用户名: 密码: 验证码:
高聚物微流控芯片及固定化酶芯片的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪被称为“生物工程的时代”和“高信息化时代”,科学技术将获得更加迅猛的发展。分析化学将处于广泛的、深刻的、激烈的巨大变革时期,不断向微型化、自动化、仿生化、信息化等方向发展,微流控芯片技术将成为其重要的发展方向。微流控芯片的目的是通过化学分析设备的微型化与集成化,最大限度的把分析实验室的功能集成到几平方厘米的芯片上。在蛋白质组学研究正成为基础科学的研究的前沿时代,微流控芯片在蛋白质组学中的应用将具有更深刻的意义。微流控芯片技术只需要很微量的蛋白质样品即可在芯片上实现在线酶解、分离、富集、检测。本论文通过紫外光照射的方法使聚二甲基硅氧烷(PDMS)微流控芯片的微通道内壁产生自由基,从而将丙烯酸单体嫁接,再分别通过聚二烯丙基二甲基氯化铵(PDDA)和介孔材料将酶固定在芯片微通道中,实现了蛋白质在PDMS微流控芯片上的酶解。这两种方法固定的酶都具有很高的活性和稳定性。该结果建立了芯片在线酶解的新技术平台。
    在第三章中研究了PDMS微流控芯片的制作问题。由PDMS基片直接封装的微流控芯片在实验过程中很容易发生渗漏现象。通过氧等离子体处理PDMS基片使其表面产生活性基团-OH,两基片永久性的粘合从而制得PDMS微流控芯片,但是氧等离子体发生器的价格昂贵,反应的参数也很难控制,而且产生的自由基团很不稳定。本文利用自制的简单模具发展了一种制作一体化PDMS微流控芯片的新技术,避免了芯片在粘合过程中出现的问题。
    第四章中研究了两种在一体化微流控芯片通道中固定化酶的方法。这两种方法首先都是通过紫外光处理PDMS使其表面产生自由基团,从而
    
    
    嫁接丙烯酸单体。第一种方法是通过PDDA将酶固定。PDDA是一种聚阳离子物质,在很宽的pH范围内都会电离生成季铵阳离子而带正电荷与丙烯酸单体层静电吸附,胰蛋白酶(trypsin)通过PDDA被固定在芯片的微通道中。第二种方法利用介孔材料的大量-OH将酶固定。蛋白质溶液以10 μL/s的速度流过PDMS微流控芯片已固定了trypsin的通道,收集酶解溶液用质谱、毛细管电泳方法检测。结果证明这两种方法固定的酶都具有很高的活性和稳定性。
    本论文通过反射红外光谱分析检测到PDMS基片在经过丙烯酸处理后表面有很强的-COOH特征吸收峰,表征了丙烯酸单体嫁接到PDMS基片表面。通过扫描电镜测定、接触角测定、FITC标记等方法说明经过丙烯酸单体修饰后的基片可以分别通过聚阳离子物质PDDA和介孔材料将trypsin固定。
    纯蛋白质溶液经过毛细管电泳分离检测只有一个峰,而通过芯片微通道后的溶液经过毛细管电泳分离检测,电泳谱图检测出许多小峰,这些小峰是蛋白质在芯片上酶解产生的小肽段。酶解溶液经过MALDI-TOF/TOF-MS检测,经 Mascot搜索,所得的序列覆盖率、匹配的肽段、蛋白得分都很高,与文献报道的溶液酶解方法得到的结果一致,也证实了本文报道的两种方法固定的酶都具有很高的活性。用PDDA方法固定有酶的PDMS微流控芯片在冰箱中放置12天后,蛋白质在芯片上酶解溶液的质谱检测结果与前一次测定结果没有差别,证明该方法固定的酶具有很高的稳定性。介孔材料由于具有较大的比表面积和孔体积,孔径均一且在纳米尺寸可调,形貌可以控制,表面容易官能团化等特点,显示出在生物大分子固定分离等方面将会具有很广泛的应用前景。本文通过检测各种介孔材料对酶的吸附量,选择了一种经过微波处理的介孔材料,并应用于PDMS微流控芯片固定化酶,蛋白质溶液在该芯片上酶解溶液经
    
    
    过质谱检测,结果证实介孔材料在微流控芯片固定化酶方面具有广阔的应用前景。
    本论文的研究成果有:
    1、利用自制的简单模具提出了一种制作一体化PDMS微流控芯片的新技术;
    2、研究出两种在PDMS微流控芯片上固定胰蛋白酶的新方法,第一种方法是通过聚阳离子物质PDDA将酶固定,第二种方法是利用介孔材料将酶固定;
    3、实现了蛋白质在PDMS微流控芯片上的酶解,建立了芯片在线酶解的新技术平台。
    期望进一步的研究能够实现蛋白质等生物样品在芯片上的在线预处理、分离、酶解、检测等,从而为蛋白质组学的研究提供一种快速、高效、高通量、高灵敏度的技术平台。
Following the rising demands for monitoring of large number of bioaffinity interactions or biomarkers at cell lever, the development of miniaturized , high throughput chemical systems has grown dramatically in recent years. In 1990s, Manz introduced the concept of micro total analysis systems(μTAS). The field of microfluidic chip has become a growing research area in the last decade for creating inexpensive, minute sample volumes, fast and parallel analytical tools applied to different fields such as DNA, protein digestion, separation and detection. In the first chapter, a summarized development in this field was reviewed.
    In chapter 3, made of microfluidic chip was described. Poly(dimethylsiloxane) (PDMS) was selected as the chip material owing to its excellent characters including chemical inertness, low polarity, low electrical conductivity and elasticity. Oxygen plasma treatment is the traditional method to seal the PDMS films, but the surface treatment involves very complex mechanisms in response to the plasma type, material, atmosphere so that the operation conditions can’t be controlled easily, in addition the oxygen plasma generator is expensive. In this chapter a simple method to make intergraded PDMS microfluidic chip using a lab made mold was reported.
    In chapter 4, two methods for immobilization of trypsin into the integrated PDMS chip microchannel were proposed. Acrylic acid(AA) was first grafted onto PDMS to yield hydrophilic surface by exposing to UV light, and then PDDA was electrostatically absorbed on the AA layer for
    
    
    self-assembly of trypsin. The other method is that trypsin was immobilized by mesoporous material(FDU-1), then filled the mesoporous material into the microchannel, the mesoporous material was absorbed by AA. Protein solution was flowed in the microchannel with a rate of 10μL/s and collected, then detected by CE and MALDI-TOF/TOF-MS.
    In this paper immobilization of enzyme in the microchannel was carried out via modifying the surface of PDMS microfluidic chip. The modified PDMS surface was characterized by the total attenuated reflection IR spectrometry, contact angle and image of scanning electron microscope.
    Mesoporous materials have potential applications in bio-molecule separation and immobilization by controlling the size, dimension of the pore, modifying chemical groups in the pore and/or on the surface. In this paper, one kind of mesoporous material was selected for the application to the study of immobilization enzyme in microfluidic chip.
    The selected protein solution was flowed through the microchannel then detected by MALDI-TOF/TOF-MS and CE. Only one peak was presented on the electrograms of CE in case of detecting the pure protein solution, while many peaks were occurred when the selected protein solution was detected. Many peaks of digested peptides were appeared on the MS spectrum. With Mascot search of the data, high sequence coverage and protein scores were obtained. The results prove the activity of the immobilized enzyme.
    Microfluidic chip has presented a developing perspective in chemical monitoring. Chip based microsystems have achieved a great progress in the fields of Genomic, Proteomic, Clinical and Forensic analysis. Proteomic analysis has become more and more important with the end of gene sequence
    
    
    detection. For the proteomic analysis, study of the sequence of protein is very important. A key of the techniques for the protein sequence detection is digested by enzyme. In this paper two novel methods have been provided for immobilization of enzyme in the microfluidic chip channel. Protein can be on line digested in the microchannel quickly at room temperature. This micro device can be combined with various kinds of detection approaches including CE separation, MALDI-TOF/TOF-MS, LIF. In summary, a new, sensitive, high throughput and useful technique has been established for the Proteomic study.
引文
[1] Venter J.C. , Adams M.D. , Myers E.W. , et. al.. The Sequence of the Human Genome, Science, 2001, 16(291): 1304-1351.
    [2] 马立人, 蒋中华主编,《生物芯片》, 化学工业出版社, 2003, 第二版, P 243.
    [3] Dieter Schmalzing, Lance Koutny, Oscar Salas-Solano, Aram Adourian, Paul Matsudaira Daniel Ehrlich, Recent Developments in DNA Sequencing by Capillary and Microdevice Electrophoresis, Electrophoresis, 1999, 20(?15-16): 3066-3077.
    [4] Manz A., Harrison D.J., Verpoorte E.M.J., et al.. Planar Chips Technology for Miniaturization and Integrated of Separation Techniques into Monitoring Systems: Capillary Electrophoresis on a Chip, Journal Chromatography, 1992, 593: 253-258.
    [5] Thomas Kukar, Sarah Eckenrode, Yunrong Gu, Wei Lian, Mike Megginson, Jin-Xiong She, Donghai Wu,Protein Microarrays to Detect Protein–Protein Interactions Using Red and Green Fluorescent Proteins1,Analytical Biochemistry, 2002, 306: 50-54.
    [6] 张树政主编,《酶制剂工业》(上册), 科学出版社, 1984, P349.
    [7] 福井三郎, “生物触酶としての微生物”共立出版社 1979, P100.
    [8] 袁中一等译,《固相酶与亲和层析》, 科学出版社, 第一版,1975.
    [9] Balkus K.J.Jr., Diaz J.F., Enzyme immobilization in MCM-41 molecular sieve, Journal of Molecular Catalysis B: Enzymatic, 1996, 2(2-3): 115-126.
    [10] Zhao Dongyuan, Feng Jianglin, Huo Qisheng, et al.. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, Science, 1998, 23(279): 548-552.
    [11] 高波,朱广山,傅学奇,辛明红,裘式纶, 介孔分子筛SBA-15中ɑ-胰凝乳蛋白酶组装及催化活性研究,《高等学校化学学报》,2003, 24(6): 1100-1102.
    [12] Joseph Wang, Madhu Prakash Chatrathi, Baomin Tian, Ronen Polsky,Microfabricated Electrophoresis Chips for Simultaneous Bioassays of Glucose, Uric Acid, Ascorbic Acid, and Acetaminophen,Anal. Chem., 2000, 72(11): 2514-2518.
    [13] Sanders Giles H.W., Manz A., Trends in Analytical Chemistry, 2000, 19(6): 364-378.
    [14] Jacobson S. C., Ramsey J. M., Integrated Microdevice for DNA Restriction Fragment Analysis , Anal. Chem., 1996, 68(5): 720-723.
    [15] Jacobson S.C., Hergenroeder R., Koutny L .B., Ramsey J .M ., High-Speed Separations on a Microchip, Anal. Chem., 1994, 66(7): 1114-1118.
    
    [16] Jacobson S.C., Hergenroeder R., Koutny L.B., Ramsey J.M., Open Channel Electrochromatography on a Microchip, Anal. Chem., 1994, 66(14): 2369-2373.
    [17] Webster J. R., Burns M. A., Burke D. T., Mastrangel C .H., Monolithic Capillary Electrophoresis Device with Integrated Fluorescence Detector, Anal. Chem. 2001, 73(8): 1622-1626.
    [18] Kopp Martin U., Crabtree H John, Manz A.,Developments in technology and applications of microsystems,Current Opinion in Chemical Biology,1997, 1(3):410-419.
    [19] Arora A., Eijkel J.C.T., Morf W.E., Manz A., A Wireless Electrochemiluminescence Detector Applied to Direct and Indirect Detection for Electrophoresis on a Microfabricated Glass Device, Anal. Chem., 2001, 73(14): 3282-3288.
    [20] 陈义,《毛细管电泳理论探索》,华文出版社,2001,第一版,P109-133.
    [21] Swinney K., Markov D., Bornhop D., Chip-Scale Universal Detection Based on Backscatter Interferometry, Anal.Chem., 2000, 72(13): 2690-2695.
    [22] Swinney Kelly, Markov Dmitry, Chip-Scale Universal Detection Based on Backscatter Interferometry, Anal. Chem., 2000, 72(13): 2690-2695.
    [23] Eijkel J.C.T., Stoeri H., Manz A., A Molecular Emission Detector on a Chip Employing a Direct Current Microplasma, Anal. Chem., 1999, 71(14): 2600-2606.
    [24] Zimmermann S., Wischhusen S., Muller J., Micro Total Analysis system 2000 Kluwer Academic Publishers, Dordrecht, 2000, 135.
    [25] 应万涛,钱小红, 生物质谱技术应用及进展,《军事医学科学院院刊》,2000,24(2): 146-150.
    [26] Rohner T.C., Rossier J.S., Girault H. H., Polymer Microspray with an Integrated Thick-Film Microelectrode, Anal.Chem., 2001, 73(22): 5353-5357.
    [27] Trumbull J.D., Glasgow I.K., Beebe D.J., Magin R.L., IEEE Trans. Biomed. Eng., 2000, 47:3.
    [28] Manz, A., Device and a method for the separation of fluid substances, Biotechnology Advances, 1997, 15( 2): 500-501.
    [29] Fister J.C., Jacobson S.C., Ramsey J.M., Ultrasensitive Cross-Correlation Electrophoresis on Microchip Devices, Anal. Chem., 1999, 71(20): 4460-4464.
    [30] Kutter J.P., Jacobson S.C., Matsubara N., et al.. Solvent-Programmed Microchip Open-Channel Electrochromatography , Anal. Chem., 1998, 70(15): 3291-3297.
    [31] Moor A. W., Jacobson S.C., Ramsey J.M., Microchip Separations of Neutral Species via Micellar Electrokinetic Capillary Chromatography, Anal. Chem., 1995, 67(22): 4184-4189.
    [32] Fan Z.H., Harrison D.J., Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections, Anal. Chem., 1994, 66(1): 177-184.
    
    [33] Heeren F., Verpoorte E., Manz A., et al.. Micellar Electrokinetic Chromatography Separations and Analyses of Biological Samples on a Cyclic Planar Microstructure, Anal. Chem., 1996, 68(13): 2044-2053.
    [34] Hutt L.D., Glavin D.P., Bada J.L., et al.. Microfabricated Capillary Electrophoresis Amino Acid Chirality Analyzer for Extraterrestrial Exploration, Anal. Chem., 1999, 71(18): 4000-4006.
    [35] Haab B.B., Mathies R.A., Single-Molecule Detection of DNA Separations in Microfabricated Capillary Electrophoresis Chips Employing Focused Molecular Streams, Anal. Chem., 1999, 71(22): 5137-5145.
    [36] Woolley A.T., Sensabaugh G.F., Mathies R.A., High-Speed DNA Genotyping Using Microfabricated Capillary Array Electrophoresis Chips, Anal. Chem., 1997, 69(11): 2181-2186.
    [37] Adam T. Woolley, Richard A. Mathies, Ultra-High-Speed DNA Sequencing Using Capillary Electrophoresis Chips, Anal. Chem., 1995, 67(20): 3676-3680.
    [38] Liu S. R., Shi Y. N., Ja W.W., et al.. Optimization of High-Speed DNA Sequencing on Microfabricated Capillary Electrophoresis Channels, Anal. Chem., 1999, 71(3): 566-573.
    [39] Schmalzing D., Adourian A., Koutny L., et al.. DNA Sequencing on Microfabricated Electrophoretic Devices, Anal. Chem., 1998, 70(11): 2303-2310.
    [40] Shi Y. N., Simpson P.C., Scherer J.R., et al.. Radial Capillary Array Electrophoresis Microplate and Scanner for High-Performance Nucleic Acid Analysis, Anal. Chem., 1999, 71(23): 5354-5361.
    [41] Khandurina J., Jacobson S.C., Waters L.C., et al.. Microfabricated Porous Membrane Structure for Sample Concentration and Electrophoretic Analysis, Anal. Chem., 1999, 71(9): 1815-1819.
    [42] Woolley A. T., Hadley D., Landre P., Functional Integration of PCR Amplification and Capillary Electrophoresis in a Microfabricated DNA Analysis Device, Anal. Chem., 1996, 68(23): 4081-4086.
    [43] Cheng J., Waters L.C., Fortina P., et al.. Degenerate Oligonucleotide Primed–Polymerase Chain Reaction and Capillary Electrophoretic Analysis of Human DNA on Microchip-Based Devices,Analytical Biochemistry., 1998, 257(2): 101-106.
    [44] Effenhauser C. S., Paulus A., Manz A., et al.. High-Speed Separation of Antisense Oligonucleotides on a Micromachined Capillary Electrophoresis Device, Anal. Chem., 1994, 66(18): 2949-2953.
    [45] Ueda M., Kiba Y., Abe H., et al.. Fast Separation of Oligonucleotide and Triplet Repeat DNA on a Microfabricated Capillary Electrophoresis Device and Electrophoresis Electrophoresis., 2000, 21(1): 176-180.
    
    [46] Chiem N., Harrison D.J., Microchip-Based Capillary Electrophoresis for Immunoassays: Analysis of Monoclonal Antibodies and Theophylline, Anal. Chem., 1997, 69(3): 373-378.
    [47] Kounty L.B., Schmalzing D., Taylor Y.A., et al.. Microchip Electrophoretic Immunoassay for Serum Cortisol, Anal. Chem., 1996, 68(1): 18-22.
    [48] Figeys D., Gygi S.p., Mckinnon G., et al.. An Integrated Microfluidics-Tandem Mass Spectrometry System for Automated Protein Analysis, Anal. Chem., 1998, 70(18): 3728-3734.
    [49] Li J.J., Thibault P., Bings N.H., et al.. Integration of Microfabricated Devices to Capillary Electrophoresis-Electrospray Mass Spectrometry Using a Low Dead Volume Connection: Application to Rapid Analyses of Proteolytic Digests, Anal. Chem., 1999, 71(15): 3036-3045.
    [50] Fieys D., Ning Y.B., Aebersold R., A Microfabricated Device for Rapid Protein Identification by Microelectrospray Ion Trap Mass Spectrometry, Anal. Chem., 1997, 69(16): 3153-3160.
    [51] Li P.C.H., Harrison D.J., Anal. Chem., Transport, Manipulation, and Reaction of Biological Cells On-Chip Using Electrokinetic Effects, 1997, 69(8): 1564-1568.
    [52] Hadd A. G., Raymond D.E., Halliwell J. W., et al.. Microchip Device for Performing Enzyme Assays, Anal. Chem., 1997, 69(17): 3407-3412.
    [53] Wang J., Chatrathi P. M., Tian B. M., Microfabricated Electrophoresis Chips for Simultaneous Bioassays of Glucose, Uric Acid, Ascorbic Acid, and Acetaminophen, Anal. Chem., 2000, 72(11): 2514-2518.
    [54] Hadd A. G., Jacobson S. C. Ramsey M., Microfluidic Assays of Acetylcholinesterase Inhibitors, Anal. Chem., 1999, 71(22): 5206-5212.
    [55] Wang J., Tian B. M., Sahlin E., Micromachined Electrophoresis Chips with Thick-Film Electrochemical Detectors, Anal. Chem., 1999, 71(23): 5436-5440.
    [56] Wallenborg S. R., Bailey C.G., Separation and Detection of Explosives on a Microchip Using Micellar Electrokinetic Chromatography and Indirect Laser-Induced Fluorescence, Anal. Chem., 2000, 72(8): 1872-1878.
    [57] Kopp M. U., Mello A.J., Manz A., Chemical Amplification: Continuous-Flow PCR on a Chip, Science., 1998, 280(15): 1046-1048.
    [58] Waters L.C., Jacobson S. C., Kroutchinina N., et al.. Microchip Device for Cell Lysis, Multiplex PCR Amplification, and Electrophoretic Sizing, Anal. Chem. 1998, 70(1): 158-162.
    [59] Baba Y., Technical Digest of 2000 International Forum On Biochip Technologies (2000. 10 Beijing): 17-29.
    [60] Oleschuk R. D., Shultz-Lockyear L. L., Ning Y. B., et al.. Trapping of Bead-Based Reagents within Microfluidic Systems: On-Chip Solid-Phase Extraction and
    
    
    Electrochromatography, Anal. Chem., 2000, 72(3): 585-590.
    [61] Schrum D., Culbertson C. T., Jacobson S. C., et al.. Microchip Flow Cytometry Using Electrokinetic Focusing, Anal. Chem., 1999, 71(19): 4173-4177.
    [62] Burns M. A., Johnson B. N., Brahmasandra S. N., et al.. An Integrated Nanoliter DNA Analysis Device, Science., 1998, 282(16): 484-487.
    [63] Auroux P. A., Iossifidis D., Reyes D. R., et al.. Micro Total Analysis Systems. 2. Analytical Standard Operations and Applications, Anal. Chem., 2002, 74(12): 2637-2652.
    [64] 方肇伦,方群,微流控芯片发展与展望,《现代科学仪器》, 2001,4: 3-6.
    [65] Khandurina J., Guttman A., J. Chromatogr. A, 2002, 943: 159-183.
    [66] 徐溢,Eijkel Jan C. T., Manz A., 微型全化学分析系统及技术进展, 《高等学校化学学报》, 2000, 21(7): 1028-1034.
    [67] 孟斐,陈恒武,方群等, 聚二甲基硅氧烷微流控芯片的紫外光照射表面处理研究,《高等学校化学学报》,2002,23(7): 1264-1268.
    [68] 金亚,罗国安,汤扬华等, 集成毛细管电泳芯片系统的制作、测试及应用,《分析科学学报》, 2001,17(2): 148-152.
    [69] Rallabandi, P. S., Thompson A. P., Ford D. M., A Molecular Modeling Study of Entropic and Energetic Selectivities in Air Separation with Glassy Polymers, J. Am. Chem. Soc, 2000, 33(8): 3142-3152.
    [70] 方肇伦,《微流控分析芯片》,科学出版社, 2002,第一版,P13-15.
    [71] Harrison D. J. , Manz A. , Fan Z. H. , Ludi H. , Widmer H. M., Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Glass Chip, Anal. Chem. , 1992, 64(17): 1926-1932.
    [72] Effenhauser C. S. , Manz A. , Wider H. M. , Manipulation of Sample Fractions on a Capillary Electrophoresis Chip, Anal. Chem. , 1995, 67(13): 2284-2287.
    [73] Jacobson S. C. , Hergenroder R. , Koutny L. B. , Warmack R. J. , Ramsey J. M., Effects of Injection Schemes and Column Geometry on the Performance of Microchip Electrophoresis Devices, Anal. Chem. , 1994, 66(7): 1107-1113.
    [74] Dempsey Eithne, Diamond Dermot, Smyth Malcolm R., Urban Gerald, Jobs Gerhard, Moser Isabella, et. al.,Design and development of a miniaturised total chemical analysis system for on-line lactate and glucose monitoring in biological samples, Analytica Chimica Acta, 1997,346, (3): 341-349.
    [75] 殷学锋,沈宏,方肇伦,制造玻璃微流控芯片的简易加工技术,《分析化学》,2003,31(1): 116-119.
    [76] Sinpson P. C., Wooley A. T., Mathies R. A., Microfabrication Technology for the Production of Capillary Array Electrophoresischips, Biomedical Microdevices., 1998, 1: 7-26 .
    [77] Fluri K., Fitzpatrick G., Chiem N., et al.. Integrated Capillary Electrophoresis
    
    
    Devices with an Efficient Postcolumn Reactor in Planar Quartz and Glass Chips, Anal. Chem., 1996, 68(23): 4285-4290 .
    [78] Hutt L.D., Glavin D. P., Bada J. L., et al.. Microfabricated Capillary Electrophoresis Amino Acid Chirality Analyzer for Extraterrestrial Exploration, Anal. Chem., 1999, 71(18): 4000-4006.
    [79] Jacibson S.C., Miknight T. E., Ramsey J. M., Microfluidic Devices for Electrokinetically Driven Parallel and Serial Mixing, Anal. Chem., 1999, 71(20): 4455-4459.
    [80] Jacobson S.C., Koutiny L. B., Hergenroder R., et al.. Microchip Capillary Electrophoresis with an Integrated Postcolumn Reactor, Anal. Chem., 1994, 66(20): 3472-3476.
    [81] Jacobson S.C., Culbertson C. T., Daler J. E., et al.. Microchip Structures for Submillisecond Electrophoresis, Anal. Chem., 1998, 70(16): 3476-3480 .
    [82] Richard C. J Introduction to microelectronic fabrication (Modular series on solid state devices, v.5) eds. Neudeck G. W. Pierret R. F. Addison-Wesley Published Company, Massachusetts, 1993.
    [83] Jacobson S. C., Moore A. W., Ramsey J.M., Fused Quartz Substrates for Microchip Electrophoresis, Anal. Chem., 1995, 67(13): 2059-2063.
    [84] Hsing I-Ming., Technical Digest of 2000 International Forum on Biochip Technologies (2000.10 Beijing): 314-320.
    [85] Duffy D. C., Mcdonald J. C., Schueller O. J. A., Whitesides G. M., Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane), Anal. Chem., 1998, 70(23): 4974-4984.
    [86] 方肇伦,《微流控分析芯片》, 科学出版社, 第一版,2003,P35.
    [87] 殷学锋, 方群, 凌云扬, 微流控分析芯片的加工技术,《现代科学仪器》,2001, 4:10-14.
    [88] Wang S.C., Perso C.E., Morris M.D., Effects of Alkaline Hydrolysis and Dynamic`Coating on the Electroosmotic Flow in Polymeric Microfabricated Channels, Anal. Chem., 2000,72(7): 1704-1706.
    [89] Martynova L., Locascio L.E., Gaitan M., Kramer G.W., Christensen R.G. Maccrehan W.A., Fabrication of Plastic Microfluid Channels by Imprinting Methods, Anal. Chem., 1997, 69(23): 4783-4789.
    [90] 方肇伦, 微流控分析芯片发展与展望,《大学化学》, 2001,16(2): 1-6.
    [91] Maluf N., An introduction to microelectromechanical Systems Engineering. Artech House, Boston, 2000.
    [92] 吴明华, 曝光技术,《微细加工技术》,1994, 1(1): 39-44.
    [93] Roberts M. A., Rossler J. S., Bercier P., Girault H., UV Laser Machined Polymer Substrates for the Development of Microdiagnostic Systems, Anal. Chem., 1997,
    
    
    69(11): 2035-2042.
    [94] Qin D., Xia Y., Rogers J.A., Jackman R. J., Zhao X. M., Whitesides G. M. Microsystem Technology in Chemistry and Life Science. eds. Manz A., Becker H., Springer. Berlin, 1999 .
    [95] Delman A. D., Landy M., Simma B. B., J.Polym. Sci., A1, 1969, 7: 3375-3386.
    [96] Zhiyong Wu, Nicolas Xanthopoulos, Hubert H. Girault., et al.. Polymer Microchips Bonded by O2-plasma Activation, Electrophoresis, 2002, 23(5): 782-790.
    [97] Garbassi F., Morra M., Occhiello E., Polymer Surface, 2nd ed ., John Willey and Sons : New York, 1998, Charpters 2,6,7,12.
    [98] Jagur-Grodzinski J., Heterogeneous Modification of Polymers, John Willey and Sons: New York, 1997, Charpters 7,8.
    [99] Shuwen Hu, Xueqin Ren, Mark B., Christopher E. S., G. P. Li, Nancy A., Surface Modification of Poly(dimethylsiloxane) Microfluidic Devices by Ultraviolet Polymer Grafting, Anal.Chem., 2002,74(16): 4117-4123.
    [100] 田玉平,吴会灵,陈淑桂,杨芃原,一体化微流控芯片的酶固定化技术,《高等学校化学报》,2004,25(5).
    [101] Kimberly G. Olsen, David J. Ross, Michael J. Tarov., Immobilization of DNA Hydrogel Plugs in Microfluidic Channels, Anal. Chem., 2002, 74(6): 1436-1441.
    [102] Siman I. H., Katchalski E., Ann. Rev. Biochem., 1966, 35: 873.
    [103] 中国科学院上海生物化学研究所固定酶组:生物化学与生物物理进展,1974,1: 57.
    [104] Tanka K Ido Y, Akita S., et al.. Second Japan-China Joint Symposium on Mass Spectrometry. Editors. Matsuda H and Xiao-tian Liang. Japan: Odaka, 1987, 185-188.
    [105] Fenn J.B., et al.. Proc 36th Annual Conference. Am. Soc. For Mass Spectrum. San Francisco, 1988, 733.
    [106] Yan Liu, Jonathan A.Vickers, Charles S. Henry, Simple and Sensitive Electrode Design for Microchip Electrophoresis/Electrochemistry, Anal. Chem., 2004, 76(5): 1513-1517.
    [107] 金亚,罗国安, 微流控芯片中超微电极的制作及其在芯片-电化学检测中的应用,《高等学校华学校报》,2003,24(7): 1180-1184.
    [108] 颜流水,梁宁,罗国安,王义明,王建勇, 整体式PDMS电泳芯片快速成型及高灵敏化学发光检测氨基酸,《高等学校化学学报》, 2003,24(7): 1193-1197.
    [109] Jacobson S.C., Moore A.W., Ramsey J.M., Fused Quartz Substrates for Microchip Electrophoresis, Anal. Chem., 1995, 67(13): 2059-2063..
    [110] Wenqing Shui, Yanling Yu, Xuejiao Xu, Guobing Xu, Zhenyu Huang, Pengyuan Yang, Micro-electrospray with Stainless Steel Emitters,Rapid Commun.Mass Spectrum.,2003, 17: 1-7.
    
    [111] 姜泓海.,邹汉法,汪海林等, 复合纤维素膜固定化胰蛋白酶反应器及其应用于蛋白质酶解,《高等学校化学学报》, 2000,21(5): 702-706.
    [112] Mellor R.B., Ronnenberg J., Campbell W., et al. Reduction of Nitrate and Nitrite in Water by Immobilized Enzymes, Nature, 1992, 355(6362): 717-719.
    [113] Smaill J. B., Rewcastle G. W., Bridges A. J., Zhou H., et al.. Tyrosine Kinase Inhibitors. 17. Irreversible Inhibitors of the Epidermal Growth Factor Receptor: 4-(Phenylamino)quinazoline- and 4-(Phenylamino)pyrido[3,2-d]pyrimidine-6-acrylamides Bearing Additional Solubilizing Functions, Anal. Chem., 2000, 43(16): 3199-3199.
    [114] 郭忠,张清春,邹汉法等,固定化酶纳升微,反应器用于痕量蛋白质快速肽谱分析的研究,《高等学校化学学报》,2002,23(7): 1277-1280.
    [115] Tosa T., Mori T., Fuse N., Chibata L. , Agr. Biol. Chem. (Tokyo), 1969, 33: 1047.
    [116] Salmona M., Saronic C., Garattini S., Insolubilized Enzymes, Raven Press, New York, 1974.
    [117] Wang J. H. C., Vieth W. R., Biothech. Bioeng., 1973, 15: 93.
    [118] Broun G., Thomas G., Domurado D., Berjonneau A. M., Guillon G., Biotech. Bioeng., 1973, 15: 359.
    [119] Ohno Y., Stahmaunn M. A., Macromolecule. 1971, 4: 350.
    [120] Dominic S. Peterson, Thomas Rohr, Frantisek Seve, Jean M. Fréchet., Enzymatic Microreactor-on-a-Chip: Protein Mapping Using Trypsin Immobilized on Porous Polymer Monoliths Molded in Channels of Microfluidic Devices, Anal. Chem., 2002,74(16): 4081-4088.
    [121] Hanbin Mao, Tinglu Yang, Paul S. Cremer., Design and Characterization of Immobilized Enzymes in Microfluidic Systems, Anal. Chem., 2002,74(2): 379-385.
    [122] Kuniko Sakai-Kato, Masaru Kato, Toshimasa Toyo’oka., Creation of an On-Chip Enzyme Reactor by Encapsulating Trypsin in Sol-Gel on a Plastic Microchip, Anal. Chem., 2003, 75(3): 388-393.
    [123] 张雪峥,乐英红,高滋, SBA-15负载氧化铁催化剂上乙酸选择加氢制乙醛,《高等学校化学学报》,2001,22(7): 1169-1172.
    [124] Hu Xucan, Chuah Gaik Khuan, Jaenicke Stephan, Room temperature synthesis of diphenylmethane over MCM-41 supported AlCl3 and other Lewis acids, Applied Catalysis A: General, 2001, 217(1-2): 1-9.
    [125] Gao Feng, Lu Qingyi, Zhao Dongyuan, In situ adsorption method for synthesis of binary semiconductor CdS nanocrystals inside mesoporous SBA-15, Chemical Physics Letters, 2002, 360(5-6): 585-591.
    [126] Kersge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C., Beck J. S., Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template
    
    
    Mechanism, Nature, 1992, 359(6397): 710-712.
    [127] Beck J. S. Nature, Vartuli J. C., Roth W. J., Leonowicz M. E., Kersge C. T., Schmitt K. D., Chu C. T. W., Olsen D. H., Sheppard E. W., McCullen S. B., Higgins J.B., Schlenker J. L., A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates, J. Am. Chem. Soc., 1992, 114(27): 10834- 10843.
    [128] Tanev P. T., Pinnavaia T. J. , A Neutral Templating Route to Mesoporous Molecular Sieves, Science ,1995, 267(5199): 865-867.
    [129] Bagshaw S. A., Pinnavaia T. J., Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants , Science, 1995, 269(5228): 1242-1244.
    [130] Allard G. S., Glyde J.C., Goliner C. G., Liquid-crystalline Phases as Templates for the Synthesis of Mesoporous Silica, Nature, 1995, 378(6555): 366-368.
    [131] Huo Q. S., Leon R., Petroff P. M., Stucky G. D. , Mesostructure Design with Gemini Surfactants: Supercage Formation in a Three-Dimensional Hexagonal Array, Science, 1995, 268(5215): 1324-1327.
    [132] Huo Q. S., Margolese D. L., Ciesla U. , Feng P. Y., Gier T. E., Sieger P., Leon R., Petroff P. M., Schuth F., Stucky G. D., Generalized synthesis of periodic surfactant/inorganic composite materials, Nature, 1994, 368(6469): 317-321.
    [133] Huo Q. S., Margolese D. L., Ciesla U. , Demuth D. G., Feng P. Y., Gier T. E., Sieger P., Firouzi A., Chemelka B. F., Schuth F., Stucky G. D., Chem. Mater. 1994, 6: 1176.
    [134] Monnier A., Schuth F., Huo Q. S., Kumard D., Margolese D., Maxwell R. S., Stucky G. D., Krishnamurth M., Petroff P., Firouzi A., Janicke M., Chmelka B. F., Science, 1993, 261(5126): 1299-1303.
    [135] Whittingham M. S. , Hydrothermal synthesis of transition metal oxides under mild conditions ,Current Opinion in Solid State and Materical Science, 1996, 1(2): 227-232.
    [136] Ulagapan N., Neeraj Raju B. V. N., Rao C. N., Chem. Commun. , 1996, 2243.
    [137] Agger J. R., Anderson M. W., Pemble M., Terasaki O., Growth of Quantum-Confined Indium Phosphide inside MCM-41, J. Phys. Chem. B, 1998, 102(18) : 3345-3353.
    [138] Srdanov V. I., Alxneit I., Stucky G. D., Reaves G. D., DenBaars S. P., Optical Properties of GaAs Confined in the Pores of MCM-41, J. Phys. Chem. B, 1998, 102(18): 3341-3344.
    [139] Huang M. H., Choudrey A., Yang P., Chem. Commun., 2000, 1063.
    [140] Han Y. J., Stucky G. D., Butter A., Mesoporous Silicate Sequestration and Release of Proteins, J. Am. Chem. Soc., 1999,121(42): 9897-9898.
    [141] 高峰,赵建伟,张松,周峰,金婉,张祥民,杨芃原,赵东元, 中孔分子筛
    
    
    SBA-15作为液相色谱固定相以及在巯基化合物分离中的应用, 《高等学校化学学报》,2002,23(8): 1494-1497.
    [142] Shuwen Hu, Xueqin Ren, G.P.Li, Nancy Allbritton, et.al.. Surface Modification of Poly(dimethylsiloxane) Microfluidic Devices by Ultraviolet Polymer Grafting, Anal.Chem., 2002, 74(16): 4117-4123.
    [143] Richey T., Iwata H., Oowaki H., Uchida E., Matsuda S., Ikada Y., Surface Modification of Polyethylene Balloon Catheters for Local Drug Delivery, Biomaterials, 2000, 21(10): 1057-1065.
    [144] 余海湖,伍宏标, 李小甫, 朱云洲, 姜德生,二氧化硅纳米粒子薄膜的制备及光学性能,《物理化学学报》, 2001, 17(12): 1057-1061.
    [145] Chiu D.T., Pezzoli E., Wu H., Stroock A.D., Whitesides G.M., Proc.Natl.Acad.Sci.U.S.A., 2001, 98: 2961-2966.
    [146] Anderson J.R., Chiu D.T., Jackman R.J., Cherniavskaya O., McDonald J.C., Wu H., Whitesides G.M., Microfluidic Arrays of Fluid-Fluid Diffusional Contacts as Detection Elements and Combinatorial Tools, Anal.Chem., 2001,73(21): 5207-5213.
    [147] Zhiyong Wu, Nicolas Xanthopoulos, Hubert H. Girault, Polymer Microchips Bonded by O2-Plasma Activation, Electrophoresis, 2002, 23: 782-789.
    [148] Jessamine Ng Lee, Cheolmin Park, Whitesides G.M., Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices, Anal. Chem., 2003, 75(23): 6544-6554.
    [149] 张世文,廉育英,憎水性与接触角的测量,《现代计量测试》, 1994,3: 36-41.
    [150] 杨芃原,钱小红,盛龙生,《生物质谱技术方法》,科学技术出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700