用户名: 密码: 验证码:
制药循环水系统阻垢缓蚀剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在水资源日益短缺今天,国家不断提高水资源和排污费收取标准,就使得每个用水大企业不得不强化循环水装置的运行,提高水的重复利用率,要减少新水补加量,并减少废水排放量。循环冷却水系统是制药水量最大、水质最为复杂的用水系统,系统运行的稳定性对制药安全经济运行具有重要影响。
     本论文结合河北某制药企业循环冷却水系统运行特点和水质状况,对目前国内常用的6种单体药剂:2-膦酰基丁烷-1,2,4-三羧酸(PBTCA)、羟基乙叉二膦酸(HEDP)、2-羟基膦酰基乙酸(HPAA)、氨基三甲叉膦酸(ATMP)、丙烯酸/丙烯酸酯共聚物(HB-901)、丙烯酸/丙烯酸酯/AMPS共聚物(HB-903)进行了碳酸钙静态阻垢实验研究和分散氧化铁性能的比较,对PBTCA、HEDP、HPAA、ATMP四种单体药剂进行了缓蚀性能筛选研究,在此基础上,采用正交实验法对筛选出的四种单体药剂PBTCA、HPAA、HB-901和HB-903进行复合配方制备。分别采用极限碳酸盐法和旋转挂片法,对1#~9#复配药剂的阻垢缓蚀性能进行了实验研究,最后优化出适合该制药企业循环冷却水系统的最佳水质稳定配方,并将其应用于实际工程。
     实验研究结果表明:
     (1)该制药企业补水水质属高碱、高硬型水质,通过水质稳定性判别,该系统随浓缩倍数增加结垢趋势加重,当浓缩倍数超过2.0时,结垢倾向严重。
     (2)对6种单体药剂:PBTCA、HB-901、HB-903、HEDP、ATMP、HPAA进行了阻垢实验研究,在相同药剂浓度条件下,对碳酸钙阻垢分散效果:PBTCA>HB-901>HEDP≈ATMP>HPAA>HB903;实验药剂随温度升高阻垢分散效果均出现不同程度降低,其中PBTCA和HB-901耐温性较好;分散氧化铁能力排序为:HB-903>HB-901>PBTCA≈HPAA>HEDP>ATMP。
     (3)对4种单体药剂:PBTCA、HEDP、HPAA、ATMP进行了缓蚀实验研究,在不同的实验浓度条件下,4种单体缓蚀率均随使用浓度增加而提高,随温度升高而下降;相同药剂浓度条件下,缓蚀率PBTCA≈HPAA >HEDP≈ATMP。
     (4)综合考虑阻垢和缓蚀效果,确定复合配方的主要成分为:PBTCA、HPAA、HB-901和HB-903。
     (5)对筛选的四种单体药剂通过正交设计进行复合配方的优化研究,实验结果表明:2#药剂的阻垢缓蚀效果最好,极限浓缩倍数为3.094,腐蚀率为0.0246 mm/a,缓蚀率为93%,各项指标均达到设计规范要求。最终选定的阻垢缓蚀剂配方为:PBTCA:HB-901:HB-903:HPAA之比为10:25:10:10。
Nowadays the water resources are more and more scare. Government is raising the charges on water usage and disposal charge. This trend makes almost every industry company to improve the operation of circulation infrastructure, improving the water recirculation efficiency, in order to reduce the new water supply amount and waste water discharge amount. Water recirculation cooling system is the most complicated water system in medicine production process. The stability of the system has great influence on the safety operation of medicine production.
     The most commonly used monomer inhibitors in China are 2 - phosphono butane -1, 2,4 - tricarboxylic acid (PBTCA), Hydroxy ethylidene diphosphonic acid (HEDP), 2 - hydroxy phosphono acetic acid (HPAA), Amino trimethylene phosphonic acid (ATMP) Acrylic acid / Acrylate(HB-901)、Acrylic acid / Acrylate /AMPS Copolymer(HB-903). Based on the Calcium carbonate static scale preventing experiment and comparison with dispersed iron oxide, scale inhibitor ability selection research on PBTCA、HEDP、HPAA、ATMP was carried out. On the bases of this research, Orthogonal Experiment method was adopted to prepare the sample using four selected monomer inhibitors, PBTCA, HEDP, HPAA, ATMP. Using limit carbonate method and rotary coupon method respectively,experiments were carried out feathering on the scale preventing ability of 1#~9# compound pharmacy. At last, the optimized formula of the scale preventing solution for the plant is finally found out. It was applied to real world.
     The experimental results show that:
     (1) The water supply of this pharmaceutical plant is high alkalinity, high hardness quality. Through the discrimination of water property stability, the scale effect is more severe as the increase of concentration multiple. When the concentration multiple is larger than 2.0, the scale effect tends to be very severe.
     (2) Among those 6 monomer inhibitors, PBTCA、HB-901、HB-903、HEDP、ATMP、HPAA, under the same concentration, the scale inhibition abilities of the first selected six monomer inhibitors are: PBTCA>HB-901>HEDP≈ATMP>HPAA>HB903; The scale preventing ability of samples is decreasing with the increase of temperatures. Among all the samples, PBTCA and HB-901 are the best. The ability of disperse iron dioxide of the samples are: PBTCA≈HPAA >HEDP≈ATMP.
     (3) Inhibitor ability selection research on PBTCA、HEDP、HPAA、ATMP was carried out. The inhibitor ability of samples is creasing with the increase of concentration. The corrosion prevention effect: PBTCA≈HPAA>HEDP≈ATMP>EDTMP.
     (4) Considering the scale preventing effect and the corrosion prevention effect of the inhibitors, the final compound of the inhibitors are composed of PBTCA, HPAA, HB-901 and HB-903.
     (5) By the optimization of compound effect research, the test results show that: 2# sample has the best scale and corrosion prevention effect. Its limit concentration multiple is 3.094, the corrosion rate is 0.0246 mm/a, the corrosion prevention rate is 93%.The final ingredients ratio should be PBTCA:HB-901:HB-903:HPAA equals to 10:25:10:10.
引文
[1]张策,苏志远.工业用水节水新措施—污水回用探讨[J].石油化工安全环保技术,2007, 23(4) :11-13
    [2]林彦杰,李晓莲,张宗英等.绿色环保型水处理药剂的研究进展[J].化工进展, 2009,(s2)
    [3]冯群伟,刘百山,夏琼.我国水处理剂的研究现状和方向[J].化学工程与设备,2009,(10)
    [4] Freudenereich Johannes,Fritz-Langhals Elke,Process for the preparation of Aldehydes and ketones. US6023000, 2000-2
    [5] Tang J S,Fu S L,Emmons D H.Biodegradable modified polyaspartic polymers for corrosion and scale control[P].US6022401,2000-02-08
    [6] Diana Darling,Ram Rakshpal.Green Chemistry Applied to Corrosion and Scale Inhibitors[J].Chemical Treatment,1998,(9):42-45
    [7] Persinski Leonard John, Ralston Paul Hotchkiss, Inhibition of scale deposition, US3928196, 1975-12
    [8] Gutierrez Elizabeth Charaterizati on of i mmobilize poly - L- as partate as metal chelat or [J] Environmen Science Technology, 1999, 33 (10) : 1664– 1670
    [9] Nalco Chemical CO, GB1521440, Method of producing pHospHinico substituted alipHatic carboxylic acids,1978-8
    [10] Grigory Y M,Daniel A,Batzel J F.Production of polysuccinimide in cyclic carbonate solvent[P].US:5 756 595.1998-05-26
    [11] Masaharu M D,Shinzo Y.Polyaspartic acid.US:6 380 350.2002-04-30
    [12] Henkel K.Preparation and use of polyaspartamides[P].DE:19720771,1998
    [13] M A Quraishi,Hariom K Sharma.4-Amino-3-butyl-5-mercapto-1,2,4-triazole.a new corrosion inhibitor for mild steel in sulphuric acid[J].Materials Chemistry and Physics.2002(78):18.
    [14] Cruz J Garcia-Ochoa,E Castro M.Experimental and theoretical study of the 3-amino-1,2, 4-triazoleand-aminothiazole corrosion inhibitors in carbon steel[J].Journal of the 50Electrochemical Society.2003,150(1):26.
    [15] F.Bentiss,M.Bouanis,B.Mernari,etc.Effect of iodide ions on corrosion inhibition of mild steel by 3,5-bis(4-methylthiophenyl)-4H-1,2,4-triazole in sulfuric acid solution[J].Journal of Applied Electrochemistry.2002,(32):671.
    [16] K.Fix,L.Seerbo.New corrosion inhibitor technology for use in calcium chloride brine systems[C].54th annual meeting international water conference,1993(62):371-374
    [17] Nakato T. Relationship between structure and properties of polyas partic acids [J]. Macromolecules, 1998, 31 ( 7 ) :2 107 - 2 113
    [18] Ross Robert J,Low Kim C, Shannon James E. Polyas partatescale inhibitors biod - egradable alternatives to polyacrylates[J].Material Performance, 1997, 36 (4) : 53– 57
    [19] Ross K C,Shannon J E.Polyaspartate scale inhibitors biodegradable altern actives to polyacrylates[J].Material performance,1997,(4):52-57
    [20]黄娟,徐强,任志峰等.循环冷却水缓蚀剂和阻垢剂的研究进展[J].电镀与精饰,2009,(02)
    [21]岳宏,高建村.工业循环冷却水处理缓蚀阻垢剂的应用与发展[J].新疆石油天然气,2009,(04)
    [22]李树元,梅光军,金玉健.绿色水处理剂的研究与应用进展,江苏环境科技,2007年第19卷第1期
    [23]马喜平,戴倩倩,刘炜等.绿色高效聚合物阻垢剂的研究进展[J].工业水处理, 2010,(08)
    [24]何焕杰,冉兴秀等.含磷丙烯酸-丙烯磺酸钠共聚物的阻垢分散性能[J].水处理技术, 2000, 26 (1) : 48– 50 [25熊蓉春,滕怀平..水处理合成工艺的绿色化研究.水解聚马来酸酐的绿色合成技术[ J ].工业水处理,2001,21(5):12 -14
    [26]夏明珠,雷武,戴林宏等.膦系阻垢剂对碳酸钙阻垢机理的研究[J].化学学报, 2010,(02)
    [27]唐宏科,王磊.马来酐-丙烯酰胺-丙烯酸羟乙酯共聚阻垢剂的研究[J].工业水处理, 2006,26(6):50-53
    [28]路长青等.磺酸共聚物的合成及阻垢分散性能的研究[J].工业水处理,1995,15 (3) : 14– 17
    [29]高书峰,黄勇,周涛等.绿色阻垢剂环氧琥珀酸(钠)的合成工艺[J].高分子材料科学与工程,2006, 22(6) : 67-70
    [30]董雪玲,熊蓉春,聚天冬氨酸共聚物的合成[J],当代化工,2005,34 (1) : 26-28
    [31]周林涛,颜家保,高小青.膦酰基羧酸的合成及阻垢性能研究[J].石油炼制与化工,2008, 39(3):63-66
    [32]周本省.工业水处理技术(第二版)[M].北京:化学工业出版社,1992
    [33]肖杰,邓雪琴,诸林.复配阻垢剂体系的协同效应研究[J].应用化工,2007,36(5):520-525
    [34]方健,林艺辉,李杰乙烷-1,1-二膦酸与乙烷-1,2-二膦酸阻垢效能差异的微观机理研究[J].精细化工,2008,19(1):18-21
    [35]袁文芹.高效、耐氯循环水阻垢缓蚀剂的研制[J].江西化工, 2010,(03)
    [36]唐俊.循环冷却水缓蚀阻垢剂的开发应用研究.华东师范大学硕士学位论文,2005届
    [37] Patnaik S R,Volayabhanu G,Rawat N S.Evaluation of molybdate-polyvinyl alcohol mixtures as inhibitors for mild steel corrosion in synthetic seawater[J].Bull Electro Chem,1993, 9(2&3):66-68
    [38] Kesser,Stephen M.Method of inhibiting corrosion in aqueous systems[P].US 5256332,1993
    [39] Z.L.Long,Y.C.Zhou,L.Xiao.Characterization of black chromate conversion coating on the electrodeposited zinc-iron alloy.Applied Surface Science,2003,218(4):124-137
    [40]严瑞暄.水处理剂应用手册[M].北京:化学工业出版社,2000
    [41]赵琼.循环冷却水系统腐蚀情况分析及药剂控制方法[J].天然气与石油,2010,(02)
    [42]孙伶俐.新型无磷多功能水处理剂的研究[J].广东化工,2009,(12)
    [43]樊立新.化肥厂循环冷却水的水质分析.内蒙古石油化工,2010,(07)
    [44]陆峰,李洪建,郭睿等.一种新型缓蚀剂对A3钢的缓蚀性能研究[J].重庆科技学院学报(自然科学版), 2010,(03)
    [45]中化化工标准化研究所中国标准出版社第二编辑室.水处理剂与工业用水水质分析方法.中国标准出版社,2003(第二版)
    [46]周晓慧.高效环保型循环冷却水处理剂的开发研制.大连交通大学硕士学位论文
    [47]王磊;颜家保;吕早生等.膦酰基羧酸的复配及协同效应研究[J].化学与生物工程,2009,(01)
    [48] Feilter ,H,Material Protection and Performance,1972,11(6):29
    [49] Drew Chemical Corporation ,“Principles of Indutrial Water Treatment”,4th Edition ,Drew Chemical Corporation,1981
    [50] R.Touir,M.Cenoui,M.El Bakri, M.Ebn Touhami.Sodium gluconate as corrosion and scale inhibitor of ordinary steel in simulated cooling water , Corrosion Science 50 (2008)1530–1537
    [51]张云峰,徐海红,吴百春等.一种复合有机缓蚀阻垢剂的室内研究[J].工业安全与环保, 2010,(02)
    [52]沙志强,曾玉,魏新国等.低磷/无磷复配缓蚀阻垢剂的研究和应用.工业水处理,2010,(10 )

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700