海岸带沉水植被丰度年际变化及影响因子研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沉水植被(Submerged Aquatic Vegetation)是一类植物体全部生长于水层下面的水生植物,为大型水生、草本类植物。沉水植被为水生生物提供了生存的环境;对于抑制生物性和非生物性悬浮物质、改善水下光照条件、溶解氧和净化水质等具有重要的作用,是健康河口是否退化的一个重要的指示器。流域的经济社会发展可以改变河口的物种多样性、改变水生生态系统中的食物网结构以及底栖生物群落组成结构。海岸带污染源主要通过影响河口水质来影响沉水植被丰度,一些因子对海岸带沉水植被丰度的影响主要通过河口特征来实现的。
     本文通过对北美切斯比克海湾99个河口海岸带1984-2009年间沉水植被丰度的年际变化和主要影响因子(流域土地利用类型、盐度分区、降雨年份、平均波浪高度、沉积物和沉水植被平均生长深度等)进行分析,得到如下结果:
     1、在建设用地影响下,沉水植被的丰度整体上呈现上升趋势,2002年丰度值达到顶峰,约为2.4%,2009年下降到1.6%。在农业用地影响下,沉水植被丰度的年际间呈现上升与下降的波动变化。在林地和混合用地影响下,沉水植被丰度于1984-1998年呈现上升趋势,1998-2009年出现上升与下降交替的现象。
     2、1984-2009年间,不同盐度区沉水植被丰度呈现在波动中整体上升的趋势。其中:淡水区从0%上升到2.0%,在1999-2000年间出现较大的下降现象(从1.6%下降到0.4%);低盐度地区于1984-2001年呈现上升趋势(从0.2%上升到3.1%),2001-2009年出现小范围下降(从3.1%下降到1.8%);中盐度区1984-1998年呈现逐渐上升趋势(由0%上升到1.7%),2003-2009年丰度值逐渐降低(从2.0%下降到0.7%);高盐度区沉水植被丰度值整体较高,1984-1998年间从1.1%上升到1.8%,2002-2003年呈现大的降低(从2.0%下降到0.6%),2007-2009年又逐渐上升(从0.6%上升到1.3%)。
     3、三种降雨年份分区对沉水植被丰度无规律性影响。
     4、沉水植被丰度与平均波浪高度呈极显著正相关关系(r=0.306,p=0.002)、与河口宽度呈极显著正相关关系(r=0.442,p=0.001)、与海岸线分形维度呈微弱正相关关系(r=0.290,p=0.004)、与潮汐也呈微弱正相关关系(r=0.272,p=0.007)。
     5、分类回归树模型分析表明,各因子对沉水植被丰度的影响大小依次为流域与河口面比、海岸线分形维度、盐度和平均波浪高度,共可解释沉水植被丰度空间变异的63%。
Submerged aquatic vegetation(SAV)consists of a taxonomically diverse groupof plants that lives entirely beneath the water surface. SAV provides habitat andsupplies food for aquatic life, absorbs excess nutrients, and helps purify the water.Since the1960s, SAV coverage has experienced dramatic decline worldwide due toserious deterioration of water quality in coastal ecosystems.
     In recent years, landscape analyses have been used to predict direct or indirecteffects of geographic characteristics on aquatic organisms. In this study, we analyzedthe inter-annual change and effects of influence factors on the spatial variation of SAVabundance based on the long-term dataset (2004-2009) from99sub-estuaries andtheir linked coastal sub-watersheds of the Chesapeake Bay in the United States.Coastal watershed land use is an important factor influencing inputs of nutrient andsediment to its associated sub-estuary, and thus indirectly affects SAV abundance. Ourresults showed that:
     (1)SAV abundance generally arises in1984-2002in developed land, peaked at2.4%in2002, but drops to1.6%in2009. The inter-annual variation of SAV abundance inagricultural land turns on the trend of increasing from0.1-0.9%in1984-2002, andfluctuated up and down in2002-2009. SAV abundance in mixed land rise from0.6%to2.0%in1984-1998, and fluctuated up and down in1998-2009. The inter-annualvariation pattern of SAV abundance in forested land is similar to mixed land,increasing in1984-1998and fluctuated in1998-2009.
     (2)SAV abundance in different salinity shows an trend of increasing in the overallwith fluctuations in1984-2009.The trend of inter-annual variation of SAV abundancein tidal fresh goes up from0to2.0%in1984-2009; SAV abundance drops greatlyfrom1.6%to0.4%between1999and2000. The trend in mesohaline goes up from0.2%to3.1%in1984-2001, declining weatly from3.1%to1.8%in2001-2009. Thetrend in oligohaline gose up from0to1.7%in1984-1998, declines to0.6%in2001, then declines from2.0%to0.7%in2003-2009. The SAV abundance of polyhalineis generally high in1984-1998,which is different from areas of other salinity, arisingfrom1.1to1.8; it drops from2.0%to0.6%in2002-2003, and then goes up from0.6%to1.3%.
     (3)The three types of rainfall years have no regularity partition on the abundance ofsubmerged aquatic vegetation.
     (4)SAV abundance have significantly positive correlations with average waveheight(r=0.306,p=0.002), SAV abundance increases as the average wave heightincrease; SAV abundance have significantly positive correlations with mouth width(r=0.442,p=0.001), SAV abundance increases as the mouth width increase; SAVabundance have weak positive correlations with fractal demension(r=0.290,p=0.004),SAV abundance increases as the fractal demension increase; SAV abundance alsohave weak positive correlations with tidal range(r=0.272,p=0.007), SAV abundanceincreases as the tidal range increase.
     (5)Using the classification and regression tree (CART) model, I predicted that ratioof watershed area/sub-estuary area had the greatest impact on SAV abundance thatappeared at the highest level of the tree, followed by shoreline fractal dimension,salinity regime, and average wave height. These four geographical variables explained63%of the total spatial variation in SAV abundance across the Chesapeake Bay.
引文
[1]朱光敏.水体浊度和低光环境对沉水植物生长的影响[J].南京:南京林业大学硕士学位论文,2009.
    [2]吴振斌,陈德强,邱东茹.武汉东湖水生植被现状调查及群落演替分析[J].重庆环境科学,2003,25(8):54-62.
    [3]孔杨勇,夏宜平,陈煜初.沉水植物的研究现状及其园林应用[J].中国园林,2005(6):65-68.
    [4] Valiranta M, Weckstrom J, Siitonen S. Holocene aquatic ecosystem change in the borealvegetation zone of northern Finland[J]. Journal of Paleolimnology,2011,45(3):339-352.
    [5]吴振斌,邱东茹,贺锋.水生植物对富营养水体水质净化作用研究[J].武汉植物学研究,2001,19(4):299-303.
    [6] Julian J P, Seegert S Z, Powers S M. Light as a first-order control on ecosystem structure in atemperate stream[J]. Ecohydrology,2011,4:422-432.
    [7]苏胜齐,姚维志.沉水植物与环境关系评述[J].农业环境保护,2002,21(6):570-573.
    [8] Jarvis J C, Moore K A. Influence of environmental factors on Vallisneria americana seedgermination[J]. Aquaticbotany,2008,88(4):283-294.
    [9]王素梅,潘伟斌.光照和氮、磷的复合作用对苦草生长和生理的影响.广州:华南理工大学硕士学位论文,2010.
    [10] Kirk J T O. Light and Photosynthesis in Aquatic Ecosystem[J]. Cambridge: CambridgeUniversity Press,1994:47-144.
    [11]苏睿丽,李伟.沉水植物光合作用的特点与研究进展[J].植物学通报,2005,22(增刊):128-138.
    [12] Morel A. Optical Modeling of the Upper Ocean in Relation to Its Biogenous MatterContent(Case-I Waters)[J]. Journal of Geophysical Research-Oceans,1988,93(C9):10749-10768.
    [13] Atlas D, Bannister T T. Dependence of Mean Spectral Extinction Coefficient of Phytoplanktonon Depth, Water Color, and Species[J]. Limnology and Oceanography,1980,25(1):157-159.
    [14] Gallegos C L. Refining Habitat Requirements of Submersed Aquatic Vegetation-Role ofOptical-Models[J]. Estuaries,1994,17(1B):187-199.
    [15] Carter V Rybicki N B. Light and temperature effects on the growth of wild celery andHydrilla[J]. Journal of Aquatic Plant Management,2002,40:92-99.
    [16] Blindow I. Long-Term and Short-Term Dynamics of Submerged Macrophytes in ShallowEutrophic Lakes[J]. Freshwater Biology,1992,28(1):15-27.
    [17] Vandijk G M. Dynamics and Attenuation Characteristics of Periphyton Upon ArtificialSubstratum under Various Light Conditions and Some Additional Observations on PeriphytonUpon Potamogeton-Pectinatus L[J]. Hydrobiologia,1993,252(2):143-161.
    [18] Dixon L K. Establishing light requirements for the seagrass Thalassia testudinum: An examplefrom Tampa Bay, Florida[J]. Seagrasses: Monitoring, Ecology, Physiology, and Management,2000:9-31318.
    [19] Batiuk R A, Bergstorm P W. Introduction, p.1-2.In Chesapeake Bay Submerged AquaticVegetation Water Quality and Habitat-based Requirements and Restoration Targets: A secondtechnical synthesis, CBP/TRS245/00, EPA903-R-00-014[R]. Chesapeake Bay Program,Annapolis, Maryland,2000.
    [20] Ruhl H, Rybicki N B, Carter V. Long-term reductions in anthropogenic nutrients link toimprovements in Chesapeake Bay habitat[J]. Proceedings of the National Academy ofSciences,2010,107:16566-16570.
    [21]朱宜平,张海平.小型富营养水体光合有效辐射衰减特性分析[J].环境污染与防治,2011,33(3):65-68.
    [22] Lee K S, Dunton K H. Effects of in situ light reduction on the maintenance, growth andpartitioning of carbon resources in Thalassia testudinum Banks ex K nig[J]. Exp. Mar. Biol.Ecol,1997,210:53-73.
    [23] Bulthuis D A. Effects of temperature on photosynthesis and growth of seagrasses[J]. Aquat.Bot,1987,27:27-40.
    [24]陈洪达.菹草生产力的研究[J].水生生物学报,1989,13(6):152-159.
    [25] Gupta M, Rai U N, et al Tripathi R D Lead-Induced Changes in Glutathione and Phytochelatinin Hydrilla-Verticillata (If) Royle[J]. Chemosphere,1995,30(10):2011-2020.
    [26] Tutin T G. Zostera L[J]. The Journal of Ecology,1942,30:217-226.
    [27] Fonseca M S, Cahalan J A. A Preliminary Evaluation of Wave Attenuation by4Species ofSeagrass[J]. Estuarine Coastal and Shelf Science,1992,35(6):565-576.
    [28] Brouns J J. Impacts of Climate Change on Ecosystems and Species: Marine and CoastalEcosystems[Z].1994,2:59-72.
    [29] Hale S S, Paul J F, Heltshe J F. Watershed landscape indicators of estuarine benthiccondition[J]. Estuaries,2004,(27):283-295.
    [30] Leight A K, Slacum W H, Wirth E F. et al. An assessment of benthic condition in several smallwatersheds of the Chesapeake Bay,USA[J]. Environmental Monitoring and Assessment,,2011,176(1-4):483-500.
    [31] Ryding S O, Rast W. The Control of Eutrophication of Lakes and Reservoirs[Z]. Man and theBiosphere Series. The Parthenon Publishing Group,1989,(1):314.
    [32] George D G, Winfild I J. Factors influencing the spatial distribution of zooplankton and fish inLoch Ness, UK. Freshw[J]. Biol,2000,43:557-570.
    [33]王卫红,季民,薛玉伟.川蔓藻和蓖齿眼子菜对再生水中盐度的响应机制[J].天津大学学报,2007,40(7):804-810.
    [34] Williams S L. Experimental studies of Caribbean seagrass bed development[J]. EcologicalMonographs1990,60:449-469.
    [35] Gallegos M E M, Merino A, Robriguez N.et al. Growth patterns and demography of pioneerCaribbean seagrassesHalodule wrightii andSyringodium filiforme[J]. Marine EcologyProgress Series,1994,109:99-104.
    [36] Zieman J C, Fourqurean J W, Iverson R L. Distribution, abundance and productivity ofseagrasses and macroalgae in Florida Bay[J]. Bulletin of Marine Science,1989,44(292-311).
    [37] Hall M O, Durako M J, Fourqurean J W.et al. Decadal changes in seagrass distribution andabundance in Florida Bay[J]. Estuaries,22:445-459.
    [38] Montague C L, Ley J A. A possible effect of salinity fluctuation on abundance of benthicvegetation and associated fauna in Northeastern Florida Bay[J]. Estuaries,1993,16:703-717.
    [39] Fourqurean J C, Powell G V N, Kenworthy W J. et al. The effects of long-term manipulationof nutrient supply on competition between the seagrasses Thalassia testudinum andHalodulewrightii in Florida Bay[R]. Oikos,1995,72:349-358.
    [40] Diego L, Wendell P. The Influence of Salinity on Seagrass Growth, Survivorship, andDistribution within Biscayne Bay, Florida: Field, Experimental, and Modeling Studies[J].Estuaries and Coasts,2003,26(1):131-141.
    [41]袁龙义,江林枝.不同盐度对苦草、刺苦草和水车前种子萌发的影响研究[J].安徽农学通报,2008,14(7):77-79.
    [42] Li X Y, Weller D E, et al Gallegos C L. Effects of watershed and estuarine characteristics onthe abundance of submerged aquatic vegetation in Chesapeake Bay subestuaries[J]. Estuariesand Coasts,2007,30(5):840-854.
    [43] Wang H Z, Wang H J, Liang X M. et al. Empirical modelling of submersed macrophytes inYangtze lakes[J]. Ecological Modelling,2005,188:483-491.
    [44] Livingston R J, McGlynn S E, Niu X F. Factors controlling seagrass growth in a gulf coastalsystem: Water and sediment quality and light[J]. Aquatic Botany,1998,60(2):135-159.
    [45] Devereux R, Yates D F, Aukamp J. Interactions of Thalassia testudinum and sedimentbiogeochemsistry in Santa Rosa Sound, NW Florida[J]. Marine Biology Research,2011,7(4):317-331.
    [46] Robblee M B, Barber T R, Carlson P R. et al. Mass Mortality of the Tropical SeagrassThalassia-Testudinum in Florida Bay (USA)[J]. Marine Ecology-Progress Series,1991,71(3).
    [47] Marba N, Duarte C M. Growth-Response of the Seagrass Cymodocea-Nodosa toExperimental Burial and Erosion[J]. Marine Ecology-Progress Series,1994,107(3):307-311.
    [48] Almasi M N, Hoskin C M, Reed J K.et al. Effects of Natural and Artificial Thalassia onRates of Sedimentation[J]. Journal of Sedimentary Petrology,1987,57(5):901-906.
    [49]米玮洁,朱端卫.不同湖泊沉积物营养特征与沉水植物菹草生长的应答关系[D].华中农业大学博士学位论文,2008.
    [50]雷泽湘,谢贻发,刘正文.太湖梅梁湾不同沉积物对3种沉水植物生长的影响[J].华中师范大学学报,2006,40(2):260-264.
    [51] KOCH E W, G GUST. Water flow in tide and wave dominated beds of the seagrass Thalassiatestudinum[M]. Marine Ecology Progress Series,1999,184:63-72.
    [52] Chambers P A. Nearshore occurrence of submerged aquatic macrophytes in relation to waveaction[J]. Canadian Journal of Fisheries and Aquatic Sciences,1987,(44):1666-1669.
    [53] Rybicki N B, Jenter H L, Carter V. et al. Observations of tidal flux between a submersedaquatic plant stand and the adjacent channel in the Potomac River near Washington, DC[J].Limnology and Oceanography,1997,42(2):307-317.
    [54] Li H L, Lei G C, Zhi Y B. et al. Phenotypic responses of Spartina anglica to duration of tidalimmersion[J]. Ecologocal Research,2011,26(2):395-402.
    [55] Ackerman J D, Okubo A. Reduced mixing in a marine macrophyte canopy[J]. FunctionalEcology,1993,7(3):305-309.
    [56] Zhang Z E, Campbell A, Leus D. et al. Recruitment patterns and juvenile-adult associations ofred sea urchins in three areas of British Columbia[J]. Fisheries Research,2011,109(2):276-284.
    [57] Lefebvre S, Clement J C, Pinay G.et al.15N-nitrate signature in low-order streams: effects ofland cover and agricultural practices[J]. Ecological Applications,2007,17:2333-2346.
    [58] Novotny V, Olem H. Water quality, prevention, identification, and management of diffusepollution[R]. NewYork: Van Nostrand Reinhold,1994.
    [59] Kristen A B, Thomas R F, Judith M. et al. Characterization and Comparison of StreamNutrients,Land Use, and Loading Patterns in Maryland Coastal Bay Watersheds[J]. Water AirSoil Pollut,2011,221:255-273.
    [60]袁琳.大型沉水植物遥感监测研究[D].上海:华东师范大学博士论文,2007.
    [61]杨顶田.海草的卫星遥感研究进展[J].热带海洋学报,2007,26(4):82-86.
    [62] Meehan A J, Williams R J, Watford F A. Detecting trends in seagrass abundance using aerialphotograph interpretation: Problems arising with the evolution of mapping methods[J].Estuaries,2005,28(3):462-472.
    [63]熊飞,李文朝,潘继征.等.云南抚仙湖沉水植物分布及群落结构特征[J].云南植物研究,2006,28(3):277-282.
    [64] Scheffer M, Bakema A H, Wortelboer F G. Megaplant-a Simulation-Model of the Dynamicsof Submerged Plants[J]. Aquatic Botany,1993,45(4):341-356.
    [65] Cerco C F, SWEENEY J, et al. SHENK G. Nutrient and solids controls in Virginia'sChesapeake Bay tributaries[J]. Journal of Water Resources Planning and Management-ASCE,2002,128:179-189.
    [66]王华,逄勇,刘申宝.沉水植物生长因子研究进展[J].生态学报,2008,28(8):3958-3968.
    [67] Moore K A. Submerged Aquatic Vegetation of the York River[J]. Journal of Coastal Research,2009:50-58.
    [68]倪乐意.武汉东湖水生植被结构和生物量现状及其长期变化[M].北京:科学出版社,1995.
    [69] Dennison W C, Alberte R C. Role of daily light. period in the depth distribution of Zostermarina,(eelgrass)[J]. Mar Ecol Prog Ser,1985,25:51-61.
    [70] Jordan T E, Correll D E, Weller D E. Effects of agriculture on discharges of nutrients fromcoastal plain watersheds of Chesapeake Bay[J]. Journal of Environmental Quality,1997,26:836-848.
    [71] King R S, Hinesa H, Craige D. et al. Regional,watershed, and local correlates of blue craband bivalve abundances in subestuaries of Chesapeake Bay[J]. Journal of ExperimentalMarine Biology and Ecology,2005,(319):101-116.
    [72] Bilkovic D M, Roggero M, et al. Hershner C H. Influence of land use on macrobenthiccommunities in nearshore estuarine habitats[J]. Estuaries and Coasts,2006,29:1185-1195.
    [73] Rodriguez W, August P V, Wang Y. et al. Empirical relationships between land use/cover andestuarine condition in the northeastern United States[J]. Landscape Ecology,2007,22:403-417.
    [74] Brooks R P, Wardrop D H, Thornton K W. et al. Integration of ecological and socioeconomicindicators forestuaries and watersheds of the Atlantic Slope. Final Report to U.S.Environmental Protection Agency STAR Program, R-82868401[R].AtlanticSlopeConsortium,University Park,Pennsylvania,2006.
    [75] Dauer D M, Ranasinghe J A, Weisberg S B. Relationships between benthic communitycondition, water quality, sediment quality, nutrient loads, and land use patterns in ChesapeakeBay[J]. Estuaries,2000,23:80-96.
    [76] Breitburg D. Effects of hypoxia, and the balance between hypoxia and enrichment, on coastalfishes and fisheries[J]. Estuaries,2002,25:767-781.
    [77] Desmond J S, Deutschman D H, Zedler J B. Spatial and temporal variation in estuarine fishand invertebrate assemblages: Analysis of an11-year data set[J]. Estuaries,2002,25(4A):552-569.
    [78]田迪,李徐勇,白中科等.土地利用及不透水地表对河流流量的影响[J].自然资源学报,2011,26(6):1012-1020.
    [79] http://www.vims.edu/bio/sav.
    [80] Clarkes S M. Seagrass-sediment dynamics in Holdfast Bay:Summary[J]. Safish,1987,11:4-10.
    [81]梁茵.分类回归树算法的探讨[J].广东技术师范学院学报,2008,(6):29-32.
    [82] Chaplin G I, Valentine J F. Macroinvertebrate production in the submerged aquatic vegetationof the Mobile-Tensaw Delta: Effects of an exotic species at the base of an estuarine foodweb[J]. Estuaries and Coasts,2009,32(2):319-332.
    [83] Lafabrie C, Major K M, Major C S. et al. Arsenic and mercury bioaccumulation in the aquaticplant, Vallisneria neotropicalis[J]. Chemosphere,2011,82(10):1393-1400.
    [84] Gallegos C L. Calculating optical water quality targets to restore and protect submersedaquatic vegetation: Overcomingproblems in partitioning the diffuse attenuation coefficient forphotosynthetically active radiation[J]. Estuaries,2001,24:381-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700