用户名: 密码: 验证码:
热流耦合井筒流动及其地层渗流研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在石油勘探与开发中,通过对井底瞬时压力的反演可以了解地层中油气储量、渗透性及井壁污染等参数。由于压力和温度有很多相似之处,本文开展了对井底瞬时温度的解释反演研究以及温度效应对压力试井解释的影响与修正的研究。这样,一方面可以有效使用温度数据,另一方面在进行试井解释和储层评价时弥补了压力试井的不足。而且井筒中温度分布的准确预测是油气井设计和动态分析的重要基础,对提高采油设备的设计水平、改进油井加热方法以及地层参数计算和储油量评价等都有重要的指导意义。
     本文对生产井或注入井井筒和地层的温度随时间变化进行了研究,考虑了多层地层条件下井筒和地层的换热,其中地层由n个不同的热力学及物理性质的多孔介质层组成,整个系统由井筒区、热表皮区(包括套管、环空、水泥环等)及地层三部分组成。其中地层中只有水平方向的热传导,忽略垂直方向上的热传导,井筒中仅考虑流体的热对流,忽略热传导。井筒和地层的温度通过综合热传导系数联系起来。对方程组进行拉氏变换,在拉氏空间上求解,再运用数学物理方程的理论进行反演,得到井筒温度和地层温度的解析解表达式,进一步得到了温度试井所需要的图版。通过将实测温度曲线与理论图版做拟合,对实测温度进行定量解释,可得分层注入量及地层热力学参数。
     由于蒸汽热采会导致地层温度变化,从而使地层中流体性质发生变化,进而改变地层压力曲线的形态。本文提出一个蒸汽注采井的压力试井模型和曲线拟合方法,采用多区域径向复合油藏模型对地层进行划分,并从地层渗流方程出发得到多区域的压力扩散方程,对其进行拉氏变换,得到拉氏空间上的解,再经过反演得到压力的解析表达式,为了引入温度效应,需要对压力进行修正,于是本文引入了由温度效应引起的压力部分,得到考虑温度效应的多区域复合油藏压力典型曲线模版。在此基础上对一些实测压力曲线进行拟合,给出了解释结果。
     由于气体压力随温度变化而变化,本文提出一个考虑热效应的气井压力模型并给出计算方法。该模型根据根据气体在井筒中流动的特点给出了气体流动的连续性方程、动量方程及能量方程,再根据气井生产状况的不同给出相应的定解条件。由于井底与产气层相连通,井底压力来源于气体在地层中的渗流方程。文中定义了气体渗流的拟压力,给出了拟压力的气体渗流方程,由叠加原理得出变流量条件下的气井井底拟压力的半数值半解析表达式,该表达式作为井筒流动的一个边界条件。
     由于井底压力来源于地层,而井底压力随着时间和生产状态的变化(如变流量或关井)发生变化,因此采用井筒流动与地层渗流耦合迭代求解,即对地层渗流采用半解析半数值进行求解,渗流方程在井壁的压力分布作为井简的底部压力边界条件,井筒流动方程采用PISO(Pressure Implicit with Splitting of Operators)数值求解,从而得到井筒中压力及速度分布,井底速度转化为流量后作为地层渗流的流量条件,这样不断迭代直至收敛,得到井筒流动及地层渗流的压力分布和速度分布。计算结果表明:热效应对井底压力曲线的早期形态影响较大,从而解释了实测气井压力曲线早期数据“异常”这一现象,不仅丰富和发展了现代试井理论,而且对地层的认识更加准确。
In the exploration and exploitation of petroleum, many parameters such as oil and gas reserves, permeability in the reservoir and wellbore damage, can be known through the inversion of instant pressure at bottom hole of the well. Since temperature has much in common with pressure, research of interpretation and inversion on instant temperature at bottom hole and research on the influence and correction of temperature on pressure well test are launched in this paper. Thus, the temperature data is effectively used and deficiency of pressure well test is made up. The correct prediction of temperature profile in well bore is the important basis of oil-gas well design and dynamic analysis, it also has directive significance in many aspects of oil gas field.
     In this paper, the varing temperature of wellbore and formation in injection well or producing well with time is researched. The formation consists of many layers, which have different thermodynamics properties. The whole system consists of wellbore zone, thermal skin zone and formation zone. In the formation there is only horizontal thermal exchange with vertical thermal exchange ignored. In the wellbore there is only heat convection with heat conduction ignored. Wellbore and formation are connected by Ramey heat-transfer coefficient. Laplace transform is used to solve the equations, after inversion, an analytical solution of temperature in wellbore and formation is obtained and further, typical temperature well testing curves are obtained. Then the measured temperature data can be used to fit the typical temperature well testing curves. Now the measured temperature data can be qualitatively interpretated and some thermal parameters of formation can be obtained.
     Because steam injection changes the temperature of reservoir, so the properties of fluid in reservoir and shape of pressure curves in reservoir is changed. A pressure test model and curve fitting method in steam injection well is presented. A multi-area radial composite reservoirs model is used to classify strata. Laplace transform is used to get the analytical solution. In this paper, the correction of pressure by temperature is realized through gas equation of state. After the pressure is corrected, typical pressure well testing curves are obtained. the measured pressure data can be used to fit the typical pressure well testing curves. Some actual examples are given here and corresponding interpretation results are also given.
     Considering that gas temperature has obvious influence on pressure, a pressure model with thermal effect considered in gas well is established here, which gives the governing equations for pipe flow in wellbore and seepage equations of the real gas in reservoir. In seepage equation pseudo-pressure is imported,and according to boundry conditions and initial conditions, a half-analytic and half-numerical expression of bottomhole pressure of variable-flowrate gas well is obtained through superposition principle, which is the pressure boundry condition for pipe flow in wellbore.
     The Bottomhole pressure varies with time and producing state,and it's connected to reservoir. So pipe flow in wellbore and seepage in reservoir must be coupled,and solved iteratively. PISO(Pressure Implicit with Splitting of Operators) method is used to solve wellbore governing equations. By solving wellbore governing equations bottomhole flowrate is obtained,which is the input parameter for seepage equations in reservoir. The iteration must keep running to achieve convergence. Then distribution of temperature and pressure is obtained. The result of calculation shows that thermal effect has great influence on the early shape of the pressure well-test curve, which gives a explaination of exceptional behavior of measured pressure data in early period and will not only enrich modern welltest theory but also give a better understanding of reservoir.
引文
[1]Azari M., Wooden W. O., Coble L. E.1990. A complete set of laplace transforms for finite conductivity vertical fractures under bilinear and trilinear flows[J]. SPE 20556.
    [2]Crump K. S.1976. Numerical inversion of laplace transforms, using a fourier series approximation[J]. J. ACM.,23(1).
    [3]Dubner H., Alate J.1968. Numerical inversion of laplace transforms by relating them to the finite fourier cosine transform[J]. J. ACM.,15(1).
    [4]Standing M. B.1947. A pressure-volume-temperature correlation for mixtures of california oils and gases[J]. API Drill Prod Pract(5):275-287.
    [5]Stehfest H.1970. Numerical inversion of laplace transforms[J]. Communications of the ACM., 13(1):47-49.
    [6]Wooden B., Azari M., Soliman L. E.1992. Well test analysis benefits from new method of laplace space inversion[J]. Oil and Gas J.,90(29):108-110.
    [7]Alves I. N.1992. A unified model for predicting flowing temperature distribution in wellbores and pipelines[J]. SPEPF(11):363.
    [8]Barenblatt G. I., Entor V. M., Ryzhik V. M.1991. Theory of fluid flow through natural rocks[M]. Dordrecht:Kluwer.
    [9]Bear J., Buchlin J. M.1991. Modelling and application of transport phenomena in porous mdia[M]. Dordrecht:Kluwer.
    [10]Bourdet D.1985. Pressure behavior of layered reservior with crossflow[J]. SPE13628.
    [11]Cazarez-Candia O., Vasquez-Cruz M. A.2005. Prediction of pressure, temperature, and velocity distribution of two-phase flow in oil wells[J]. Journal of Petroleum Science and Engineering,46(3):195-208.
    [12]Curtis M. R., Witterholt E. J.1973. Use of the temperature log for determining flow rates in producting wells[J]. SPE4637.
    [13]Dullien F. A.1992. Porous media, fluid transport and pore structure[M]. San Diego: Academic Press.
    [14]Ehlig-Economides C. A., Joseph J. A.1985. A new test for determination of individual layer properties in a multi layered reservoir[J]. SPE14167.
    [15]Ene H. I., Poliserski D.1987. Thermal flow in porous media[M]. Dordrecht:Reidel.
    [16]Fan L., Lee W. J. Semi-analytical model for thermal effect on gas well pressure buildup tests[J]. SPE56612.
    [17]Gao Chengtai.1984. Single-phase fluid flow in a stratified porous medium with crossflow[J]. Society of Petroleum Engineers Journal,24(1):97-106.
    [18]Greenkorn R. A.1983. Flow phenomena in porous medai[M]. New York:Marcel Dekker.
    [19]Grinagarten A. C.1972. Pressure anulysis for fractured wells[J]. Paper SPE,4051.
    [20]Grinagarten A. C., Ramey H. J.1974. Unsteady-state pressure distributions created by a well with a single horizontal fracture[J]. SPEJ(8):413-426.
    [21]GrinagartenA. C., Ramey H. J., Raghavan R.1974. Unsteady-state pressure distributions created with a single infinite-conductivity vertical fracture[J]. SPEJ(8):347-360.
    [22]Schlumberger, M., Doll, H.G., and A.A. Perebinossoff,1937, Temperature measurements in oil wells. Journal of the Institute of Petroleum Technologists,23:25.
    [23]Guyod, H.1946. Temperature well logging.The oil weekly.
    [24]Moss, J.T., and White, P.D.,1959, How to calculate temperature profiles in water-injection wells. Oil and Gas Journal,57(11):174.
    [25]Hasan A. R.1991. Heat transfer druing two-phase flow in wellbores:part ii-wellbore fluid temperatue[J]. SPE22948.
    [26]Herrera J. O., Blrdwell B. F., Hanzllk E. J.1978. Wellbore heat losses in deep steam injection wells[J]. SPE7117.
    [27]IIugh D. M.1977. Fluid injection profiles-modern analysis of wellbore temperature survey[J]. SPE6783.
    [28]Kamal M., Brigham W. E.1975. Pulse testing response for unequal pluse and shut-in periods[J]. Trans. AIME,15(5):399-410.
    [29]Khalifah A. A., Hashim H. S. Pulse testing correlation charts[J]. SPE14253.
    [30]Lee A. L., Gonzalez M. H., Eakin B. E.1966. The viscosity of natural gases[J]. Journal of Petroleum Technology.
    [31]Lefkovits H. C., Fhzebroek P., Allen E. E.1961. A study of the behavior of bounded reservoirs composed of stratified layer[J]. Society of Petroleum Engineers Journal(3):45-58.
    [32]Matheron G.1966. Les cahiers de centre de morphologie mathematique[J]. Rev. Inst. Franc. Petrole,21(4):564.
    [33]Muskat M.1937. The flow of homogeneous fluids through porous media[M]. New York: McGrawHill.
    [34]Nield D. A., Bejan A.1992. Converction in porous media[M]. New York:Springer-Verlag.
    [35]Olarewaju J. S.1989. A studyof pressure behavior of layered and dual-porosity reservoirs in the presence of skin[J]. Wellbore Storage, and Phase Segregation,SPEFE(9):397-405.
    [36]Phillips O. M.1991. Flow and reaction in permeable rocks[M]. Cambridge:Cambridge University Press.
    [37]Ramey H. J.1962. Wellbore heat transmission[J]. JPT(4):427-435.
    [38]Sagar R. K., Doty D. R., Schidt Z.1989. Predicting temperature profiles in a flowing well[J]. SPEPE:441.
    [39]Satter A.1965. Heat losses of steam down a wellbore[J]. JPT(7):845-851.
    [40]Shi H., Holmes J. A.2003. Drift-flux modeling of multiphase flow in wellbores[J]. SPE84228.
    [41]Shi H., Holmes J. A.2005. Drift-flux modeling of two-phase flow in wellbores[J]. SPE Journal,10(1):24-33.
    [42]Shi H., Holmes J. A.2005. Drift-flux parameters for three-phase steady-state flow in wellbores [J]. SPE Journal,10(2):130-137.
    [43]Shiu K. C., Beggs H. D.1980. Predicting temperature in flowing oil wells[J]. Journal of Energy Resources Technology(3):1-11.
    [44]Smith R. C., Steffensen R. J.1975. Interpretation of temperature profiles in water-injection wells[J]. JPT(6):777-784.
    [45]Tian S., Finger J. T.2000. Advanced geothermal wellbore hydraulics model[J]. Journal of Energy Resources Technology,122(3):142-147.
    [46]Willhite G. P.1967. Over-all heat transfer coefficients in steam and hot water injection wells[J].JPT(5):607-615.
    [47]廖新维、沈平平.1988。《现代试井分析》,石油工业出版社.
    [48]顾尔祚.2002年.《流体力学有限差分基础》,上海交通大学出版社.
    [49]朱德武.凝析气井井筒温度分布计算[J].1998.天然气工业.
    [50]单学军,张士诚,王文雄,于李萍.2004.稠油开采中井筒温度影响因素分析.石油勘探与开发.31(3):136-169.
    [51]谢梅波.1989.温度对渤海采油井的影响.中国海上油气.1(5).
    [52]张柏年,廖锐全.2000.同时预测油井中压力和温度剖面的方法的改进江汉石油学院学报,x13(4).
    [53]卢祥国,李文甫.1993.空心抽油杆掺热水时杆及井筒温度分布研究.大庆石油学院学报,17(1).
    [54]宋辉.1994.井筒瞬态温度场研究与应用.石油钻采工艺,16(2).
    [55]粱金国,王弥康,张奎祥.1996.利用微差井温测试资料确原始油藏导热系数.石油大学学报,20(2).
    [56]刘玉石,董杰,黄克累.1997.控制井眼温度维持井壁稳定.力学与实践,19(1).
    [57]邱于兵,张华民.1998.温度对油井套管极化行为的影响.华中理工大学学报,19(3).
    [58]安耀清,祁传国,黄中回.2001.地面温差与稠油产能关系特例分析.油气井测试,10(16).
    [59]汪泓.2003.电加热井德井筒温度场数学模型.油气井测试,26(2)
    [60]单学军、张士诚.2004.稠油开采中井筒温度影响因素分析.石油勘探与开发,3l(2).
    [61]郭永存、曾亿山、卢德唐.2005.地层静温预测的非牛顿流体数学模型.物理学报,54(22).
    [62]毛伟,梁政.1999.气井井筒压力、温度耦合分析.天然气工业,19(6):66-69
    [63]郭春秋,李颖川.2001.气井压力温度预测综合数值模拟.石油学报.22(3):100-104
    [64]廖新维,刘立明.2003.对气井井筒压力温度分析的新认识.天然气工业23(6):86-87
    [65]雷霆,李治平.2006.温度变化对气井不稳定试井的影响浅析.油气井测试,15(5):9-11
    [66]任双双,杨胜来等.2008.富含C02天然气井井筒压力的温度计算.油气井测试,17(6):37-39
    [67]安耀清,祁传国.2001.地面温差与稠油产能关系特例分析[J].油气井测试,10(6):26-27.
    [68]楚泽涵,谢京.1994.用测井方法估算渗透率的评述[J].石油勘探与开发,21(1):46-52.
    [69]戴榕菁,孔祥言,钟钊新.1989.无限大多层油藏渗流问题的解析解及其应用[J].应用数学和力学,10(9):825-832.
    [70]单学军,张士诚,王文雄等.2004.稠油开采中井筒温度影响因素分析[J].石油勘探与开发,3l(3):136-139.
    [71]邓刚,王琦.2002.桥式偏心分层注水及测试新技术[J].油气井测试,11(3):45-48.
    [72]高美娟,田景文,赵启蒙.2003.用序贯指示随机模拟法结合地震数据研究渗透率空间分布[J].石油地球物理勘探,38(s1):98-103.
    [73]谷建伟,翟世奎.2005.水平井挖掘正韵律厚油层潜力影响因素分析[J].石油大学学报:自然科学版,29(2):61-64.
    [74]郭永存,曾亿山,卢德唐.2005.地层静温预测的非牛顿流体数学模型[J].物理学报,54(02):802-806.
    [75]贺莉丽,王培虎.2007.Mdt结合mr进行储层渗透率评价[J].石油天然气学报,29(3):229-230.
    [76]侯鹏倩.2005.自力式调节阀及其应用[J].石油化工自动化(1):83-85.
    [77]黄乔松,赵文杰,杨济泉等.2004.核磁共振渗透率模型研究与应用[J].青岛大学学报(自然科学版),17(4):37-40.
    [78]加拿大国家能源保护委员会著,童宪章等译.1988.气井试井理论与实践[M].北京:石油工业出版社.
    [79]姜晓燕,卢德唐.2000.温度试井解释方法的研究及应用[J].油气井测试,9(3):32-36.
    [80]科斯林著,陈忠祥、吴望一译.1984.流体通过多孔材料的流动[M].北京:石油工业出版社.
    [81]孔宪辉,卢德唐,林春阳.2007.配水器流场的数值模拟[J].水动力学研究与进展:A辑,22(1):1-8.
    [82]孔祥言.1999.高等渗流力学[M].合肥:中国科学技术大学出版社.
    [83]孔祥言,徐献芝,卢德唐.1996.各向异性气藏中分支水平井的压力分析[J].天然气工业,16(6):25-30.
    [84]李干佐,崔利民,郑立强.1999.我国三次采油进展[J].日用化学品科学(s1):1-9.
    [85]李卫彬,王丽英,孙庆萍.2005.特高含水期厚油层细分挖潜方法研究[J].大庆石油地质与开发,24(1):58-60.
    [86]李学丰,丁建国.1998.差压式定量配水器的研制与应用[J].石油钻采工艺,20(5):102-104.
    [87]李增仁.2003.高压注水井分注技术研究[J].钻采工艺,26(3):109-111.
    [88]梁金国,张硅祥.1996.利用微差井温测试资料确原始油藏导热系数[J].石油大学学报,20(2):59-64.
    [89]梁卫东,姜贵璞,王丽敏等.2004.砂岩油田合理注水压力的确定[J].大庆石油学院学报,28(4):42-44.
    [90]林梁.1994.电缆地层测试器资料解释理论与地质应用[M].北京:石油工业出版社:25-60.
    [91]刘淑芬,梁继德.2004.试井技术识别无效注采水循环通道方法探讨[J].油气井测试,13(1):27-30.
    [92]刘玉石,黄克累.1997.控制井眼温度维持井壁稳定[J].力学与实践,19(1):30-31.
    [93]卢德唐,郭冀义,郑新权.1998.试井分析理论及方法[M].北京:石油工业出版社.
    [94]卢德唐,孔祥言,束方军.1998.各种边界条件下复合双孔油藏的井底压力[J].水动力学研究与进展A辑,13(2):152-161.
    [95]卢德唐,曾亿山,郭永存.2002.多层地层中的井筒及地层温度解析解[J].水动力学研究与进展A辑,17(03):382-390.
    [96]卢文东,肖立志,李伟等.2007.核磁共振测井在低孔低渗储层渗透率计算中的应用[J].中国海上油气,19(2):103-106.
    [97]卢祥国,李文甫.1993.空心抽油杆掺热水时杆及井筒温度分布研究[J].大庆石油学院学报,17(1):36-43.
    [98]马伟.2006.油田分层注水恒流堵塞器的研究[D]:[硕士].哈尔滨:哈尔滨工业大学.
    [99]毛莜菲,汤苏林.2005.边界层对喷水推进器进水管内流场影响[J].水动力学研究与进展,A辑,20(4):479-485.
    [100]庞铁力,徐德奎.2003.偏心集成细分注水管柱的研究与应用[J].石油矿场机械,32(2):53-55.
    [101]曲昌学,袁伯利,等.2002.油田注水井智能双流调节阀装置的研制[J].石油机械,30(6):24-26.
    [102]佘梅卿,申秀丽,等.1995.分层采油技术的研究与应用[J].石油机械,23(12):43-49.
    [103]宋辉.1994.井筒瞬态温度场研究与应用[J].石油钻采工艺,16(2):67-72.
    [104]孙桂玲,盖旭波,刘彬等.2002.细分注水工艺技术[J].石油钻采工艺,24(S1):79-81.
    [105]汪泓.2003.电加热井的井筒温度场数学模型[J].油气井测试,12(3):1-3.
    [106]王建平,王晓冬,马世东.2007.各向异性部分射开直井不稳定渗流理论研究[J].大庆石油地质与开发,26(3):65-67.
    [107]王磊,卢德唐,郭冀义等.2007.地下岩体的垂向渗透率测试及分析[J].实验力学,22(1):69-74.
    [108]王瑞和,白玉湖.2003.井底受限射流流场的数值模拟[J].石油大学学报:自然科学版,27(5):36-38.
    [109]王亚.2008.泌238断块提高水驱开发效果对策研究及应用[J].中外能源,13(4):53-57.
    [110]王志军,刘秀航,谭志安等.2004.水井增注措施优化设计方法[J].大庆石油学院学报,28(4):39-41.
    [111]王尊策,吴梅.2001.定量注水堵塞器的性能研究[J].石油机械,29(3):19-21.
    [112]魏海宝.2008.大孔道地层吸水剖面组合测井技术[J].石油天然气学报,30(2):477-478.
    [113]谢华,王凤.2007.细分注水方法的研究[J].油气田地面工程,26(2):8-9.
    [114]谢梅波.1989.温度对渤海采油井的影响[J].中国海上油气,1(5):47-52.
    [115]徐艳.2007.定量配产器结构及特性研究[D]:[硕士].大庆:大庆石油学院.
    [116]薛定谔著,王鸿勋等译.1982.多孔介质中的渗流物理[M].北京:石油工业出版社.
    [117]杨勤生.2002.一种新型偏心分层注水工艺管柱[J].石油钻采工艺,24(2):74-75.
    [118]尹中民,武强,刘建军等.2004.注水井泄压对套管挤压力影响的数值模拟[J].岩石力学[2]与工程学报,23(14):2390-2395.
    [119]袁铁燕,王修利.1998.大庆油田高含水后期细分注水工艺技术[J].石油钻采工艺,20(5):85-88.
    [120]曾昭英,张大为.1994.利用脉冲试井确定油层垂向渗透率的数学模型及分析[J].水动力学研究与进展:A辑,9(3):257-261.
    [121]曾昭英,张大为.2002.夹层对低渗透油层开发效果的影响[J].水动力学研究与进展:A辑,17(1):108-115.
    [122]翟云芳,张大为.1989.脉冲试井理论图版及其应用分析[J].大庆石油学院学报,13(1):1-9.
    [123]张柏年,廖锐全.1991.同时预测油井中压力和温度剖面方法的改进[J].江汉石油学院学报,13(4):32-39.
    [124]张大为,曾昭英.2000.夹层垂向渗透率对低渗透油层含油饱和度的影响[J].大庆石油学院学报,24(1):22-24.
    [125]张庆华,康宜华.2002.新型分层采油管柱与工具的研制[J].石油机械,30(3):29-31.
    [126]张文昌,朱新明.2002.Rft和fmt压力测试对比与分析[J].油气井测试,11(5):4l-44.
    [127]张迎进,刘刚,朱忠喜等.2004.注水井配水工具智能排布软件开发[J].断块油气田,11(2):67-69.
    [128]郑超,刘建军,薛强.2007.储层渗流与大孔道管流耦合分析[J].科学技术与工程,7(24):6411-6412.
    [129]钟大康,朱筱敏,吴胜和等.2007.注水开发油藏高含水期大孔道发育特征及控制因素——以胡状集油田胡12断块油藏为例[J].石油勘探与开发,34(2):207-211.
    [130]周灿灿,程相志.2002.核磁共振自旋回波串确定渗透率方法探讨[J].测井技术,26(2):123-125.
    [131]周望.1998.大庆油田分层开采技术的发展与应用[J].大庆石油地质与开发,17(1):36-39.
    [132]周晓东,檀朝东.1997.新型kpx型偏心自调配水器的研制[J].石油钻采工艺,19(1):88-92.
    [133]周晓君.2000.偏心定量水嘴及其流量调节特性[J].断块油气田,7(5):50-52.
    [134]庄礼贤,尹协远,马晖扬.1991.流体力学[M].合肥:中国科学技术大学出版社.
    [135]邹艳华,李远,那贺忠.2003.注水井分层流量调配方法研究[J].油气井测试,12(03):4-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700