一步降低系统的温室效应潜势。
In most places of China, municipal solid waste (MSW) was processed with unsource-separation system and fuzziness management model at presetent, resulting in difficulty to the end-processing and waste recycling. In view of the situation, this study investigated the optimizing technology and management of MSW based on factory and region scales. On factory scale, the reduction technologies of typical pollution gases during kitchen waste composting were studied, including technological parameters controlling, addition of bulking agents and chemical additives, etc.; On region scale, the sourth region of Dongcheng and Xicheng Districts of Beijing was taken as the object. Five scenarios were builded and estimated using Life Cycle Assessment (LCA) based on the current situation. The results could provide an optimal MSW management scheme to the decision makers or government. Results of this study showed that:
     (1) In the co-composting of kitchen waste and cornstalks with different C/N ratio (15,20,25), moisture content (60%,65%,70%) and ventilation rate (0.2,0.4,0.6L·kg-1DM·min-1). Ventilation rate was negatively correlated with CH4emissions, and positively correlated with N2O and NH3emissions; the C/N ratio had a negative correlation with CH4and NH3emissions. However, the significant relation between C/N ratio and N2O emissions was not found. The significant relationshiop between moisture content and gaseous emissions was also not found in this study. Composting with ventilation rate of0.4L·kg-1DM·min-1, C/N ratio of25and moisture content of60%had a minimum greenhouse gas (GHG).
     (2) In the co-composting system of kitchen waste and cornstalks, treatment of intermittent ventilation (between on and off every30min) decreased CH4and NH3emissions by23.5%and21.5%, compared with continuous ventilation. However, the continuous ventilation had a slight advantage on decreasing N2O emissions (by6.5%, per ton dry matter).
     (3) Treatments of mature compost (weighed10%of composting materials, wet basis) covered on the surface of composting pile and mixed with composting materials, could decreased CH4emissions by36.2%and44.8%respectively, compared with CK treatment; N2O emissions decreased by37.7%and73.6%respectively. Mixed treatment decreased NH3emissions by22.2%(per ton dry matter), while NH3emissions from covered treatment showed no significant difference with CK treatment.
     (4) Adding phosphogypsum and superphosphate with5%of initial materials (dry basis) decreased CH4by85.8%and80.5%, NH3by23.5%and28.9%, while N2O increased by3.2%and14.8%(per ton dry matter).
     (5) Addition of cornstalks, saw dust and spent mushromm substrate as composting bulking agents, which weighed15%of initial composting materials (wet basis), could decrease CH4emissions by59.2%,55.0%and66.6%respectively, compared with CK treatment; N2O emissions decreased by46.7%,73.1%and44.7%; NH3missions decreased by30.9%,40.5%and41.5%(per ton dry matter); All of the three kinds of bulking agents could avoid leachate production during composting completely. The CH4and NH3emissions were negatively correlated with the adding proportions of spent mushromm substrate,35%SMS addition could increase N2O emissions obviouly; while only the treatment with15%of spent mushromm substrate decreased CH4, N2O and NH3simultaneously by60.6%,29.0%and14.8%(per ton dry matter), compared with CK treatment.
     (6) Life cycle assessment results of different MSW management scenarios indicated that the source-seperation system decreased the comprehensive environmental potential. Furthermore, adopting mtigation technologies of typical gaseous emissions during composting decreased the Global Warming Potential.
引文
Abichou T, Mahieu K, Yuan L, et al. Effects of compost biocovers on gas flow and methane oxidation in a landfill cover[J]. Waste Management,2009,29(5):1595-1601.
    Andersen J K, Boldrin A, Christensen T H, et al. Mass balances and life cycle inventory of home composting of organic waste[J]. Waste Management,2011,31:1934-1942.
    Barlaz M A, Green R B, Chanton J P, et al. Evaluation of a biologically active cover for mitigation of landfill gas emissions[J]. Environmental Science and Technology,2004,38(18):4891-4899.
    Beck-Friis B, Pell M, Sonesson U, et al. Formation and emission of N2O and CH4 from compost heaps of organic household waster[J]. Environmental Monitoring and Assessment,2000,62:317-331.
    Beck-Friis B, Smars S, Jonsson H, et al. Gaseous emissions of carbon dioxide, ammonia and nitrous oxide from organic household waste in a compost reactor under different temperature regimes[J]. Journal of Agricultural Engineering Research,2001,78(4):423-430.
    Bijaya K A, Barrington S, Martinez J, et al. Effectiveness of three bulking agents for food waste composting[J]. Waste Management,2009,29:197-203.
    Borjesson G, Chanton J, Svensson B H. Methane oxidation in two Swedish landfill covers measured with carbon-13 to carbon-12 isotope ratios[J]. Journal of Environmental Quality,2001,30(2): 369-376.
    Burnett W C, Schultz M K, Hull C D. Radionuclide flow during the conversion of phosphogypsum to ammonium sulfate[J]. Journal of Environmental Radioactivity,1996,32(1-2):33-51.
    Buttol P, Masoni P, Bonoli A, et al. LCA of integrated MSW management systems:Case study of the Bologna District[J]. Waste Management,2007,27:1059-1070.
    Chang J I, Chen Y J. Effects of bulking agents on food waste composting[J]. Bioresource Technology, 2010,101:5717-5924.
    Chanton J, Liptay K. Seasonal variation in methane oxidation in a landfill cover soil as determined by an in situ stable isotope technique[J]. Global Biogeochemical Cycles,2000,14(1):51-60.
    Clift R, Doig A, Finnveden G. The application of life cycle assessment to integrated waste management: Part 1-Methodology[J]. Process Safety and Environmental Protection,2000,78(4):279-287.
    Consoli F, Allen D, Boustead I, et al. Guidelines for life cycle assessment:A code of practice[M]. Pensacola:Society of Environmental Toxicology and Chemistry (SETAC),1993:1-3.
    Dong S S, Tong K W, Wu Y P. Municipal solid waste management in China:using commercial management to solve a growing problem[J]. Utilities Policy,2001,10:7-11.
    Dong S C, Qu H M. Study on resources potentiality and industrialization policy on urban consumer waste[J]. Resource Science,2001,23:13-16.
    Doublet J, Francou C, Poitrenaud M, et al. Influence of bulking agents on organic matter evolution during sewage sludge composting; consequences on compost organic matter stability and N availability[J]. Bioresource Technology,2011,102:1298-1307.
    Dunfield P, Knowles R, Dumont R, et al. Methane production and consumption in temperate and subarctic peat soils:response to temperature and pH[J]. Soil Biology and Biochemistry,1993, 25(3):321-326.
    Eklind Y, Kirchmann H. Composting and storage of organic household waste with different litter amendments, Ⅱ:Nitrogen turnover and losses[J]. Bioresource Technology,2000,74:25-133.
    Ekvall T, Assefa G, Bjorklund A, et al. What life cycle assessment does and does not do in assessments of waste management[J]. Waste Management,2007,27(8):989-996.
    Elango D, Thinakaran N, Panneerselvam P, et al. Thermophilic composting of municipal solid waste[J]. Applied Energy,2009,85:663-668.
    El Kader N A, Robin P, Paillat J M., et al. Turning, compacting and the addition of water as factors affecting gaseous emissions in farm manure composting[J]. Bioresource Technology,2007,98(14): 2619-2628.
    Elwell D L, Hong J H, Keener H M. Composting hog manure/sawdust mixtures using intermittent and continuous aeration:Ammonia emissions[J]. Compost Science & Utilization,2002,10(2): 142-149.
    Feo G D., Malvano C. The use of LCA in selecting the best MSW management system[J]. Waste Management,2009,29(6):1901-1915.
    Finnrden G. Product life cycle assessment:Principles and methodology[M]. Copenhagen:Nordic Council of Ministers,1992:263-280.
    Fukumoto Y, Osada T, Hanajima D, et al. Patterns and quantities of NH3, N2O and CH4 emissions during swine manure composting without forced aeration-effect of compost pile scale[J]. Bioresource Technology,2003,89:109-114.
    Fukumoto Y, Suzuki K, Osada T, et al. Reduction of nitrous oxide emission from pig manure composting by addition of nitrite-oxidizing bacteria[J]. Environmental Science & Technology, 2006,40(21):6787-6791.
    Gabhane J, Prince William S P M, Bidyadhar R, et al. Additives aided composting of green waste: Effects on organic matter degradation, compost maturity, and quality of the finished compost[J]. Bioresource Technology,2012,114:382-388.
    Gallastegui G, Munoz R, Barona A, et al. Evaluating the impact of water supply strategies on p-xylene biodegradation performance in an organic media-based biofilter[J]. Journal of Hazardous Materials, 2011,185:1019-1026.
    Garg P, Gupta A, Satya S. Vermicomposting of different types of waste using Eisenia foetida:A comparative study[J]. Bioresource Technology,2006,97:391-395.
    Gea T, Barrena R, Artola A, et al. Optimal bulking agent particle size and usage for heat retention and disinfection in domestic wastewater sludge composting[J]. Waste Management,2007,9: 1108-1116.
    Guo R, Li G X, Jiang T, et al. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost[J]. Bioresource Technology,2012,112:171-178.
    Hao X Y, Chang C, Larney F J, et al. Greenhouse gas emissions during cattle feedlot manure composting[J]. Journal of Environmental Quality,2001,30(2):376-386.
    Hao X Y, Chang C, Larney F J. Carbon, nitrogen balances and greenhouse gas emission during cattle feedlot manure composting[J]. Journal of Environmental Quality,2004,33(1):37-44.
    Hao X Y, Larney F J, Chang C, et al. The effect of phosphogypsum on greenhouse gas emissions during cattle manure composting[J]. Journal of Environmental Quality,2005,34(3):774-781.
    Haug R T. The Practical Handbook of Compost Engineering[M]. Lewis Publishers, Boca Raton, Florida, USA,1993.
    Hellebrand H J. Emission of nitrous oxide and other trace gases during composting of grass and green waste[J]. Journal of Agricultural Engineering Research,1998,69:365-375.
    He Y W, Inamori Y, Mizuochi M, et al. Nitrous oxide emissions from aerated composting of organic waste[J]. Environmental Science & Technology,2001,35(11):2347-2351.
    Hu T J, Zeng G M, Huang D L, et al. Use of potassium dihydrogen phosphate and sawdust as adsorbents of ammoniacal nitrogen in aerobic composting process[J]. Journal of Hazardous Materials,2007,141(3):736-744.
    Huang G F, Wong J W C, Wu Q T, et al. Effect of C/N on composting of pig manure with sawdust[J]. Waste Management,2004,24(8):805-813.
    Huijbregts M A J., Thissen U, Jager T D, et al. Priority assessment of toxic substances in life cycle assessment. Part 2:Assessing parameter uncertainty and human variability in the calculation of toxicity potential[J]. Chemosphere,2002,12(41):575-588.
    Hutsch B W, Webster C P, Powlson D S. Methane oxidation in soil as affected by land use, soil pH and N fertilizeation[J]. Soil Biology and Biochemistry,1994,26:1613-1622.
    Hwang J W., Jang S J, Lee E Y, et al. Evaluation of composts as biofilter packing material for treatment of gaseous p-xylene[J]. Biochemical Engineering Journal,2007,35:142-149.
    IPCC Core Writing Team, Pachauri R K, Reisinger A. Contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In:IPCC (Ed.), Climate Change 2007. Switzerland, Geneva, p.104.
    Iqbal M K, Shafiq T, Ahmed K. Characterization of bulking agents and its effects on physical properties of compost[J]. Bioresource Technology,2010,6:1913-1919.
    Jiang T, Schuchardt F, Li G X, et al. Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting[J]. Journal of Environmental Sciences,2011, 23(10):1754-1760.
    Jiang T, Schuchardt F, Li G X, et al. Gaseous emission during the composting of pig feces from Chinese Ganqinfen system[J]. Chemosphere,2013,90:1545-1551.
    Jolliet O, Muller-Wenk R, Nare J, et al. The LCIA midpoint damage framework of the UNEP/SETAC life cycle initiative[J]. The International of Life Cycle Assessment,2004,9(6):394-404.
    Kato K, Miura N. Effect of matured compost as a bulking and inoculating agent on the microbial community and maturity of manure compost[J]. Bioresource Technology,2008,99:3372-3380.
    Keener H M, Elwell D L, Ekinci K, et al. Composting and value-added utilization of manure from a swine finishing facility[J]. Compost Science & Utilization,2001,9:312-321.
    Kithome M, Paul J W, Bomke A A. Reducing nitrogen losses during simulated composting of poultry manure using adsorbents or chemical amendments[J]. Journal of Environmental Quality,1999, 28(1):194-201.
    Kuroda K, Osada T, Yonaga M, et al. Emissions of malodorous compounds and greenhouse gases from composting swine feces[J]. Bioresource Technology,1996,56:265-271.
    Lay J J, Fan K S, Chang J, et al. Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-ahock digested sludge[J]. International Journal of Hydrogen Energy,2003, 28(12):1361-1367.
    Lee J E, Rahman M M, Ra C S. Dose effects of Mg and PO4 sources on the composting of swine manure[J]. Journal of Hazardous Materials,2009,169(1/2/3):801-807.
    Liamsanguan C, Gheewala S H. LCA:A decision support tool for environmental assessment of MSW management systems[J]. Journal of Environmental Management,2008,87,132-138.
    Liang Y, Leonard J J, Feddes J R. A simulation model of ammonia volatilization in composting[J]. American Society of Agricultural Engineers,2004,47(5):1667-1680..
    Lopez M, Soliva M, Martinez F X, et al. Evaluation of MSW organic fraction for composting:separate collection or mechanical sorting[J]. Resources, Conservation and Recycling,2010,54(4):222-228.
    Lopez-Real J, Baptista M. A preliminary comparative study of three manure composting systems and their influence on process parameters and methane emissions[J]. Compost Science & Utilization, 1996,4(3):71-82.
    Luo Y M, Li G X, Luo W H, et al. Effect of phosphogypsum and dicyandiamide as additives on NH3, N2O and CH4 emissions during composting[J]. Journal of Environmental Science,2013,25(7): 1338-1345.
    Maeda K, Morioka R, Osada T. Effect of covering composting piles with mature compost on ammonia emission and microbial community structure of composting process[J]. Journal of Environmental Quality,2009,38:598-606.
    Maestre J P, Gamisans X, Gabriel D, et al. Fungal biofilters for toluene biofiltration:evaluation of the performance with four packing materials under different operating conditions[J]. Chemosphere, 2007,67:684-692.
    Magalhaes A M T, Shea P J, Jawson M D, et al. Practical simulation of composting in the laboratory [J]. Waste Management and Resource,1993,11:143-154.
    Manios T, Maniadakis K, Boutzakis P, et al. Methane and carbon dioxide emission in a two-phase olive oil mill sludge windrow pile during composting[J]. Waste Management,2007,27:1092-1098.
    Martinez B J, Colon J, Gabarrell X, et al. The use of life cycle assessment for the comparison of biowaste composting at home and full scale[J]. Waste Management,2010,30(6):983-994.
    Maso M, Blasi A. Evaluation of composting as a strategy for managing organic wastes from a municipal market in Nicaragua[J]. Bioresource Technology,2008,99:5120-5124.
    Mathot M, Thelier-Huche L, Lambert R. Sulphur and nitrogen content as sulphur deficiency indicator for grasses[J]. European Journal of Agronomy,2009,30:172-176.
    Mato S, Orto D, Garcia M. Composting of< 100 mm fraction of municipal solid waste[J]. Waste Management and Resource,1994,12:315-325.
    Mohin T J. Environmental management handbook[A]. London:PITMAN Publishing,1994:33-324.
    Mor S, De Visscher A, Ravindra K, et al. Induction of enhanced methane oxidation in compost: Temperature and moisture response[J]. Waste Management,2006,26(4):381-388.
    Morand P, Peres G, Robin P, et al. Gases emissions from composting bark/manure mixtures[J]. Compost Science and Utilization,2005,13:14-16.
    Neyla S, Soulwene K, Fadhel M, et al. Microbiological parameters and maturity degree during composting of Posidonia oceanica residues mixed with vegetable wastes in semi-arid pedo-climatic condition[J]. Journal of Environmental Science,2009,21(10):1452-1458.
    Osada T, Sommer S G, Dahl P, et al. Gaseous emission and changes in nutrient composition during deep litter composting[J]. Acta Agriculturae Scandinavica:Section B, Soil and Plant Science,2001, 51(3/4):137-142.
    Pagans E, Barrena R, Font X, et al. Ammonia emissions from the composting of different organic wastes. Dependency on process temperature[J]. Chemosphere,2006,62(9):1534-1542.
    Pennock D, Yates T, Bedard-Haughn A, et al. Landscape controls on N2O and CH4 emissions from freshwater mineral soil wetlands of the Canadian Prairie Pothole region[J]. Geoderma,2010,155: 308-319.
    Petersen S O, Sommer S G. Ammonia and nitrous oxide interactions:Roles of manure organic matter management[J]. Animal Feed Science and Technology,2011,166/167(23):503-513.
    Philippe F X, Laitat M, Nicks B, et al. Ammonia and greenhouse gas emissions during the fattening of pigs kept on two types of straw floor[J]. Agriculture, Ecosystems & Environment,2012,150: 45-53.
    Poth M, Focht D D. N-15 kinetic-analysis of N2O production by nitrosomonas-europaea—an examination of nitrifier denitrification[J]. Applied and Environmental Microbiology,1985, (49): 1134-1141.
    Predotova M, Schlecht E, Buerkert A. Nitrogen and carbon losses from dung storage in urban gardens of Niamey, Niger[J]. Nutrient Cycling in Agroecosystems,2010,87(1):103-114.
    Rabl A, Benoist A, Dron D, et al. How to account for CO2 emissions from biomass in an LCA[J]. The International Journal of Life Cycle Assessment,2007,12(5):281.
    Raviv M, Medina S, Krasnovsky A, et al. Organic matter and nitrogen conservation in manure compost for organic agriculture[J]. Compost Science and Utilization,2004,12(1):6-10.
    Raut M P, Prince William S P M, Bhattacharyya J K, et al. Microbial dynamics and enzyme activities during rapid composting of municipal solid waste-A compost maturity analysis perspective[J]. Bioresource Technology,2008,99(14):6512-6519.
    Razza F, Fieschi M, Innocenti F D, et al. Compostable cutlery and waste management:An LCA approach[J]. Waste Management,2009,29(4):1424-1433.
    Rives J, Rieradevall J, Gabarrell X. LCA comparison of container systems in municipal solid waste management[J]. Waste Management,2010,30:949-957.
    Roca-Perez L, Martinez C, Marcilla P, et al. Composting rice straw with sewage sludge and compost effects on the soil-plant system[J]. Chemosphere,2009,75:781-787.
    Scheutz C, Pedersen G B, Costa G, et al. Biodegradation of methane and halocarbons in simulated landfill biocover systems containing compost materials[J]. Journal of Environmental Quality,2009, 38(4):1363-1371.
    Segers R. Methane production and methane consumption:a review of processes underlying wetland methane fluxes[J]. Biogeochemistry,1998,41:23-51.
    Shiraishi M, Wakimoto N, Takimoto E, et al. Measurement and regulation of environmentally hazardous gas emissions from beef cattle manure composting[J]. International Congress Series, 2006,1293:303-306.
    Smith F H. Nitrogen losses from composts[J]. Science,1924,59:213-214.
    Sommer S G, Moller H B. Emission of greenhouse gases during composting of deep litter from pig production-effect of straw content[J]. Journal of Agricultural Science,2000,134(5):327-335.
    Sossa K, Alarcon M, Aspe E, et al. Effect of ammonia on the methanogenic activity of methylaminotrophic methane producing Archaea enriched biofilm[J]. Anaerobe,2004,10:13-18.
    Stams A J M, Plugge C M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea[J]. Nature Reviews Microbiology,2009,7:568-577.
    Stevens R J, Laughlin R J. Measurement of nitrous oxide and denitrogen emissions from agriculture soils[J]. Nutrient Cycling in Agroecosystems,1998,52:131-139.
    Szanto G L, Hamelers H M, Rulkens W H, et al. NH3, N2O and CH4 emissions during passively aerated composting of straw-rich pig manure[J]. Bioresource Technology,2007,98(14):2659-2670.
    Takai Y. The mechanism of methane formation in flooded paddy soil [J]. Soil Science and Plant Nutrition,1970,16:238-241.
    Tamura T, Osada T. Effect of moisture control in pile-type composting of dairy manure by adding wheat straw on greenhouse gas emission[J]. International Congress Series,2006,1293:311-314.
    Tanthachoon N, Chiemchaisri C, Chiemchaisri W, et al. Methane oxidation in compost-based landfill cover with vegetation during wet and dry conditions in the tropics[J]. Journal of the Air&Waste Management Association,2008,58(5):603-612.
    Thomas R, Ida S, Ame F. The Presence of penicillum and Penicillum Mycotoxins in Food waste[J]. International Journal of Food Micro-biology,2004, (90):181-188.
    Thompson A, Wagner-Riddle C, Fleming R. Emissions of N2O and CH4 during the composting of liquid swine manure[J]. Environmental Monitoring and Assessment,2004,91(1-3):87-104.
    Torkashvand A M. Improvement of compost quality by addition of some amendment[J]. Australian Journal of Crop Science,2010,4(4):252-257.
    Tukker A. Uncertainty in life Cycle Assessment of Toxic Release. Practical Experience-Argument for a Reductionalistic Approach[J]. International Journal of Life Cycle Assessment,2005,3(5): 246-258.
    Wang H T, Nie Y F. Municipal solid waste characteristics and management in China[J]. Journal of the Air and Waste Management Association,2001,51:251-272.
    Wei Z, Xi B, Zhao Y, et al. Effect of inoculating microbes in municipal solid waste composting on characteristics of humic acid[J]. Chemosphere,2007,68(2):368-374.
    Wittmaier M, Langer S, Sawilla B. Possibilities and limitations of life cycle assessment (LCA) in the development of waste utilization systems-Applied examples for a region in Northern Germany [J]. Waste Management,2009,29:1732-1738.
    Wolter M, Prayitno S, Schuchardt F. Greenhouse gas emission during storage of pig manure on a pilot scale[J]. Bioresource Technology,2004,95(3):235-244.
    Yamulki S. Effect of straw addition on nitrous oxide and methane emissions from stored farmyard manures[J]. Agriculture Ecosystems & Environment,2006,112(2-3):140-145.
    Yang F, Li G X, Yang Q Y, et al. Effect of bulking agents on maturity and gaseous emissions during kitchen waste composting[J]. Chemosphere,2013,93:1393-1399.
    Yanez R, Alonso J L, Diaz M J. Influence of bulking agent on sewage sludge composting process[J]. Bioresource Technology,2009,100:5827-5833.
    Yu H, Huang G H. Effects of sodium acetate as a pH control amendment on the composting of food waste[J]. Bioresource Technology,2009,100:2005-2011.
    Zeman C, Depken D, Rich M. Research on how the composting process impacts greenhouse gas emissions and global warming[J]. Compost Science and Utilization,2002,10(1):72-86.
    Zhao W, Voet E V D, Zhang Y F. Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions:Case study of Tianjin, China[J]. Science of the Total Environment,2009,407:1517-1526.
    陈广银,王德汉,吴艳,等.不同时期添加蘑菇渣对落叶堆肥过程的影响[J].环境化学,2008,27(1):81-86.
    陈金钟,邬苏焕,宋兴福.泔脚与秸杆混合发酵法生产蛋白饲料的新工艺流程[J].上海环境科学,2003,22(12):998-1000.
    崔亚伟,陈金发.厨余垃圾的资源化现状及前景展望[J].中国资源综合利用,2006,10:31-32.
    董锁成,曲鸿敏.城市生活垃圾资源潜力与产业化对策[J].资源科学,2001,23(2):13-16.
    冯磊,Raninger B,李润东,等.不同质量比的膨松剂对家庭生物有机垃圾堆肥的影响[J].环境污染与防治,2007,29(10):731-734.
    高顺枝,罗兴章,郑正,等.城市生活垃圾分类思考[J].环境卫生工程,2009,17(1):5-6,11.
    郭瑞.基于碳素来源的堆肥系统温室气体排放规律及其平衡分析[D].北京:中国农业大学,2010.
    何德文,陆雍森,张益.城市生活垃圾管理生命周期分析研究[J].污染防治技术,2001,14(4):7-10.
    贺琪,李国学,张亚宁,等.高温堆肥过程中的氮素损失及其变化规律[J].农业环境科学学报,2005,24(1):169-173.
    黄江丽,王泽,王伟.用生命周期评价北京市城市垃圾处理工艺[J].能源环境保护,2004,18(4):59-62.
    贾子利,郭建斌,吴玉晴,等.北京市生活垃圾管理现状分析研究[J].上海环境科学,2011,30(3):130-133.
    江滔.堆肥化过程中温室气体产生机理及减排技术研究[D].北京:中国农业大学,2009.
    江滔,Schuchardt F.,李国学.冬季堆肥中翻堆和覆盖对温室气体和氨气排放的影响[J].农业工程学报,2011,27(10):212-217.
    李冰,王昌全,江连强,等.化学改良剂对稻草猪粪堆肥氨气释放规律及其腐熟进程的影响[J].农业环境科学学报,2008,27(4):1653-1661.
    李春萍,李国学,李玉春,等.北京南宫静态堆肥隧道仓不同区间的垃圾堆肥腐熟度模糊评价[J].农业工程学报,2007,23(2):201-106.
    李国学,张福锁.固体废物堆肥化与有机复混肥生产[M].北京:化学工业出版社,2000.
    李娜,王根绪,张建强,等.成都市城市生活垃圾处理生命周期评价[J].安徽农业科学,2009,37(2):789-791.
    李小卉.餐厨垃圾的危害及综合治理对策[J].研究与探讨,2006,(11):24-25.
    李秀芬,赵阳,堵国成,等.微量金属元素及其配合物对厨余垃圾甲烷发酵的影响[J].环境工程学报,2009,3(3):521-524.
    梁政,杨勇华,樊洪,等.厨余垃圾处理技术及综合利用研究[J].中国资源综合利用,2004,(8):36-38.
    廖利.城市垃圾清运处理设施规划[R].北京:科学出版社,1999.
    林小凤,李国学,任丽梅,等.氯化铁和过磷酸钙控制堆肥氮素损失的效果研究[J].农业环境科学学报,2008,27(4):1662-1666.
    刘京媛,徐海云.我国城市生活垃圾分类收集与收费方式探讨[J].环境卫生工程,2004,12(1):23-27.
    刘涛,黄志甲.生命周期清单不确定性分析的主要数据选择[J].安徽工业大学学报:自然科学版,2006,23(1):91-95.
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000,322-324.
    罗燕,乔玉辉,吴文良.生命周期评价方法在农业中的应用[J].产业观察,2010,2:152-155.
    罗仁才,张莹.德国城市生活垃圾分类方法研究[J].中国资源综合利用,2008,26(7):29-31.
    马诗院,马建华.我国城市生活垃圾分类收集现状及对策[J].环境卫生工程,2007,15(1):12-14.
    莫华,张天柱.生命周期清单分析的数据质量评价[J].环境科学研究,2003,16(5):55-58.
    牛海林.用LCA方式评估城市“白色垃圾”的处置[J].环境工程,2001,19(1):51-52.
    潘丽爱,张贵林,石晶,等.餐厨垃圾特性的试验研究[J].粮油加工,2009,(9):154-156.
    裴成虎.北京城市生活垃圾管理对策探讨[J].城市管理与科技,2003,5(2):47-50.
    秦莉,沈玉君,李国学,等.不同C/N比对堆肥腐熟度和含氮气体排放变化的影响[J].农业环境科学学报,2009,28(12):2668-2673.
    任丽梅.堆肥过程中的氮素损失控制及其优质堆肥形成的机理研究[D].北京:中国农业大学,2009.
    邵蕾.厨余垃圾家庭好氧生物处理研究[D].湖北,武汉:华中科技大学,2012.
    沈玉君,李国学,任丽梅,等.不同通风速率对堆肥腐熟度和含氮气体排放的影响[J].农业环境科学学报,2010,29(9):1814-1819.
    孙振钧.蚯蚓反应器与废弃物肥料化技术[M].北京:化学工业出版社,2004,35-38.
    陶华,陶如林.生命周期评价在中国城市垃圾减量化的应用[J].环境科学研究,1998,11(3):44-48.
    王海瑞,王华.城市生活垃圾直接气化熔融焚烧过程控制[M].北京:冶金工业出版社,2008,88-92.
    王建忠,王颖.利用菌糠生产有机肥的可行性分析[J].安徽农业科学,2010,38(5):2568-2570.
    汪春霞.有机固体废弃物厌氧消化与综合利用[J].中国资源综合利用,2006,24(7):25-28.
    温俊明,吴俊锋.中国城市生活垃圾特性及焚烧处理现状[J].上海电气技术,2009,2(1):43-48.
    邬苏焕,宋兴福,刘够生,等.双菌固态发酵处理餐厨垃圾[J].食品与发酵工业,2004,30(5):63-68.
    吴银宝,汪植三,廖新悌,等.猪粪堆肥臭气产生与调控的研究[J].农业工程学报,2001,17(5):82-87.
    肖玲.中国城市生活垃圾管理模式探讨[J].干旱区资源与环境,2003,.17(3):65-69.
    肖俏毅,陈松.加拿大城市生活垃圾分类经验对我国的启示[q.城市规划和科学发展-2009中国城市规划年会论文集.北京:中国城市规划学会,2009:4347-4352.
    谢芳a.客居纽约谈环保—纽约市城市垃圾管理[J].生态环境与保护,1999,6:5458.
    谢芳b.新加坡城市垃圾管理面面观[J].城市问题,1999,3:5355.
    解强,边炳鑫,赵由才.城市固体废弃物能源化利用技术[M].北京:化学工业出版社,2004,19-21.
    徐栋,沈东升,冯华军.厨余垃圾的特性及处理技术研究进展[J].科技通报,2011,27(1):130-135.
    薛祖源.国外若干城市垃圾的处理现状和动向[J].现代化工,2003,23(5):57-59.
    严太龙,石英.国内外厨余垃圾现状及处理技术[J].城市管理与科技,2004,6(4):165-166.
    杨建新,王如松.生命周期评价的回顾与展望[J].环境科学进展,1998,6(2):21-27.
    杨建新,王如松,刘晶茹.中国产品生命周期影响评价方法研究[J].环境科学学报,2001,21(2):234-237.
    杨延梅,杨志峰,张相锋,等.底物含氮量对厨余堆肥氮素转化及其损失的影响研究[J].环境科学学报,2007,27(6):993-999.
    袁玉玉,曹先艳,牛冬杰,等.餐厨垃圾特征及处理技术[J].环境卫生工程,2006,14(6):46-49.
    翟胜,高宝玉,王巨嫒,等.农田土壤温室气体产生机制及影响因素研究进展[J].生态环境,2008,17(6):2488-2493.
    张红玉.基于堆肥、焚烧和填埋的北京南城生活垃圾处理优化方案研究[D].北京:中国农业大学,2009.
    张小平.固体废物污染控制工程[M].北京:化学工业出版社,2004:61-62.
    张振华,汪华林,胥培军,等.厨余垃圾的现状及其处理技术综述[J].再生资源研究,2007,(5):31-34.
    赵辉,陈郁.环境管理工具:生命周期清单分析方法[J].环境保护,2005,(1):26-29.
    赵由才.生活垃圾资源化原理和技术[M].北京:化学工业出版社,2002:358-368.
    赵振焕,金春姬,张鹏,等.酵母菌对厨余垃圾厌氧发酵产乙酸的影响[J].环境工程学报,2009,3(10):1885-1888.
    郑元,张天柱.不确定数据条件下的生命周期评价及其应用[J].重庆环境科学,2003,25(6):18-20.
    中华人民共和国统计局,城市市容环境卫生.[2012]. http://www.stats.gov.cn/#
    周翠红,路迈西,吴文伟,等.北京市城市生活垃圾产量预测[J].中国矿业大学学报,2003,32(2):169-172.
    邹德勋,汪群慧,隋克俭,等.餐厨垃圾与菌糠混合好氧堆肥效果[J].农业工程学报,2009,25(11):269-273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700