用户名: 密码: 验证码:
餐厨废弃物厌氧发酵特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们生活水平的提高,我国餐厨废弃物的产量日益增加。大量的餐厨废弃物如果得不到及时有效地处理就会对生态环境及人类健康造成严重的影响。厌氧发酵技术处理餐厨废弃物既能获得生物质能源沼气又能减轻其造成的环境污染,是解决我国能源紧缺和环境污染问题的有效的手段。目前国内外学者已经开展了针对餐厨废弃物厌氧发酵的研究,根据以往研究,餐厨废弃厌氧发酵有机负荷一般不能超过3kgVS· m-3· d-1,有机负荷过高会导致发酵失败。这是由于餐厨废弃物易降解有机质含量高,发酵时酸化速度快,在发酵过程中难以实现酸碱平衡而导致酸败。有机负荷的制约致使厌氧发酵反应器的容积利用率低,无法实现餐厨废弃物的稳定高效产甲烷,因此,探讨提高餐厨废弃厌氧发酵有机负荷的工艺途径,对提高反应器的容积利用率具有重要意义。
     为了获得提高餐厨废弃物厌氧发酵有机负荷的工艺路线,本研究首先深入研究了餐厨废弃物中三大主要有机成分淀粉、蛋白质和脂肪单独厌氧发酵特性及其产甲烷潜力,并在此基础上采用混料试验设计探讨有机成分组成对产气性能的影响,并确定适宜的有机成分配比;其次针对餐厨废弃物厌氧发酵过程中容易酸化,反应器难以顺利启动的问题,以单因素试验结果为基础,通过响应曲面法考察接种比例、浓度和温度影响因子对餐厨废弃物厌氧发酵启动过程的交互作用,优化其工艺参数并确定启动条件;再次为了实现对餐厨废弃物的连续稳定产甲烷,以提高厌氧发酵反应器利用效率为目标,在考察半连续式单相厌氧发酵时有机负荷对餐厨废弃物厌氧发酵过程中产酸和产甲烷的影响规律基础上,确定了采用两相污泥回流工艺处理餐厨废弃物,实现了产酸相丁酸型定向酸化,同时产甲烷相中的碱度和微生物的数量显著增加,大大提高了厌氧发酵处理餐厨废弃物的效率。本文主要研究内容及成果如下:
     (1)研究发现以餐厨废弃物为原料进行厌氧发酵时,其三种主要成分脂肪、淀粉、蛋白质的比例影响发酵过程的进行,比例不当时,会受到长链脂肪酸、挥发性脂肪酸和氨氮的不同程度抑制。当三种有机成分比例适当时,可以发生协同促进作用,有效避免中间代谢产物的抑制,从而可适当提高有机负荷。经优化得最优混合配比为脂肪:淀粉:蛋白质等于36:30:33,此时VS产甲烷率、VS降解率分别为451.36和79.62%。实际的餐厨废弃物蛋白质含量偏低、淀粉的含量偏高,为了实现餐厨废弃物高负荷厌氧发酵,应采取与含氮量较高的原料混合发酵。与最优混合比例相比,实际的餐厨废弃物蛋白质含量偏低、淀粉的含量偏高。
     (2)餐厨废弃物厌氧发酵过程中容易产乳酸,乳酸菌主要是餐厨废弃物自身携带。乳酸在厌氧发酵过程中降解率最高,主要转化为乙酸和丙酸,两者的比例接近1:3。乳酸负荷在1Ommol· L-1· d-1的运行条件下发酵30d后厌氧体系也出现了缓冲能力不足的现象,其根源是乳酸降解后所产丙酸在厌氧体系内不能及时转化造成累积,因此应尽量避免丙酸和乳酸进入到厌氧体系。
     (3)餐厨废弃物厌氧发酵启动试验研究结果。在接种比例小于50:50,体系pH在5.5以下,厌氧体系酸化;当接种比例大于50:50,体系pH维持在7.0以上时,产气状态良好,甲烷含量能达到60%。应用响应曲面法中的Box-Behnken设计,以回归模型为基础,对原料浓度、温度和接种率水平组合进行多目标优化,最终确定最优的工艺参数如下:原料浓度为5%、温度为35℃、接种率为65%。在最优条件下,经试验验证得到了与预测值相吻合的结果,VS产甲烷率、VS降解率平均值分别为469.87mL/g和81.95%。
     (4)在批式启动试验的基础上,探讨单相厌氧发酵时有机负荷对厌氧发酵各阶段间的平衡影响。当有机负荷小于4kg·m-3·d-1时,体系以产甲烷发酵为主。当有机负荷大于4kgVS· m-3·d-1时,厌氧体系主要以产酸发酵为主。pH小于5.5时为乙酸型发酵,pH在5.0左右为丁酸型发酵,pH在4.5以下为乳酸型发酵。
     (5)两相污泥回流发酵系统延长了污泥停留时间,所能承受的有机负荷为7.36kgVS·m-3·d-1;此负荷下平均VS甲烷产率为399.95mL·g-1。厌氧体系内的挥发性固体浓度和所能承受的有机负荷之间存在指数函数关系,关系式为y=1.61e0.23x(相关系数R2=0.99187,P<0.0001),其中x代表有机负荷、y代表挥发性固体浓度。由此推断湿法发酵所能承受的最大有机负荷为8kgVS·m-3·d-1。
In China, with the improvement of people's living standard, the output of food wastes is increasing day by day. The ecological environment and human health would be badly affected if the massive food wastes couldn't be treated timely and effectively. Using anaerobic fermentation technology to treat food waste, can not only obtain biogas but also alleviate environmental pollution, so, it is effective to solve the problem of energy shortage and environmental pollution. Currently, lots of studies on anaerobic fermentation technology of food wastes have been completed. The present researches indicate that anaerobic digestion of food wastes will soon be prone to acidification because of its easy degradability and higher content of organic matter. The inhibition of acidification on fermentation may be reduced to some extent by the method of adding chemical reagent to adjust pH to be neutral. However, the cost and ion concentration of biogas slurry would be enhanced, and it is not conducive to the further utilization of digestion residue. In addition, this way is limited to improve contribution of reactor's organic loading, the capacity utilization is still very low, and it is unable to achieve sTablele and efficient production of methane with food wastes.
     In order to obtain the process of improving efficiency of food wastes anaerobic digestion, a large number of experiments have been conducted in this research. First, single fermentation characteristics and methanogenesis potential of starch, protein and fat were investigated, and then the influence of organic ingredients on gas yield property was determined using mixture design experiments, thus the suiTablele ratio of organic compounds was ascertained. Second, on the basis of single factor results, the interaction of inoculation proportion, concentration and temperature on initiating process of food wastes anaerobic fermentation was explored with response surface method, the process parameters was optimized and initiating condition was confirmed in the meantime, this experiment was to solve the problems that food waste was easily going to acidification in the process of anaerobic digestion and the reactor's initiating was difficult. Third, for the sake of realizing continuous and sTablele methane yield, and also with the purpose of boosting the utilization ratio of anaerobic fermentation reactor, the effect rule of organic loading on production of acid and methane was explored in the process of anaerobic digestion with food waste using semi-continuous single-phase anaerobic fermentation. On this basis, two-phase sludge return process was adopted to treat food waste, this made butyrate type directional acidification of acidification phase come to be true, meanwhile, alkalinity and the number of microorganism of methanogenesis phase raised significantly, and the efficiency of anaerobic fermentation for treating food waste was greatly improved. The main research contents and achievements are as follow:
     (1) The study result indicated that while food waste was used as anaerobic digestion material, fermentation process would be affected by the mixing ratio of fat, starch and protein. It was inhibited in different degree by long-chain fatty acid, volatile fatty acid and ammonia nitrogen when the ratio was unsuiTablele. While the ratio was appropriate, the inhibition of intermediate meTableolites could be avoided effectively on account of the synergistic effect, and then the organic loading was boosted appropriately. The optimum mixing ration was as follow:fat:starch:protein was36:30:33, the corresponding maximum biochemical methane potential and VS degradation ration were451.36and79.62%, respectively. The protein content of actual food waste was a little lower, but the starch content was higher, therefore, in order to enhanced the organic loading, mixing fermentation of food waste and high nitrogen content material should be put to use. Comparing with the optimum mixing ratio, the protein content of actual food waste was lower and the starch content was high.
     (2) Lactic acid was easily generated in the process of anaerobic digestion with food waste, the lactic acid bacteria was mainly carried by food waste. The degradation ration of lactic acid was highest, lactic acid mainly converted into acetic acid and propionic acid, and both ratio was close to1:3. Under the condition that the lactic acid loading was10mmol·L-1·d-1, the phenomenon of insufficient buffer ability appeared in the anaerobic system after30days of fermentation, the cause was that propionic acid could not be conversed timely and caused accumulation which was yield after the degradation of lactic acid, accordingly, propionic acid and lactic acid should be prevented to go into anaerobic system.
     (3) The result of initiating experiment of anaerobic fermentation with food waste manifested that anaerobic system would turn into acidification while inoculation ratio was less than50:50and pH was lower than5.5. Conversely, when inoculation ratio was more than50:50and pH was higher than7.0, gas yield situation was in good condition and methane content could reach60%. Multi-objective optimization of level combination of material concentration, temperature and inoculation ratio was conducted using Box-Behnken design method and on the basis of regression model, and the optimum process parameters were determined as follow:material concentration, temperature and inoculation ratio were5%,35℃and65%, respectively. Under optimum condition, the result of verification test which was consistent with predicted value was obtained, that was the average values of VS methane yield ration and VS degradation ratio were469.87mL/g and81.95%, respectively.
     (4) On the basis of batch initiating experiment, the effect of organic loading of single-phase anaerobic fermentation on the balance of each stage of anaerobic digestion was explored. Result showed that while organic loading was less than4kg·m-3·d-1, methanogenesis fermentation was the main characteristic for anaerobic system, on the contrary, acidification fermentation was the main characteristic. When pH was less than5.5, the fermentation characteristic of anaerobic system was acetic acid type, When pH was5.0, it was butyrate acid type, and When pH was lower than5.0, it was butyrate acid type lactic acid type.
     (5) The sludge retention time of two-phase sludge return fermentation system was extended, the organic loading that system could sustain was7.36kgVS·m-3·d-1, under this organic loading the average VS methane yield ration was399.95mL·g-1. There was exponential function relationship between VS concentration and organic loading that system could sustain, and the expression was y=1.61e023x (correlation coefficient R2=0.99187, P<0.0001). Where x represented organic loading and y represented VS concentration. So, it could be concluded that the maximum organic loading that wet fermentation could sustain was8kgVS·m-3·d-1.
引文
[1]张存胜.厌氧发酵技术处理餐厨垃圾[D].北京:北京化工大学,2013.
    [2]宋安东.可再生能源的微生物转化技术[M].北京:科学出版社,2009.
    [3]王庆峰.厌氧发酵体系内小分子底物调控的研究[D].北京:北京化工大学,2013.
    [4]钱小青.泔脚废物厌氧两相发酵工艺及其矿化垃圾协同生物产氢过程研究[D].上海:同济大学环境,2006.
    [5]孙娜,李志东,李娜,等.炼油厂剩余污泥中温与高温厌氧消化对比实验[J].装备环境工程,2008,5(2):16-20.
    [6]刁治民,高晓杰,熊亚.畜禽粪便微生物处理及资源化工程的研究[J].青海草业,2004,13(1):13-17.
    [7]周孟津,蔺金印,张定友.畜禽粪便沼气工程技术进步与存在问题[J].阳光能源,2010,(3):45-46.
    [8]贾传兴.有机垃圾两相厌氧消化中氮素转化特性的试验研究[D].重庆:重庆大学,2007.
    [9]赵云飞.餐厨垃圾与污泥高固体浓度厌氧发酵产沼气研究[D].无锡:江南大学,2012.
    [10]刘爽,李文哲.猪粪与马铃薯皮渣混合厌氧发酵产氢特性[J].农业工程学报,2012,28(16):197-202.
    [11]王晋.厌氧发酵产酸微生物种群生态及互营关系研究[D].无锡:江南大学,2013.
    [12]张放.混合菌群厌氧发酵的代谢模型及其过程控制[D].合肥:中国科学技术大学,2013.
    [13]李洪欣,宁永胜.我国的能源形势与和平发展战略[J].改革与战略,2009,25(191):44-46.
    [14]乔玮,曾光明,袁兴中等.厌氧消化处理城市垃圾多因素研究[J].环境科学与技术,2004,(2):102-105.
    [15]王暾.油脂和盐分对餐厨垃圾单级厌氧消化影响的试验研究[D].重庆:重庆大学,2008.
    [16]何曼妮.不同温度对餐厨垃圾酸化及其产物甲烷化的影响研究[D].北京:北京化工大学,2013.
    [17]刘国治,尤宇嘉.中国餐厨垃圾厌氧处理工艺难点[J].中国沼气,2011,29(6):33-34,50.
    [18]林云琴,武书彬,梁嘉晋.预处理对造纸污泥和餐厨垃圾混合发酵的影响[J].华南理工大学学报(自然科学版),2012,40(5):71-75,83.
    [19]丛利泽.餐厨垃圾的微生物处理与资源化的初步研究[D].厦门:厦门大学,2007.
    [20]吴阳春.餐厨垃圾废水中温厌氧消化试验研究[D].长沙:湖南大学,2011.
    [21]余真,罗文邃.中国环境科学学会学术年会论文集[C].北京:[出版者不详],2013
    [22]马磊,王德汉,王梦男,等.矿物材料预处理对餐厨垃圾高温厌氧消化过程的影响[J].环境科学学报,2008,28(11):2277-2283.
    [23]中华人民共和国社会科学院.中国城市发展报告(2012)[M].北京:社会科学文献出版社出版,2012.
    [24]李东伟,王克浩,李斗,等.两相厌氧消化的研究现状及展望[J].水处理技术,2007:1-6.
    [25]高艳娇,赵树立,刘舰.两相厌氧工艺的研究进展[J].工业安全与环保,2006:24-26.
    [26]中华人民共和国国家统计局.中国统计年鉴2012[M].北京:中国统计出版社,2013.
    [27]饶玲华.餐厨垃圾厌氧发酵产沼气规律研究[D].长沙:湖南大学,2011.
    [28]刘晓英.餐厨垃圾特性及厌氧消化产沼性能研究[D].北京:北京化工大学,2010.
    [29]王巧玲.餐厨垃圾厌氧发酵过程的影响因素研究[D].南京:南京大学,2012.
    [30]中国畜牧业年鉴编辑委员会.中国畜牧业年鉴2011[M].北京:中国农业出版社,2012.
    [31]胡理乐,李亮,李俊生.生物质能源的特点及其环境效应[J].能源与环境,2012:47-48.
    [32]邹德勋.以菌糠为调理剂的餐厨垃圾好氧堆肥技术及其机制研究[D].哈尔滨:哈尔滨工业大学,2010.
    [33]杨久满.以猪粪为接种物的餐厨垃圾中温厌氧试验研究[D].成都:西南交通大学,2009.
    [34]楚莉莉.沼气高效厌氧发酵的条件及产气效应研究[D].杨凌:西北农林科技大学,2011.
    [35]张田,卜美东,耿维.中国畜禽粪便污染现状及产沼气潜力[J].生态学杂志,2012,31(5):1241-1249.
    [36]李永峰.发酵产氢新菌种及纯培养生物制氢工艺研究[D].哈尔滨:哈尔滨工业大学,2005.
    [37]何志刚,牛世伟,于涛.低温条件下牛粪沼气产甲烷菌多样性初步研究[J].中国农学通报,2012:189-193.
    [38]周洪波,陈坚,赵由才,等.长链脂肪酸对厌氧颗粒污泥产甲烷毒性研究[J].水处理技术,2002:93-97.
    [39]林明.高效产氢发酵新菌种的产氢机理及生态学研究[D].哈尔滨:哈尔滨工业大学,2002.
    [40]杨渤京,王洪涛,陆文静,等.填埋条件下单组分垃圾厌氧降解特性研究[J].清华大学学报(自然科学版),2008,48(9):65-68.
    [41]赵云飞,刘晓玲,李十中,等.餐厨垃圾与污泥高固体联合厌氧产沼气的特性[J].农业工程学报,2011,27(10):255-260.
    [42]欧阳文翔.餐厨垃圾与脱水污泥联合厌氧消化产甲烷实验研究[D].大连:大连理工大学,2013.
    [43]常国璋.餐饮废弃物沼气发酵特性研究[D].杨凌:西北农林大学,2012.
    [44]刘晓玲.城市污泥联合发酵产酸条件优化及其机理研究[D].无锡:江南大学,2008.
    [45]程备久.生物质能学[M].北京:化学工业出版社,2008.
    [46]骆海平,吴胜旭,徐勇,等.采用混料设计优化保健型餐桌代糖的配方研究[J].现代食品科技,2012,28(3):316-318.
    [47]任南琪,王爱杰,马放.产酸发酵微生物生理生态学[M].北京:科学出版社,2005.
    [48]李东,袁振宏,张宇,等.城市生活有机垃圾各组分的厌氧消化产甲烷能力[J].环境科 学学报,2008,28(11):2284-2290.
    [49]J. J. Lay, Y. Y. Li, T. Noike, et al. Analysis of environmental factors affecting methane production from high-solids organic waste[J]. Water Science and Technology, 1997,36 (6-7):493-500.
    [50]边炳鑫,赵由才,康文泽.农业固体废物的处理与综合利用[M].北京:化学工业出版社,2005.
    [51]李东,孙永明,袁振宏,等.有机垃圾组分中温厌氧消化产甲烷动力学研究[J].太阳能学报,2010,31(3):387-390.
    [52]周中仁,吴文良.生物质能研究现状及展望[J].农业工程学报,2005,21(12):12-15.
    [53]石元春.决胜生物质[M].北京:中国农业大学出版社,2010.
    [54]任南琪,王爱杰等.厌氧生物技术原理与应用[M].北京:化学工业出版社,2004.
    [55]焦秀梅,刘月敏,马华继.温度对蔬菜废弃物厌氧发酵的影响[J].农业环境与发展,2013,3:82-85.
    [56]李荣平,葛亚军,王奎升,等.餐厨垃圾特性及其厌氧消化性能研究[J].可再生能源,2010,28(1):76-80.
    [57]杨义飞.高含固率城市污泥厌氧消化工艺研究[D].济南:山东建筑大学,2013.
    [58]鞠茂伟.混合垃圾机械生物预处理燃烧和填埋特性研究[D].大连:大连理工大学,2012.
    [59]周俊虎,戚峰,程军,等.不同来源污泥对稻草发酵产氢影响的研究[J].浙江大学学报(工学版),2007,41(5):761-764.
    [60]周孟津,张榕林,蔺金印.沼气实用技术[M].北京:化学工业出版社,2004.
    [61]杨懂艳.生物与化学预处理对玉米秸秆生物气产量的影响研究[D].北京:北京化工大学,2004.
    [62]罗立娜,李文哲,徐名汉,等.预处理方式对稻秸厌氧发酵产气特性的影响[J].农业机械学报,2012,43(11):152-156.
    [63]李金平,柏建华,李珍.不同恒温条件厌氧发酵的沼气成分研究[J].中国沼气,2010,28(6):20-23,55.
    [64]袁振宏,吴创之,马隆龙,等.生物质能利用原理与技术[M].北京:化学工业出版社,2004.
    [65]张克强,高怀友.畜禽养殖业污染物处理与处置[M].北京:化学工业出版社,2004.
    [66]K.J.CHAE, AM JANG, S.K.YIM, IN S.KIM.The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure[J].Bioresource Technology,2008, (99):1-6.
    [67]王忠江.牛粪高浓度厌氧水解酸化工艺及特性研究[D].哈尔滨:东北农业大学,2007.
    [68]陈嘉翔,余家莺.植物纤维化学结构的研究方法[M].广州:华南理工大学出版社,1989.
    [69]姜虎,李文哲,刘建禹,等.城市餐厨垃圾资源化利用的问题和对策[J].环境科学与管理,2010,35(6):27-31.
    [70]张颖,王晓辉.农业固体废弃物资源化利用[M].北京:化学工业出版社,2005.
    [71]LIU D W, MIN B, I A. Biohydrogen production from house hold solid waste (HSW) at extreme-thermophilic temperature (70℃):Influence of pH and acetate concentration [J]. International Journal of Hydrogen Energy,2008,33:6985-6992.
    [72]LIN C Y, CHANG R C. Hydrogen production during the ananerobic acidogenic conversion of glucose[J]. Journal of Chemical Technology and Biotechnology,1999,74:498-500.
    [73]MOHAN S V, BHASKAR Y V, KRISHNA P M. Biohydrogen production from chemical wastewater as substrate by selectively enriched anaerobic mixed consortia:influence of fermentation pH and substrate composition [J]. International Journal of Hydrogen Energy, 2007,32:2286-2295.
    [74]GUO W Q, REN N Q, WANG X J. Optimization of culture conditions for hydrogen production by Ethanoligenens harbinense B49 using response surface methodology[J]. Bioresource Technology,2009,100:1192-1196.
    [75]VAN GINKEL S, SUNG S H, LAY J J. Biohydrogen Production as a Function of pH and Substrate Concentration[J]. Environmental Science and Technology,2001,35:4726-4730.
    [76]AGUILAR M A R, FDEZ-GUELFO L A, ALVAREZ-GALLEGO C J, et al. Effect of HRT on hydrogen production and organic matter solubilization in acidogenic anaerobic digestion of OFMSW[J]. Chemical Engineering Journal,2013,219:443-449.
    [77]TAGUCHI F, MIZUKAMI N, TAKI T S. Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. Strain No.2[J]. Canadian Journal of Microbiology,1995,41:536-540.
    [78]XING D F, REN N Q, LI Q B. Ethanoligenens harbinensegen. nov., sp. Nov., isolated from molasses wastewater[J]. International Journal of Systematic and Evolutionary Microbiology,2006,56,755-760.
    [79]CASTRO-VILLALOBOS M C, GARCIA-MORALES J L, FERNANDEZ F J. By-products inhibition effects on bio-hydrogen production[J]. International Journal of Hydrogen Energy, 2012,37:7077-7083.
    [80]KOTSOPOULOS T A. Biohydrogen production from pig slurry in a CSTR reactor system with mixed cultures under hyper-thermophilic temperature (70℃) [J]. Biomass and Bioenergy,2009,33:1168-1174.
    [81]Tomas R, Ida S, Ame F. The presence of Penicillium and Penicillium mycotoxins in food using a singlescrew dry-extrusion process[J]. Bioresource Technology,1999,67 (3): 106-108.
    [82]Timothy R Kelley, Paul M Walker. Bacterial concentration reduction of food waste amended animal feed using a single-screw dry-extrusion process[J]. Bioresource Technology,1999 (67):247-253.
    [83]施昱,沈惠平,徐斌.食物垃圾的处理及其综合利用.粮食与饲料工业,2005,4(2):32-33.
    [84]邬苏焕,宋兴福,刘够生,等.双菌固态发酵处理餐厨垃圾[J].食品与发酵工业,2004,30(5):63-68.
    [85]孔永平,郑冀鲁.利用地沟油制备生物柴油技术的研究[J].化学工程与装备,2008,(4):25-28.
    [86]姚亚光,纪威,符太军,等.基于酸催化的餐饮业废弃物油脂与醇类酯化反应试验研究[J].中国农业大学学报,2006,11(3):113-116.
    [87]凡广生,李多松.两相厌氧消化工艺的研究进展及其应用[J].水科学与工程技术,2006:7-9.
    [88]李东,袁振宏,孙永明,等.生活有机垃圾厌氧发酵联产氢气和甲烷[J].农业工程学报,2009:59-63.
    [89]尹芳,胡觉,张无敌,等.紫茎泽兰产氢产甲烷联合发酵的研究[J].科学通报,2010: 3469-3476.
    [90]杨玉楠,陈亚松,杨敏.利用白腐菌生物预处理强化秸秆发酵产甲烷研究[J].农业环境科学学报,2007,26(5):1968-1972.
    [91]Bouallagui H. Haouari O, Touhami Y, et al. Effeet of temperature on the Performance of an anaerobic tubular reactor treating fruit and vegeTablele waste[J]. Process Biochem, 2004,39:2143-2148.
    [92]K. Komemoto, Y. GLim, N. Nagao, et al. Effect of temperature on VFA's and biogas production in anaerobic solubilization of food waste[J]. waste management,2009,29 (12):2950-2955.
    [93]李定龙,戴尚云,赵宋敏,等.pH对厨余垃圾厌氧发酵产酸的影响[J].环境科学与技术.2011,34(4):125-128.
    [94]Lay, J.-J., Y.-Y. Li, T. Noike. Influences of pH and moisture content on the methane production in high-solids sludge digestion[J]. Water Research,1997,31 (6): 1518-1524.
    [95]张波,何品晶,邵立明.pH和发酵时间对厨余垃圾发酵产乳酸及光学特性的影响[J].环境科学,2007,28-4.
    [96]刘广青,张瑞红,董仁杰.两相厌氧消化固体有机废弃物的水解酸化规律[J].中国农业大学学报,2007,12(1):73-76.
    [97]Pavan P. Battistoni P. Cecchi F, et al. Two-phase anaerobic digestion of source sorted OFMSW:performance and kinetic study[J]. Water Scinece and Technology.2000,41 (3): 111-118.
    [98]张光明,王伟.城市垃圾厌氧消化产酸阶段研究[J].中国沼气,1996,14(2):11-14.
    [99]班巧英,李建政,张立国,等.HRT对UASB运行效能及丙酸氧化菌群组成的影响[J].化工学报,2012,63(11):3673-3679.
    [100]李俊涛,钱小青,赵由才.泔脚的厌氧消化处理可行性研究[J].上海环境科学,2003,22(9):646-648.
    [101]王星,王德汉,徐菲.餐厨垃圾废水厌氧消化的工艺不选研究[J].能源工程,2005,.5(4):27-31.
    [102]徐剑波,张波,史红钻,等.ASBR法处理厨房垃圾的酸化研究[J].上海环境科学2004,23(1):23-25.
    [103]吴满昌,孙可伟,李如燕.有机生活垃圾高温干式厌氧处理技术[J].能源研究与信息,2005,21(4):187-191.
    [104]李荣平,刘研萍,李秀金.厨余和牛粪混合厌氧发酵产气性能试验研究[J].可再生能源,2008,26(2):64-67.
    [105]赵春芳,邝生鲁,奚强.以葡萄糖为基质的消化污泥厌氧发酵产氢气的研究[J].化学 工业与工程技术,2001,22(1):4-5.
    [106]金建祥,王世和,肖雪峰,等.传统厌氧消化工艺处理餐饮垃圾的试验研究[J].中国给水排水,2007,23(15):55-57.
    [107]徐晓辉,范晓蕾,郭荣波.固含率和稀释率对餐厨垃圾水解酸化过程的影响研究[J].环境工程学报.2009,3(2):335-339.
    [108]Ledakowicz S, Kaczarek K. Laboratory simulation of anaerobic digestion of municipal solid waste[J]. Solid Waste Management and Technologies for Developing Country.2002, 6 (2):39-46.
    [109]K. Komemoto, Y. G. Lim, N. Nagao. et alc. Effect of temperature on VFA's and biogas production in anaerobic solubilization of food waste[J]. waste management.2009, 29 (12):2950-2955.
    [110]Yeoung-Sang Yun, Jong Ik Park, Min Seok Suh, et al. Treatment of food wastes using slurry-phase decomposition[J]. Bioresource Technology,2000,73 (1):21-27.
    [111]T.Forster-Carneiro, M.Perez, L. I. Romero. Influence of total solid and inoculums contents on performance of anaerobic reactors treating food waste[J]. Bioresource Technology,2008,99 (15):6994-7002.
    [112]Yadvika, Santosh. Enhancement of biogas production from solid substrates using different techniques-a review[J]. Biores Technol,2004,95 (1):1-10.
    [113]Jae Kyong Cho, Soon Chul Park, Ho Nam chang. Biochemical methane potential and solid state anaerobic digestion of Korean food wastes[J]. Bioresource Technology,1995, 52:245-253.
    [114]Zhang Ruihong, Hamed M, Karl H, et al. Charaeterization of food waste as feed stock for anaerobic digestion[J]. Bioresouree Teehnolog,2007,98 (4):929-935.
    [115]W. Paravvlra, M. Murto, R. Zvauya, et al. Anaerobic batch digestion of solid potato waste alone and incombination with sugar beet leaves[J]. Renewable energy,2004,29: 1811-1823.
    [116]Min K S, Khan A R, Kwon M K, et al. Acidogenic fermentation of blended food waste in combination with primary sludge for the production of volatile fatty acids[J]. Journal of Chemical Technology and Biotechnology,2005,80:909-915.
    [117]国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].北京:环境科学出版社,1989.
    [118]楚莉莉,李轶冰,冯永忠,等.猪粪麦秆不同比例混合厌氧发酵特性试验[J].农业机械学报,2011,42:100-104.
    [119]刘丹.混合畜禽粪便厌氧发酵特性试验研究[D].哈尔滨:东北农业大学工程学院,2008.
    [120]潘云霞,潘云锋,李文哲.不同阶段沼液作发酵接种物对牛粪产气的影响[J].农机化研 究,2005,(1):202-204.
    [121]LI, L.H., LI, D., SUN, Y.M., et al.Effect of temperture and solid concentration on anaerobic digestion of rice straw in South China[J].International Journal of Hydrogen Energy,2010,35:7261-7266.
    [122]熊杰,袁海荣,王奎升,等.餐厨垃圾两相厌氧消化特性试验研究[J].环境科学与技术,2012:25-29.
    [123]曹先艳,赵由才,袁玉玉,等.氨氮对餐厨垃圾厌氧发酵产氢的影响[J].太阳能学报,2008:751-755.
    [124]李来庆,李秀金,郑明霞,等.番茄废物半连续式厌氧消化试验及动力学模型研究[J].中国沼气,2009:18-20,39.
    [125]万伟,王建龙.利用动力学模型探讨底物浓度对生物产氢的影响[J].中国科学(B辑:化学),2008:715-720.
    [126]BAGHCHEHSARAEE B, NAKHLA G, KARAMANEV D, et al. Effect of extrinsic lactic acid on fermentative hydrogen production[J]. International Journal of Hydrogen Energy,2009,34:2573-2579.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700