用户名: 密码: 验证码:
浙江省饮用水水库水质演变及风险评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于降水的时空不均和河流水质的严重恶化,水库已成为浙江省最重要的饮用水源。近年来,随着经济的发展和城市建设的推进,不少水库呈现富营养化趋势,水库水质有显著下降趋势,因此,开展水库水质及流域生态环境研究对更好地保护水库水资源显得十分必要。本研究以遥感、GIS、数据挖掘等技术为手段,从水库水质及营养状况、流域土地利用变化和生态环境安全性等方面开展水库水质及风险评价研究,以期为建立集成地面常规监测、遥感监测、常规统计信息评价的全省饮用水水库综合监管系统、及时掌握饮用水水库的水质演变趋势和风险情况提供理论支持。主要研究内容与结论如下:
     (1)首先对浙江省30座大中型饮用水水库2001年至2013年的水质和营养状态进行分析,结论如下:2001年至2013年间浙江省水库的水质总体上发生了下降。2001年全部水库达到饮用水Ⅲ类水质要求,至2013年已经有10座水库未达到Ⅲ类水质等级。2001至2013年水库的营养水平总体上从贫营养向富营养演变,富营养化趋势显著。采用2010年TM遥感数据对水库的水质进行定性分析,发现遥感信息的总体变化趋势与地面监测的水质等级变化情况相一致,随着水质等级的下降,第一波段和第四波段的DN值有上升的趋势。
     (2)使用TM遥感数据和千岛湖实测水质数据,选用常规的统计回归模型和RBF人工神经网络模型两种方法对水体中的叶绿素a,透明度,总氮,总磷含量进行模拟和预测。在回归方法建模中,以丰水期数据为例,得出以(b3+b4)/b2为参数的对数模型为丰水期chl-a浓度的最佳遥感反演模型,以b1/b4为参数的幂函数模型为丰水期透明度的最佳遥感反演模型,以b1*b4为参数的多项式模型为丰水期总氮的最佳遥感反演模型,以(bl+b2+b3)/b4为参数的多项式模型为丰水期总磷的最佳遥感反演模型。在RBF人工神经网络模型建模中,采用Cfs(Correlation-based Feature Selection)方法对遥感参数进行最佳参数集合的选择,以选出的最佳参数为自变量用RBF人工神经网络模型对水质指标进行模拟和预测。对两种模型的精度进行比较后得出,RBF人工神经网络模型相比传统的统计回归模型具有更好的反演精度。
     (3)对水库流域1995、2000、2005和2010四个时期的土地利用变化情况进行分析。结果显示,1995-2010年间,水库流域内建设用地显著增加,水域小幅增加,林地面积基本保持平衡,而耕地面积有所减少。建设用地扩展速度较快的水库流域主要位于省域范围的北部和东部沿海区域,而相对较慢的水库流域多数位于西南部山林地区。研究期内建设用地的占用主要集中于低海拔和较平坦区域。人口增长和经济发展为建设用地扩张的重要驱动因素,其中人口和GDP同建设用地的相关性较高,工业总产值的作用相比这两个因素较小。2010年人口对建设用地的影响相比1995、2000和2005年明显下降,但是GDP和工业总产值的影响有显著上升,特别是工业产值的影响大幅上升。人口是耕地的最重要影响因子,GDP同耕地面积的相关性较低,工业总产值和耕地面积的相关性不明显。比较水库流域内耕地比例与建设用地比例与水库水质之间的关系,发现随着水质等级的下降,流域平均建设用地比例有升高的趋势,说明建设用地的增加将导致水库水质的下降。虽然流域建设用地扩张速度相对比较缓慢,但水库水质对流域内建设用地增长十分敏感,因此需严格控制流域内建设用地的增加。
     (4)研究选择包括土地利用、社会经济、水库特征和气候等方面的16个参数作为自变量,以2010年浙江省73座饮用水水源地水库的水质等级作为目标变量,用决策树方法进行建模,并对水库水质进行预测。模型的训练精度达到94.23%,预测精度达到80.95%。人为因素包括工业废水排放、工业产值、GDP、人口密度和土地利用方式是与浙江省饮用水水库水质联系最紧密的影响因子。对参数重要性分析的结果显示工业废水的排放是造成水库水质变化的最重要因素。
     (5)最后结合模糊层次分析法(FAHP)和集对分析理论,借助遥感和GIS手段,在压力-状态-响应(PSR)框架下对30座水库流域1995年和2010年两个时期的生态环境安全性进行了评价和分析。评价结果显示,从1995年至2010年水库流域生态环境安全性整体上发生了下降,由安全向潜在危险和危险转变。从分指标的评价结果中可知,下降的主要为压力和状态指标,而响应指标略有上升。在空间分布上来看,西南部的安全性整体上要高于东北部地区,安全性发生显著下降的流域主要位于浙江省的中部和东北部地区。
Unbalanced precipitation and seriously deteriorated quality of river water determine the most important role that reservoirs played as the drinking water resource in Zhejiang Province in China. Protection of reservoirs water became an urgent task relating to the province's drinking water security and sustainable economic development. Recently, with the process of economic development and urbanization, a number of reservoirs have been confronted with the problem of water eutrophication and quality deterioration. Thus, it is quite necessary to carry out the researches on reservoir water quality and watershed ecological environment for better protecting the reservoir water. This study evaluates the reservoir water environment from aspects of reservoir water quality, eutrophication status, land use change of watershed and ecological security of reservoir environment, by integrating remote sensing, GIS as well as data mining technology. The main objectives and results are as follows:
     Firstly, the changes in water quality levels and eutrophication status of30large/medium-sized drinking reservoirs in Zhejiang Province from2001to2013were analyzed. It is concluded that the water quality of these reservoirs declined in general during this period, In2001, all these estimated reservoirs reached class Ⅲ standard for drinking water quality, while there were10reservoirs that were not up to class Ⅲ standard in2013. Generally, the eutrophication status of these reservoirs exhibited the transformation from oligotrophic to eutrophic, with significance in water eutrophication during our estimated period. The results of qualitative analysis to the reservoirs water with TM images (2010) were consistent with the changes of water quality. It is shown that as the decline of water quality levels, the DN value of band1and band4exhibited a rising trend.
     Based on TM images and the water monitoring data of Qiandao Lake, this study adopted traditional statistical regression model and RBF artificial neural network model to simulate and predict chlorophyll a, transparency, total nitrogen and total phosphorus of the reservoirs water, In the regression model, take the high water period as an example, it is concluded that logarithmic model with parameter of (b3+b4)/b2was the best inverse model for chlorophyll a with remote sensing, exponential function model with parameter of bl/b4was the best inverse model for transparency, exponential function model with parameter of b1*b4and exponential function model with parameter of (bl+b2+b3)/b4were the best inverse model respectively for total nitrogen and total phosphorus In the RBF artificial neural network model, it used Cfs (Correlation-based Feature Selection) technology to select the optimal dataset of remote sensing parameters, and with this optimal dataset as variables to simulate and predict indicators of water quality. Through comparison between the accuracies of these two models, it is concluded that the RBF artificial neural network model was estimated to have better performance.
     According to analysis of the land use change in the reservoir watershed in the year of1995,2000,2005and2010, it revealed that built-up land increased significantly, water bodies increased slightly, forest area was balanced and cultivated land decreased during this15-year period. Reservoir watersheds that experiencing relatively rapid expansion in built-up lands were observed in the northern and eastern coastal regions of Zhejiang Province, while reservoir watersheds that experiencing relatively slow built-up lands were observed in southwestern Zhejiang Province. Built-up lands occupation mainly occurred in flat areas with low altitude. Population and economy were estimated as two main driving factors of built-up land expansion for the strong correlation between population/GDP and the area of built-up lands. Total industrial output played lighter role compared with population and GDP. The Influence of population in2010visibly decreased compared with1995,2000and2005, but the effects of GDP and total industrial output has increased significantly. Population is detected as the most important driving factors of cultivated land decrease. However, low correlation appeared between area of cultivated land and GDP, and no obvious correlation was detected between total industrial output and area of cultivated land. The comparison between the proportions of the cultivated land/construction land and the level of reservoir water quality showed that with the declined water quality level, the average proportion of construction land in reservoir watershed presented a trend of increase.
     We adopted CART decision tree method to predict the water quality of reservoirs in Zhejiang Province by selecting16parameters including land use, socio-economic indicators, reservoir characteristics and climate as the independent variables and the water quality level of73drinking reservoirs of2010as the dependent variables. The classification accuracy of the model reached94.23%. After validation with the test dataset, the accuracy of the model reached80.95%. The CART rules revealed that human factors, including industrial wastewater emissions, industrial output, GDP, population density and land use, were the main factors in determining the quality level of reservoir water in Zhejiang province. The analysis of the importance of parameters showed that industrial wastewater emission was the most important factor causing water quality change.
     Finally, we used the PSR framework to evaluate and analyze the ecological environmental security of30large reservoir watersheds in Zhejiang Province from1995to2010by integrating RS, GIS, fuzzy analytic hierarchy process (FAHP) and set pair theory. The results showed that the ecological environment security of the reservoir watersheds had decreased in general from1995to2010. The pressure and status sub-indices mainly contributed to the decrease, while the response sub-index had a slight increase. For the spatial distribution, the security level of southwest is higher than the northeast in general. And regions where significant decreased security occurred were mainly concentrated in the central and northeast areas of Zhejiang Province.
引文
1. Allan D, Erickson D, Fay J (1997) The influence of catchment land use on stream integrity across multiple spatial scales. Freshwater Biol 37:149-161.
    2. Anderson MC, Allen RG, Morse A, Kustas WP (2012) Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens Environ 122:50-65.
    3. Arbuckle KE, Downing JA (2002) Freshwater mussel abundance and species richness:GIS relationships with watershed land use and geology. Can J Fish Aquat Sci 59:310-316.
    4. Baker A (2005) Land use and water quality. Encyclopedia of Hydrological Sciences.
    5. Bastiaanssen WG (1998) Remote sensing in water resources management:the state of the art. International Water Management Institute.
    6. Berk A, Anderson GP, Bernstein LS, Acharya PK, Dothe H, Matthew MW, Adler-Golden SM, Chetwynd Jr JH, Richtsmeier SC, Pukall B (1999) MODTRAN4 radiative transfer modeling for atmospheric correction. International Society for Optics and Photonics. pp 348-353.
    7. Bhaduri B, Harbor J, Engel B, Grove M (2000) Assessing watershed-scale, long-term hydrologic impacts of land-use change using a GIS-NPS model. Environ Manage 26:643-658.
    8. Bockelmann BN, Fenrich EK, Lin B, Falconer RA (2004) Development of an ecohydraulics model for stream and river restoration. Ecol Eng 22:227-235.
    9. Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. CRC press.
    10. Brivio PA, Giardino C, Zilioli E (2001) Determination of chlorophyll concentration changes in Lake Garda using an image-based radiative transfer code for Landsat TM images. Int J Remote Sens 22:487-502.
    11. Brown JF, Loveland TR, Merchant JW, Reed BC, Ohlen DO (1993) Using multisource data in global land-cover characterization:Concepts, requirements, and methods. Photogramm Eng Rem S 59:977-987.
    12. Cai X, Ringler C (2007) Balancing agricultural and environmental water needs in China:alternative scenarios and policy options. Water Policy 9:95-108.
    13. Campbell G, Phinn SR, Dekker AG, Brando VE (2011) Remote sensing of water quality in an Australian tropical freshwater impoundment using matrix inversion and MERIS images. Remote Sens Environ 115:2402-2414.
    14. Carlson RE (1977) A trophic state index for lakesl. Limnol Oceanogr 22:361-369.
    15. Chang H (2008) Spatial analysis of water quality trends in the Han River basin, South Korea. Water Res 42:3285-3304.
    16. Changming L, Jingjie Y, Kendy E (2001) Groundwater exploitation and its impact on the environment in the North China Plain. Water Int 26:265-272.
    17. Cheng H, Hu Y, Zhao J (2009) Meeting China's water shortage crisis:current practices and challenges. Environ Sci Technol 43:240-244.
    18. Childs C (2004) Interpolating surfaces in ArcGIS spatial analyst. ArcUser, July-September:32-35.
    19. Crosbie B, Chow-Fraser P (1999) Percentage land use in the watershed determines the water and sediment quality of 22 marshes in the Great Lakes basin. Can J Fish Aquat Sci 56:1781-1791.
    20. Darecki M, Weeks A, Sagan S, Kowalczuk P, Kaczmarek S (2003) Optical characteristics of two contrasting Case 2 waters and their influence on remote sensing algorithms. Cont Shelf Res 23:237-250.
    21. De'Ath G, Fabricius KE (2000) Classification and regression trees:a powerful yet simple technique for ecological data analysis. Ecology 81:3178-3192.
    22. Dekker AG (1993) Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing.
    23. Dekker AG (1995) Remote sensing for water quality research and development. EARSeL Newsletter 22:10-17.
    24. Dekker AG, Zamurovic-Nenad Z, Hoogenboom HJ, Peters S (1996) Remote sensing, ecological water quality modelling and in situ measurements:a case study in shallow lakes. Hydrological sciences journal 41:531-547.
    25. Eleveld MA, Pasterkamp R, van der Woerd HJ, Pietrzak JD (2008) Remotely sensed seasonality in the spatial distribution of sea-surface suspended particulate matter in the southern North Sea. Estuarine, Coastal and Shelf Science 80:103-113.
    26. Fan H, Huang H, Zeng T (2006) Impacts of anthropogenic activity on the recent evolution of the Huanghe (Yellow) River Delta. J Coastal Res:919-929.
    27. Foster S, Garduno H, Evans R, Olson D, Tian Y, Zhang W, Han Z (2004) Quaternary aquifer of the North China Plain—assessing and achieving groundwater resource sustainability. Hydrogeol J 12:81-93.
    28. Fung T (1990) An assessment of TM imagery for land-cover change detection. Ieee T Geosci Remote 28:681-684.
    29. Giardino C, Bresciani M, Villa P, Martinelli A (2010) Application of remote sensing in water resource management:the case study of Lake Trasimeno, Italy. Water Resour Manag 24:3885-3899.
    30. Giardino C, Pepe M, Brivio PA, Ghezzi P, Zilioli E (2001) Detecting chlorophyll, Secchi disk depth and surface temperature in a sub-alpine lake using Landsat imagery. Sci Total Environ 268:19-29.
    31. Gitelson AA, Merzlyak MN (2003) Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J Plant Physiol 160:271-282.
    32. Glover F, Laguna M, Marti R (2000) Fundamentals of scatter search and path relinking. Control Cybern 39:653-684.
    33. Haack B, Bryant N, Adams S (1987) An assessment of Landsat MSS and TM data for urban and near-urban land-cover digital classification. Remote Sens Environ 21:201-213.
    34. Hall MA (1999) Correlation-based feature selection for machine learning. The University of Waikato.
    35. Han Z (2003) Groundwater resources protection and aquifer recovery in China. Environ Geol 44:106-111.
    36. Huang J, Wang R, Zhang H (2007) Analysis of patterns and ecological security trend of modern oasis landscapes in Xinjiang, China. Environ Monit Assess 134:411-419.
    37. Huang Q, Wang R, Ren Z, Li J, Zhang H (2007) Regional ecological security assessment based on long periods of ecological footprint analysis. Resources, Conservation and Recycling 51:24-41.
    38. Hundecha Y, Bardossy A (2004) Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model. J Hydrol 292:281-295.
    39. Hwang S, Lee S, Son J, Park G, Kim S (2007) Moderating effects of the geometry of reservoirs on the relation between urban land use and water quality. Landscape Urban Plan 82:175-183.
    40. Ines AV, Honda K, Das Gupta A, Droogers P, Clemente RS (2006) Combining remote sensing-simulation modeling and genetic algorithm optimization to explore water management options in irrigated agriculture. Agr Water Manage 83:221-232.
    41. Jeon J, Yoon CG, Ham J, Jung K (2004) Model development for nutrient loading estimates from paddy rice fields in Korea. Journal of Environmental Science and Health, Part B 39:845-860.
    42. Jiang Y (2009) China's water scarcity. J Environ Manage 90:3185-3196.
    43. Jiang Z, Su S, Jing C, Lin S, Fei X, Wu J (2012) Spatiotemporal dynamics of soil erosion risk for Anji County, China. Stoch Env Res Risk A 26:751-763.
    44. Jianjun Y, Lei W, Ye S (2007) Issues related to water quality protection of reservoirs in Zhejiang Province and countermeasures. China Water Resources 10:49.
    45. Jogo W, Hassan R (2010) Balancing the use of wetlands for economic well-being and ecological security:The case of the Limpopo wetland in southern Africa. Ecol Econ 69:1569-1579.
    46. Jurdi M, Korfali SI, Karahagopian Y, Davies BE (2002) Evaluation of water quality of the Qaraaoun Reservoir, Lebanon:Suitability for multipurpose usage. Environ Monit Assess 77:11-30.
    47. Kloiber SM, Brezonik PL, Olmanson LG, Bauer ME (2002) A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote Sens Environ 82:38-47.
    48. Krivtsov V (2004) Investigations of indirect relationships in ecology and environmental sciences:a review and the implications for comparative theoretical ecosystem analysis. Ecol Model 174:37-54.
    49. Kuo J, Wang Y, Lung W (2006) A hybrid neural-genetic algorithm for reservoir water quality management. Water Res 40:1367-1376.
    50. Lee S, Hwang S, Lee S, Hwang H, Sung H (2009) Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics. Landscape Urban Plan 92:80-89.
    51. Lenat DR, Crawford JK (1994) Effects of land use on water quality and aquatic biota of three North Carolina Piedmont streams. Hydrobiologia 294:185-199.
    52. Li A, Wang A, Liang S, Zhou W (2006) Eco-environmental vulnerability evaluation in mountainous region using remote sensing and GIS—A case study in the upper reaches of Minjiang River, China. Ecol Model 192:175-187.
    53. Li L, Shi Z, Yin W, Zhu D, Ng SL, Cai C, Lei A (2009) A fuzzy analytic hierarchy process (FAHP) approach to eco-environmental vulnerability assessment for the danjiangkou reservoir area, China. Ecol Model 220:3439-3447.
    54. Li T, Huang H (2009) Applying TRIZ and Fuzzy AHP to develop innovative design for automated manufacturing systems. Expert Syst Appl 36:8302-8312.
    55. Liang P, Liming D, Guijie Y (2010) Ecological security assessment of Beijing based on PSR model. Procedia Environmental Sciences 2:832-841.
    56. Liu AJ, Tong ST, Goodrich JA (2000) Land use as a mitigation strategy for the water-quality impacts of global warming:a scenario analysis on two watersheds in the Ohio River Basin. Environmental Engineering and Policy 2:65-76.
    57. Liu C, Xia J (2004) Water problems and hydrological research in the Yellow River and the Huai and Hai River basins of China. Hydrol Process 18:2197-2210.
    58. Liu J, Diamond J (2005) China's environment in a globalizing world. Nature 435:1179-1186.
    59. Liu J, Liu M, Zhuang D, Zhang Z, Deng X (2003) Study on spatial pattern of land-use change in China during 1995-2000. Science in China Series D:Earth Sciences 46:373-384.
    60. Liu J, Yang W (2012) Water sustainability for China and beyond. Science 337:649-650.
    61. Lu R, Lo S, Hu J (1999) Analysis of reservoir water quality using fuzzy synthetic evaluation. Stoch Env Res Risk A 13:327-336.
    62. Marce R, RODRIGUEZ ARIAS MA, GARCIA JC, Armengol J (2010) El Nino Southern Oscillation and climate trends impact reservoir water quality. Global Change Biol 16:2857-2865.
    63. McFeeters SK (1996) The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int J Remote Sens 17:1425-1432.
    64. Merem EC, Yerramilli S, Twumasi YA, Wesley JM, Robinson B, Richardson C (2011) The applications of GIS in the analysis of the impacts of human activities on South Texas Watersheds. International journal of environmental research and public health 8:2418-2446.
    65. Ninyerola M, Pons X, Roure JM (2007) Monthly precipitation mapping of the Iberian Peninsula using spatial interpolation tools implemented in a Geographic Information System. Theor Appl Climatol 89:195-209.
    66. Ostlund C, Flink P, Strombeck N, Pierson D, Lindell T (2001) Mapping of the water quality of Lake Erken, Sweden, from imaging spectrometry and Landsat Thematic Mapper. Sci Total Environ 268:139-154.
    67. Owrangi AM, Lannigan R, Simonovic SP (2014) Interaction between land-use change, flooding and human health in Metro Vancouver, Canada. Nat Hazards 72:1219-1230.
    68. Pascarella JB, Aide TM, Serrano MI, Zimmerman JK (2000) Land-use history and forest regeneration in the Cayey Mountains, Puerto Rico. Ecosystems 3:217-228.
    69. Pons X, Sole-Sugranes L (1994) A simple radiometric correction model to improve automatic mapping of vegetation from multispectral satellite data. Remote Sens Environ 48:191-204.
    70. Qiu L, Gan M, Wang K, Deng J, Hong Y, Xu J, Zhu W (2012) SOURCE IDENTIFICATION OF SOIL Cu, Zn, Pb, AND Cd FROM ANTHROPOGENIC ACTIVITIES BY DECISION TREE ANALYSIS IN FUYANG COUNTY, CHINA. Fresen Environ Bull 21:1390-1398.
    71. Sawaya KE, Olmanson LG, Heinert NJ, Brezonik PL, Bauer ME (2003) Extending satellite remote sensing to local scales:land and water resource monitoring using high-resolution imagery. Remote Sens Environ 88:144-156.
    72. Schultz GA, Engman ET (2000) Remote sensing in hydrology and water management. Springer Berlin etc.
    73. Seto KC, Woodcock CE, Song C, Huang X, Lu J, Kaufmann RK (2002) Monitoring land-use change in the Pearl River Delta using Landsat TM. Int J Remote Sens 23:1985-2004.
    74. Sliva L, Dudley Williams D (2001) Buffer zone versus whole catchment approaches to studying land use impact on river water quality. Water Res 35:3462-3472.
    75. Su S, Chen X, DeGloria SD, Wu J (2010) Integrative fuzzy set pair model for land ecological security assessment:a case study of Xiaolangdi Reservoir Region, China. Stoch Env Res Risk A 24:639-647.
    76. Su S, Zhi J, Lou L, Huang F, Chen X, Wu J (2011) Spatio-temporal patterns and source apportionment of pollution in Qiantang River (China) using neural-based modeling and multivariate statistical techniques. Physics and Chemistry of the Earth, Parts A/B/C 36:379-386.
    77. Sudheer KP, Chaubey I, Garg V (2006) lake water quality assessment from landsat thematic mapper data using neural network:an approach to optimal band combination selectionl. Wiley Online Library.
    78. Thenkabail PS, Schull M, Turral H (2005) Ganges and Indus river basin land use/land cover (LULC) and irrigated area mapping using continuous streams of MODIS data. Remote Sens Environ 95:317-341.
    79. Thiemann S, Kaufinann H (2000) Determination of chlorophyll content and trophic state of lakes using field spectrometer and IRS-IC satellite data in the Mecklenburg Lake District, Germany. Remote Sens Environ 73:227-235.
    80. Tong ST, Chen W (2002) Modeling the relationship between land use and surface water quality. J Environ Manage 66:377-393.
    81. Tso TC (2004) Agriculture of the future. Nature 428:215-217.
    82. Tu J, Xia Z, Clarke KC, Frei A (2007) Impact of urban sprawl on water quality in eastern Massachusetts, USA. Environ Manage 40:183-200.
    83. Tyler AN, Svab E, Preston T, Presing M, Kovacs WA (2006) Remote sensing of the water quality of shallow lakes:A mixture modelling approach to quantifying phytoplankton in water characterized by high-suspended sediment, Int J Remote Sens 27:1521-1537.
    84. Vasconcelos JA, Maciel JH, Parreiras RO (2005) Scatter search techniques applied to electromagnetic problems. Magnetics, IEEE Transactions on 41:1804-1807.
    85. Wang J, Da L, Song K, Li B (2008) Temporal variations of surface water quality in urban, suburban and rural areas during rapid urbanization in Shanghai, China. Environ Pollut 152:387-393.
    86. Wei Z, Hui-zhen Z, Xiao-Hua Z, Qiao W, Wen-Jie W, Xiu-qin WU (2005) Integrated evaluation of ecological security at different scales using remote sensing:a case study of Zhongxian County, the Three Gorges area, China.
    87. White MD, Greer KA (2006) The effects of watershed urbanization on the stream hydrology and riparian vegetation of Los Penasquitos Creek, California. Landscape Urban Plan 74:125-138.
    88. Whitehead PG, Wilby RL, Battarbee RW, Kernan M, Wade AJ (2009) A review of the potential impacts of climate change on surface water quality. Hydrological Sciences Journal 54:101-123.
    89. Wu C, Maurer C, Wang Y, Xue S, Davis DL (1999) Water pollution and human health in China. Environ Health Persp 107:251.
    90. Yoon CG, Ham J, Jeon J (2003) Mass balance analysis in Korean paddy rice culture. Paddy and Water Environment 1:99-106.
    91. Yu F, Li XB, Wang H, Yu HJ (2006) Land use change and eco-security assessment of Huangfuchuan watershed. Acta Geographica Sinica 61:645-653.
    92. Zhang X, Lin F, Jiang Y, Wang K, Wong MT (2008) Assessing soil Cu content and anthropogenic influences using decision tree analysis. Environ Pollut 156:1260-1267.
    93. Zhang Y, Liu M, Qin B, van der Woerd HJ, Li J, Li Y (2009) Modeling remote-sensing reflectance and retrieving chlorophyll-a concentration in extremely turbid case-2 waters (Lake Taihu, China). Geoscience and Remote Sensing, IEEE Transactions on 47:1937-1948.
    94. Zhao KQ, Xuan AL (1996) Set pair theory-a new theory method of non-define and its applications. Systems engineering 14:18-23.
    95. Zhao Y (1999) Distribution and comprehensive repair of Chinese environmental vulnerability types. Chinese Environmental Sciences Press, Beijing, China (in Chinese).
    96. Zhou W, Wang S, Zhou Y, Troy A (2006) Mapping the concentrations of total suspended matter in Lake Taihu, China, using Landsat-5 TM data, Int J Remote Sens 27:1177-1191.
    97. Zhu Z, Zhou H, Ouyang T, Deng Q, Kuang Y, Huang N (2001) Water shortage: a serious problem in sustainable development of China. The International Journal of Sustainable Development & World Ecology 8:233-237.
    98. Zou Z, Yun Y, Sun J (2006) Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. Journal of Environmental Sciences 18:1020-1023.
    99. 蔡海生,陈美球,赵小敏(2003)脆弱生态环境脆弱度评价研究进展.江西农业大学学报25:270-275.
    100.蔡临明(2010)浙江省重要水库型饮用水水源地富营养化态势分析及对策.中国水利:19-20.
    101.陈华,安娜,杨清华(2007)基于GPS实测控制点的SPOT 51A数据几何校正方法精度比较.国土资源遥感19:47-50.
    102.陈晓芳,曹瑛杰(2008)浙江省长潭水库富营养化特征研究.安徽农业科学36:8245-8248.
    103.陈星,周成虎(2006)生态安全:国内外研究综述.地理科学进展24:8-20.
    104.陈云浩,冯通,史培军,王今飞(2006)基于面向对象和规则的遥感影像分类研究.武汉大学学报:信息科学版31:316-320.
    105.丁莉东,吴昊,王长健,覃志豪,章其祥(2007)基于谱间关系的MODIS遥感影像水体提取研究.测绘与空间地理信息29:25-27.
    106.杜桂森,孟繁艳,李学东,张为华,王建厅,武殿伟(1999)密云水库水质现状及发展趋势.环境科学20:110-112.
    107.付春平,钟成华,邓春光(2005)水体富营养化成因分析.重庆建筑大学学报1.
    108.何锡君,刘定国,吕振平(2011)浙江省重点大中型供水水库水质现状评价.水利发展研究11:40-42.
    109.贺容(2008)基于多源数据的土地利用信息遥感提取研究.电子科技大学.
    110.贺中华,杨胜天,梁虹,赵芳(2004)基于GIS和RS的喀斯特流域枯水资源影响因素识别——以贵州省为例.中国岩溶23:48-55.
    111.黄菊香,逢勇,马璇,张文佳(2009)宁波市周公宅-皎口水库水环境现状分 析及污染治理措施探讨.
    112.江辉(2011)基于多源遥感的鄱阳湖水质参数反演与分析[D].南昌大学.
    113.姜树君,王净(2004)官厅水库水质污染状况及趋势分析.北京水利:31-32.
    114.金春华,刘宝宁,曹政,朱文才,沈潞(2009)浙江省峡谷型饮用水水库蓝藻水华的形成机理及对策.
    115.金树权(2008)水库水源地水质模拟预测与不确定性分析[D].浙江大学.
    116.金相灿,刘树坤,章宗社(1995)中国富营养湖泊.北京:中国海洋出版社.
    117.雷坤,郑丙辉,王桥(2004)基于中巴地球资源1号卫星的太湖表层水体水质遥感.环境科学学报24:376-380.
    118.李思悦,张全发(2008)运用水质指数法评价南水北调中线水源地丹江口水库水质.环境科学研究21:61-68.
    119.林秋奇,韩博平(2001)水库生态系统特征研究及其在水库水质管理中的应用.生态学报21:1034-1040.
    120.刘纪远,张增祥,庄大方(2003)20世纪90年代中国土地利用变化时空特征及其成因分析[J].地理研究22:1-12.
    121.路云阁,许月卿,蔡运龙(2005)基于遥感技术和GIS的小流域土地利用/覆被变化分析.地理科学进展24:79-86.
    122.吕振平,董华,何锡君(2010)浙江省供水水库的水质评价及富营养化防治对策研究.水生态学杂志3:18-21.
    123.钱巧静,谢瑞,张磊,颜长珍,吴炳方(2005)面向对象的土地覆盖信息提取方法研究.遥感技术与应用20:338-342.
    124.邱乐丰(2012)富阳市土地生产力时空变化研究.浙江大学.
    125.任春涛(2007)基于遥感监测的湖泊富营养化状态的模糊模式识别研究.内蒙古农业大学.
    126.沈芳,匡定波(2003a)太湖流域典型中小湖群水资源利用及动态变化的遥感调查与分析.遥感学报7:221-226.
    127.沈芳,匡定波(2003b)青海湖最近25年变化的遥感调查与研究.湖泊科学15:289-296.
    128.施南峰,李海明,陈国华,叶建杰,虞建锋(2008)浙江省慈溪市水环境污 染现状及控制策略.疾病监测1:24.
    129.石媛媛,邓劲松,陈利苏,张东彦,丁晓东,王珂(2010)利用计算机视觉和光谱分割技术进行水稻叶片钾胁迫特征提取与诊断研究.光谱学与光谱分析:214-219.
    130.疏小舟,尹球(2000)内陆水体藻类叶绿素浓度与反射光谱特征的关系.遥感学报4:41-45.
    131.苏世亮(2013)流域生态系统对城市化的时空响应.浙江大学.
    132.孙庆艳,余新晓,胡淑萍,肖洋,李金海,武军(2008)基于ArcGIS环境下DEM流域特征提取及应用[J].北京林业大学学报30:144-147.
    133.王孝武,孙水裕(2009)基于TM数据和ANN的河流水质参数监测研究.环境工程学报3:1532-1536.
    134.吴海珍,阿如旱,郭田保,孙紫英(2011)基于RS和GIS的内蒙古多伦县土地利用变化对生态服务价值的影响.地理科学31:110-116.
    135.吴琳娜,杨胜天,刘晓燕,罗娅,周旭,赵海根(2014)1976年以来北洛河流域土地利用变化对人类活动程度的响应.地理学报69:54-63.
    136.肖笃宁,陈文波(2002)论生态安全的基本概念和研究内容.应用生态学报13:354-358.
    137.肖桂义,陆继龙,蔡波,王春珍,戚长谋(2003)长春市石头口门水库水质演变及对策.地质与勘探39:61-63.
    138.杨文花,曹瑛杰(2010)浙江省长潭水库水质指标季节性变化及其相关性研究.江西农业学报22:148-151.
    139.杨玉泉,张学功,陈海生(2009)浙江省白溪水库水质指标季节性变化及其生态保护研究.安徽农业科学37:7125-7127.
    140.殷明,施敏芳,刘成付(2007)丹江口水库水质总氮超标成因初步分析及控制对策.环境科学与技术30:35-36.
    141.俞建军,王磊,沈叶(2007)浙江供水水库水质保护中存在的问题及对策.中国水利:135-137.
    142.钟一铭,曹瑛杰(2010)土地利用方式对浙江省长潭水库富营养化程度的影响.江西农业学报22:110-113.
    143.朱广伟,陈伟民,李恒鹏,任理,顾钊,赵林林,高永霞,贺冉冉,张运林,崔扬(2013)天目湖沙河水库水质对流域开发与保护的响应.湖泊科学25:809-817.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700