用户名: 密码: 验证码:
40T混合磁体外超导磁体电源的开关电源方案研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中科院强磁场中心的40T稳态强磁场装置的磁体由内水冷磁体和外超导磁体两部分组成,其中的外超导磁体需要一个最大输出8V/16KA的电源,且对电流和电压的稳定度有很高的要求。超导磁体电源目前采用的是传统的双反星形可控硅整流方案,该方案最主要缺点是设备体积很大。另一种备选方案是基于开关电源设计,一般而言,高频开关电源具有更小的体积且容易做到更高的效率,但仅靠LC滤波难以滤除开关电源前级三相不可控整流带来的低频纹波,且电源无法输出负电压用于使磁体电流可控下降。
     论文第2章首先介绍了各种逆变电路和整流电路并结合超导磁体电源的需求选择了原边全桥逆变加副边全波整流作为电源主回路的基本拓扑。为了降低损耗,在基本拓扑的基础上采用了原边串联饱和电感的移相全桥软开关技术和副边的同步整流技术。在第2章的最后给出了磁体电源的总拓扑并简要描述了拟采用的失超保护方案。接着的第3章对主拓扑各参数进行了计算。
     为了更好地减小输出纹波,在开关变换器的输出端添加了有源滤波装置。论文第4章首先介绍了各种直流有源滤波器,然后重点分析了超导磁体电源选用串联线性有源滤波的原因。其中一个核心原因是将串联线性有源滤波与同步整流电路相结合,并通过恰当的控制方式,可以使电源输出负电压。在第4章的最后对串联线性有源滤波中MOSFET调整管的导通内阻调整能力进行了具体分析。
     论文第5章首先给出了将有源滤波环节的控制系统和开关变换器环节的控制系统联系起来使其可以协同工作的总体控制方案。对于有源滤波环节的反馈控制系统,在电路建模的基础上,结合波特图设计了电压内环电流外环的双闭环控制系统;对于开关变换器环节的控制系统,在考虑了调整管导通电阻对开环传递函数的影响的基础上,基于第2章中的主拓扑建模结论演化后给出了具体的PID补偿网络设计方法。在第5章的最后简要介绍了开关变换器环节也可以采用的峰值电流控制方式。
     为了验证前述章节中磁体电源主回路和控制回路设计的正确性,在第6章中设计了一个样机电源并给出了开关变换器软开关效果的仿真验证结果、直流有源滤波器环节滤波效果的仿真验证结果和整体控制系统的动态响应效果仿真验证结果,最后给出了样机实验测试结果。仿真和实验测试结果表明整体控制方案中的两个反馈控制环节协同工作良好,电源输出稳定度很高。
     论文的第7章对全文完成的工作进行了总结,并提出了对后续研究的展望。
The40T hybrid-magnet in High Magnetic Field Laboratory (HFML) of Chinese Academy of Sciences (CAS) consists of a resistive-insert magnet and a superconducting outsert magnet, and the latter requires a highly stabilized power supply whose maximum output parameter is8V/16KA. The existing power supply adopts the traditional dual reverse star-shaped SCR scheme. Its major shortcoming is bulkiness. At the same time, another alternative is based on switching power supply technology. In General, such power supply have much smaller volume and much higher efficiency. However, it is hard to depress the low frequency ripple, which is caused by three-phase uncontrolled rectifier and a normal switching power supply cannot output negative voltage which can be used to make the current down controllably.
     In the beginning of chapter2, different kinds of inverters and rectification circuits are introduced. Considering the actual requirements of the power supply, the main circuit topology is combined by a full bridge invertor on primary side and a full wave rectifier on secondary side. In order to reduce switching loss, the phase-shift control full-bridge soft switching technology, which is characterized by saturated inductor connected to transformer primary coils in series, and the secondary synchronous rectification technology are also applied in the main circuit. At the end of chapter2, the overall topology of the superconducting outsert magnet power supply is given and the proposed quench protection scheme is briefly described. Moreover, in chapter3the calculation of each parameters of the power supply is presented in detail.
     In order to restrain output ripple, an active filter is added to the output end of the switching converter. In the beginning of chapter4, all kinds of DC active power filter are briefly introduced, and the reasons why SSLAPF (Series Linear Active Power Filter) is chosen for the superconducting outsert magnet power supply is analyzed emphatically. One of the most important reasons is that the SSLAPF can be combine with the synchronous rectifier and the power supply can generate negative voltage with the help of proper controlling methods. The output adjustment capacity of MOSFET is specifically analyzed.
     The chapter5begins with the overall control scheme, which can make the controller of the SSLAPF and the controller of the switching converter work in cooperation. Based on the circuit modeling and analysis of bode graphs, the outer inner voltage-current dual closed loop control system is designed for the SSLAPF. The designing of controller of the switching converter takes the adjusting transistor's on-resistance influence on open-loop transfer function into account. Based on the main topology modeling in the chapter2, a specific PID compensating network is given. Meanwhile, the switching converter can also adopt the peak-current controlling method, which is briefly introduced at the end of chapter5.
     In chapter6, a prototype is designed and the simulation results of the soft switching, SSLAPF and the overall control system is presented to validate the correctness of the design of the main circuit and the controlling strategy. At the same time, the experiment results are also provided in detail. The simulation and experiment results show that the two feedback control loops of the overall control system cooperate well.
     In the end, chapter7summarizes this thesis and presents tentative researches and perspectives on some other related issues.
引文
Brown M.2004开关电源设计指南[M].北京:机械工业出版社.
    蔡宣三.2003.同步整流技术[J].电源世界,1:019.
    蔡宣三,张占松.2004.开关电源的原理与设计[J].北京:电子工业出版社.
    曹效文.2002.强磁场下的固体物理研究进展[J].物理,31(11):696-701.
    陈滋健,刘小宁等.2008.强磁场电源软开关DC/DC变换器的研究[J].电力电子技术,42(2):16.18
    戴志平.2009.开关电源工程调试技术[M].北京:中国电力出版社,.
    樊宇.2007.超导电力系统的过电流失超保护研究[D]:[硕士].武汉:华中科技大学.
    冯巧玲.2007.自动控制原理(第2版)[J].北京:北京航空航天大学出版社.
    郭兴龙.2010MICE超导耦合磁体失超过程与失超保护研究[D]:[硕士].哈尔滨:哈尔滨工业大学.
    胡寿松.2013.自动控制原理(第5版)[J].北京:科学出版社.
    华伟,郑国青.2003.倍流整流器电路拓扑研究[J].半导体技术,28(6):49-52.
    江加福.2009EAST纵场电源反馈控制及纵场磁体失超保护设计[D]:[博士].合肥:中国科学院合肥物质科学研究院.
    李红宝.2007.负输出低压差电压调整器的研究[D]:[硕士].重庆:重庆大学.
    李龙文,龚斌.2012.开关电源设计与最新控制IC应用第一辑[J].北京:中国电力出版社.
    李毅,王秋良,戴银明,等.2012MRI,NMR低温超导磁体失超保护综述[J].低温物理学报,1:015.
    廉楚.1988.电力半导体器件原理[M].北京:机械工业出版社.
    林刚磊.2009.一种高精度PWM降压型DC-DC转换器的设计[D]:[硕士].上海:上海交通大学.
    刘恩科,朱秉升,罗晋升.2011.半导体物理学[J].北京:电子工业出版社.
    刘少波.2012.高温超导电缆失超保护研究[D]:[硕士].武汉:华中科技大学.
    马小亮,赵付田.2002.并联有源滤波在加速器电源上的应用研究[J].电工技术学报,17(3):54-58.
    裴云庆,姜桂宾,王兆安.2003.LC滤波的三相桥式整流电路网侧谐波分析[J].电力电子技术,37(3):34-36.
    Pressman A et al.2010.开关电源设计(第3版).北京:电子工业出版社.
    阮新波,严仰光.1999.脉宽调制DC/DC全桥变换器的软开关技术[M].北京:科学出版社.
    宋庆烁.2006.高温超导体失超基础研究[D]:[硕士].武汉:华中科技大学.
    宋执权,傅鹏,汤伦军,等.2007EAST极向场电源失超保护系统的设计及模拟实验[J].核聚变与等离子体物理,27(1):28-33.
    王艺新.2010.超导储能混合磁体的失超保护系统研究[D]:[硕士].北京:北京交通大学.
    谢亚伟.2009.LDO线性稳压器中关键模块的研究与设计[D]:[硕士].合肥:合肥工业大学.
    徐德鸿.2006.电力电子系统建模及控制[M].北京:机械工业出版社.
    薛定宇.2006.控制系统计算机辅助设计MATLAB语言与应用[M].北京:清华大学出版社.
    俞阿龙.2003.高效率可调复合式开关电源[J].电声技术,(5):43-44.
    余华.2006.内嵌LDO的电流型PWMDE-DC变换器研究[D]:[博士].武汉:华中科技大学.
    张卫平.2006.开关变换器的建模与控制[M].北京:中国电力出版社.
    周柯.2007.注入式有源电力滤波器的关键技术研究与工程应用[D]:[博士].长沙:湖南大学.
    Agrawal J P.2001. Power Electronic Systems-Theory and Design, Upper Saddle River:Prentice Hall.
    Asiminoaei L, Aeloiza E, Enjeti P N, et al.2008. Shunt active-power-filter topology based on parallel interleaved inverters[J]. Industrial Electronics, IEEE Transactions on,55(3): 1175-1189.
    Astrom K J, Hagglund T.2004. Revisiting the Ziegler-Nichols step response method for PID control[J]. Journal of process control,14(6):635-650.
    Aubert G et al.1994. The High Magnetic Field Laboratory of Grenoble[J]. IEEE Trans. Magnetic, 30(4):1541-1546.
    Aubert G et al.2006. High magnetic field facility in Grenoble[C]//Journal of physics:conference series. IOP Publishing,51(1):659.
    Aubert G, Debray F, Dumas J, et al.2004. Hybrid and Giga-NMR projects at the Grenoble high magnetic field laboratory [J]. Applied Superconductivity, IEEE Transactions on,14(2): 1280-1282.
    Bhattacharya S, Divan D.1995. Synchronous frame based controller implementation for a hybrid series active filter system[C]//Industry Applications Conference,1995. Thirtieth IAS Annual Meeting, IAS'95., Conference Record of the 1995 IEEE. IEEE,3:2531-2540.
    Bordry F, Dupaquier A, Fernqvist G, et al.1997. High Current, Low Voltage Power Converter [20kA,6V]-LHC Converter Prototype[C]//APS Meeting Abstracts.
    Chang G W, Shee T C.2004. A novel reference compensation current strategy for shunt active power filter control[J]. Power Delivery, IEEE Transactions on,19(4):1751-1758.
    Cornillie B.2013. MISCELLANEA:Report on the 45th Annual Meeting of the Societas Linguistica Europaea (Stockholm, Sweden,29 August-1 September 2012)[J].
    Crow J E, Parkin D M, Schneider-Muntau H J, et al.1996. The United States National High Magnetic Field Laboratory:Facilities, science and technology [J]. Physica B:Condensed Matter, 216(3):146-152.
    Defay F, Llor A M, Fadel M.2008. A predictive control with flying capacitor balancing of a multicell active power filter[J]. Industrial Electronics, IEEE Transactions on,55(9):3212-3220.
    Dixon L W, Venegas G, Moran L A.1997. A series active power filter based on a sinusoidal current-controlled voltage-source inverter[J]. Industrial Electronics, IEEE Transactions on, 44(5):612-620.
    Erickson R W, Maksimovic D.2001. Fundamentals of power electronics[M]. Berlin:Springer.
    Fabre A, Saaid O, Wiest F, et al.1997. Low power current-mode second-order bandpass IF filter[J]. Circuits and Systems Ⅱ:Analog and Digital Signal Processing, IEEE Transactions on, 44(6):436-446.
    Franklin G F, Powell J D, Emami-Naeini A.1986. Feedback control of dynamics systems[J]. Berlin:Pretince Hall.
    Hans J Schneider-Muntau et al.2004. Swenson. Magnet Technology Beyond 50T[J]. IEEE Trans. Applied Superconductivity,16(2):926-933.
    Hase et al.2000. Bronze route conductors got 1 GHz NMR superconducting magnets[J]. IEEE Trans, on Applied Superconductivity,10(1):965.
    Heinrich J. Boenig, Ferenc Bogdan and Gary C. Moms, James A. Ferner et al.1994. Design and preliminary Test Results of the 40 MW Power Supply at the National High Magnetic Field Laboratory. IEEE Trans. Magnetics,30(4):1774-1777.
    Herlach F and Perenboom J.1995. Magnet laboratory facilities worldwide-an update [J]. Physical B,211:1-16.
    Hori S, Maeda T, Matsuno N, et al.2004. Low-power widely tunable Gm-C filter with an adaptive DC-blocking, triode-biased MOSFET transconductor[C]//Solid-State Circuits Conference,2004 ESSCIRC 2004. Proceeding of the 30th European. IEEE,99-102.
    Inoue K, Asano T, Kiyoshi T, et al.1992. High-field facilities under development and construction at the National Research Institute for Metals, Japan[J]. Physica B:Condensed Matter,177(1): 7-15.
    Ise T, Furukawa K, Kobayashi Y, Kumagai S, Shintomi et al.2003. Magnet power supply with power fluctuation compensating function using SMES for high intensity synchrotron [J]. IEEE Trans. Appl. Superconduct,13(2):1814-1817.
    Kiyoshi T, Kosuge M, Yuyama M, et al.2000. Generation of 23.4 T using two Bi-2212 insert coils[J]. Applied Superconductivity, IEEE Transactions on,10(1):472-477.
    Kiyoshi T et al.2002. Persistent-mode operation of a 920 MHz high-resolution NMR magnet[J]. IEEE Trans. on Applied Superconductivity,12(2):711-714.
    Kale M, Ozdemir E.2005. An adaptive hysteresis band current controller for shunt active power filter[J]. Electric power systems research,73(2):113-119.
    Kawamoto H, Sankai Y.2002. Power assist system HAL-3 for gait disorder person[M]//Computers helping people with special needs. Springer Berlin Heidelberg,196-203.
    Kido G, Nimori S, Hashi K, et al.2006. Development of active filter with MOS-FET for 15 MW dc power source[C]//Journal of Physics:Conference Series. IOP Publishing,51(1):580.
    Li Kuang, Liu Jinjun, Xiao Guochun, Wang Zhaoan.2006. Novel Load Ripple Voltage-Controlled Parallel DC Active Power Filters for High Performance Magnet Power Supplies [J]. IEEE Trans. Nuclear science,53(3):1530-1539.
    Maniktala S.2012. Switching power supplies A to Z[M]. Amsterdam:Elsevier.
    Masaru Tezuka, et al.1996. Power Supply and Control System for 40T Class Hybrid Magnet System[J]. IEEE Trans. Magnetic,32(4):2490-2494.
    Miller J R et al.1994. An overview of the 45 T hybrid magnet systems for the new national high magnetic field laboratory [J]. IEEE Trans. Magnetic,30(4):1563-1571.
    Moran L, Werlinger P, Dixon J, et al.1995. A series active power filter which compensates current harmonics and voltage unbalance simultaneously[C]//Power Electronics Specialists Conference,1995. PESC'95 Record.26th Annual IEEE. IEEE,1:222-227.
    Pereira M, Wild G, Huang H, and Sadek K.2002. Active filters in HVDC systems:Actual concepts and application experience[C].Proc.2002 IEEE Power System Technology Conf. Oct. 13-17,2:989-993.
    Rashid M H.2003. Introduction to PSpice using OrCAD for circuits and electronics[M]. Berlin: Prentice-Hall.
    Sabate J A, Vlatkovic V, Ridley R B, et al.1990. Design considerations for high-voltage high-power full-bridge zero-voltage-switched PWM converter[C]//Proc. IEEE APEC,90: 275-284.
    Schilling J, Boenig H, Gordon M, et al.2000. Operating experience of the United States national high magnetic field laboratory 60 T long pulse magnet [J], IEEE Transactions on Applied Superconductivity,10(1):526-529.
    Shyu K K, Yang M J, Chen Y M, et al.2008. Model reference adaptive control design for a shunt active-power-filter system[J]. Industrial Electronics, IEEE Transactions on,55(1):97-106.
    VlatkoviC V, Sabate J A, Ridley R B, et al.1992. Small-signal analysis of the phase-shifted PWM converter[J]. Power Electronics, IEEE Transactions on,7(1):128-135.
    Wang Q.2013. Practical design of magnetostatic structure using numerical simulation[M]. Hoboken:John Wiley & Sons.
    Xiao G, Pei Y, Li K, Yang X, and Wang Z.2003. A novel control approach to the dc active power filter used in a low ripple and large stable/pulse power supply[C].34th IEEE Power Electronics Specialists Conf., Acapulco, Mexico,2:1489-1493.
    Zhang W, Asplund G, Aberhg A, Jonsson U, and Loof O.1993. Active dc filter for HVDC system—A test installation in the Konti-Skan DC link at Lindome converter station[J]. IEEE Trans. Power Delivery,8(3):1599-1606.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700