用户名: 密码: 验证码:
湖库塘开式水源热泵的水体传热与系统性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前利用湖库塘水体的水源热泵越来越多,但有关湖库塘水源热泵的理论基础研究却较少,工程实践中,往往根据某些时间的湖库塘水体自然状态的温度,确定方案决策和技术计划与运行,常常造成失误。本文认为无论从工程实际还是理论上,都必须考虑取排水作用下的湖库塘水温分布,以及取排水方式对热泵系统能效和能耗的影响。为了该项技术节能潜力的发挥以及推广应用,本文受国家“十五”攻关课题( JA07149)和“十一五”科技支撑计划项目(2006BAJ01A06-3)资助,针对湖库塘开式水源热泵系统的取排水方式,研究湖库塘水温变化规律、供冷能力,以及系统性能问题,取得了一些初步成果,主要归纳如下:
     (1)本文确定的修正修正湍流prantl的k-ε两方程垂向和横向二维水温模型,能较为真实反映取排水作用下的湖库塘水温变化规律,可以作为实际工程方案决策、技术设计和运行调试的分析工具。
     (2)湖库塘在夏、秋季节出现热分层现象,表层为温水层,底部为冷水层,中间为温跃层。湖库塘的主要热特性之一是跨季节蓄冷能力比蓄热能力强,本文以研究湖库塘的跨季节蓄冷性能为主,同时考虑到湖库塘的热交换主要以水面为主,分析了水面热交换的影响因素。本文通过二维水温模拟分析湖库塘水体换热状况和相应的调控措施对湖库塘全年自然水温变化的影响,发现风力影响最显著、太阳辐射影响次之,通过对风力作用和太阳辐射的调控,可以明显提高湖库塘的跨季节蓄冷能力。
     (3)通过分析发现取排水方式对湖库塘的供冷能力有较大影响,本文借鉴分层水蓄冷方式,提出利用稳流器装置底部取水、同温层排水的理想状态,并且通过理想取水温度模型对影响理想供冷能力的因素进行了分析。结果表明:增大取排水温差、增加水深、同温层排水方式、较差的水质和冬季寒冷的气候都有利于增加湖库塘的理想供冷能力,其中水深、排水位置、水质和取排水温差影响较显著,在相同的气候分区内,气候影响不显著。以上分析为最大发掘热分层湖库塘的供冷能力提供了技术方向。
     (4)建立和验证湖库塘重叠式取排水二维模型,分析影响重叠式取水温差的因素,通过分析发现:当采用增加取排水口高度的措施来改善取水温升现象时,必须保证水深与排水口高度之比H /h小于临界值9,才能起到经济有限地降低取水温升的作用,否则不仅增加管道初投资,而且产生相反的效果;在实际工程中取排水口高差Δz /h不一定最大就好,超过(Δz / h)CV=6后,排水对取水的影响的效果不太明显,如果追求最大取给排水距离Δz值,采用底部取水不仅工程费用增加,而且会扰动底部水层,不利于保持湖库塘的热分层现象,对于降低取水温度的实际意义并不大;此外,取排水温差影响实际状态接近理想取排水状态的程度,取排水温差越大,( )Fr CV越小,越接近理想取排水状态,实际中取排水温差应大于取排水温差临界值( )ΔTCV=10或排水Fr小于临界( )Fr CV=1.3。在实际工程中如不能保证合适的取排水口间距Δz /h的值,不推荐使用重叠式取排水方式。从而为实际取排水设计提供了参考依据。
     (5)通过建立的湖库塘开式水源热泵系统模型对影响热泵系统性能的影响因素进行了分析,结果表明:在温水层取排水时,气候对热泵性能的影响较为显著,水质、水深和取水位置的影响次之,运行方式和热泵负荷的影响较小。其中,冬季温和的气候、增大水深、较差的水质、越深的取水位置、间歇运行方式和较小的热泵负荷有利于热泵性能的提高。有助于在实际工程中提高湖库塘水源热泵系统性能。
     (6)提出一种简单可行的湖库塘开式水源热泵系统全年能耗分析方法,然后以小型办公建筑为实例,进行具体的全年能耗分析,最后与空气源热泵的能耗相对比,分析结果表明:湖库塘开式水源热泵系统的性能更高、更稳定;室外循环水泵能耗对湖库塘开式水源热泵系统的能耗存在较大的影响,应该在实际工程应用中采取措施降低循环水泵能耗。
Due to lack of the fundamental research, the utilization of lake-source heat pump system is still on the demonstration stage. And, it is difficult to use widely the energy-efficeint technology of lake-source heat pump system. In this paper, under the fund of the Tenth Five-year and the Eleven Five-year national scientific and technological project, the study of the thermal performance of lake used with open-loop water source heat pump is systematically analyzed and performance of system is proposed. Meanwhile, the factors influencing the performance of lake and heat pump system are investigated. The results are presented as follows:
     (1) A 2-D numercial model based on the Navier–Stokes equations is used to simulate the temperature of long narrow stratified lake without inflow and outflow. According to the test data of water pond in Chendu, the accuracy of k-εstandard model and prantl modified k-εmodel are compared. The results show that prantl modified k-εmodel can accurately simulate the thermal stratification of the water.
     (2) Because thermal characteristic of the lake shows that it has ability to store cool water easily than heat water over seasons, the emphasis is put on the ability of cool storage of the lake. The temperature of the lake under three different conditions from spring to summer is simulated with 2-D temperature model. The analysis shows that the shielding method of solar radiation and wind over water surface and bad water quality make significant influence on the promotion of cool storage of the lake.
     (3) In order to maximize use of low temperature water under the stratified lake, it is assumed that vertical location of outtake diffuser changes in time in such a way to interact with the ambient water temperature most closely matches the inlet water temperature. The lake temperature change is predicted when specific loads are applied, then ideal cooling capacity of lake when used as heat sink is determined. The factors influencing the ideal cooling capacity of lake are investigated. It is showed that: (ⅰ) Increase of temperature between inflow and outflow is beneficial to increase of cooling capacity of lake. (ⅱ) Climate exerts some effect on the cooling capacity of lake. (ⅲ) water depth has significant influence on unstratified lake. (ⅳ) Inflow is discharged according to same temperature of ambient water can promote considerably the cooling capacity. (ⅴ) Water quality influences significantly on cooling capacity.
     (4) A 2-D temperature model with eclipse form intake-outlet method is established to analyze the factors influencing the intake water temperature. The results show that: (ⅰ) Increase of outlet height can decrease the change of intake water temperature, only under the condition that the ratio of lake depth to width of outlet must be more than critical value. (ⅱ) the greater distance of intake and outlet, the smaller change of the intake temperature. However, maximum ratio doesn’t mean the better effect. So, it is suitable to adopt the critical value. (ⅲ) the greater Fr, the smaller change of intake water temperature. (ⅳ) By comparing the inlet temperature of march-past method and eclipse form, the superiority of the latter only exist with suitable distance of intake and outlet.
     (5) Open-loop lake source heat pump system model is established to predict different factors affecting the performance of system. The analysis is proposed that: (ⅰ) Winter weather has more significant influence on system performance than summer weather. (ⅱ) Water depth has unimportant affect on it. (ⅲ) Water quality exert some influence on it. (ⅳ) the deeper outlet place, the greater performance efficiency. (ⅴ) Operating model has some affect on performance.
     (6) An annual energy consumption calculation model of open-loop lake-source heat pump is established. And the comparison of annual energy use of lake-source heat pump system with air source heat pump system is presented. SEER of lake-source heat pump system in winter and summer are higher than air-source heat pump system. It prove that open loop lake source heat pump is more energy efficient than air-source heat pump. However, SEER of open-loop water source heat pump systems used with lake decrease in winter and summer included by water pump. So, it is necessary to decrease the energy consumption of water pump for higher energy efficiency of open-loop lake source heat pump system.
引文
[1]付祥钊,张慧玲,王子云.建筑自然冷热源资源的评价与利用[J].建设科技,(123).
    [2]付祥钊,范亚明,夏热冬冷地区零能建筑空调技术的基本原理[J].暖通空调,2004,7,vol34.
    [3] D.orota Chwieduk. Analysis of utilization of renewable energies as heat sources for heat pump in building sector in Poland[J]. WREC, 1996.
    [4]范亚明,付祥钊,李兴友.在福州地区以天然能源为热泵冷热源的应用前景[J].制冷与空调,2006,4.
    [5] Hillel Rubin. Modelling the performance of a solar pond as a source of thermal Energy[J]. Solar Energy, 1984, 32.6:771-778.
    [6] D. PAHUD. Central solar heating plants with seasonal duct storage[J]. Solar Energy, 2000,69 (6):495–509.
    [7]姚扬,马最良.浅议“热泵”定义[J].暖通空调,2002,32(3):33.
    [8] Qiang Zhang. Heat transfer analysis of vertical U-tube heat exchangers in a multiple borehole field for ground source heat pump systems[D]. 1999. Ph.D Dissertation,.University of Kentucky.
    [9] Kavanaugh,Stephen. Simulation and Experimental Verification of Vertical Ground-Coupled Heat Pump Systems(Closed Loop) [D]. 1985.Ph.D Dissertation.State University of Oklahoma.
    [10] S.P.Kavanaugh. Using Existing Standards to Compare Energy Consumption of Ground-Source Heat Pumps with Conventional Equipment[J]. ASHRAE Transactions, 1992,98(2): 599-603.
    [11] Kevin Rafferty. A Capital Cost Comparison of Commercial Ground-Source Heat Pump Systmes[J]. ASHRAE Transactions, 1995,101(2):1095-1100.
    [12]贾玉鹤,钟更,林宏.地下水源热泵的环境问题及对策探讨[J].能源研究与信息,2001,18,1:36-39.
    [13]李世君,刘文臣,辛宝东.北京地区地下水源热泵利用现状及存在问题[J].城市地质,2006,1:16-19.
    [14]倪龙,封家平,马最良.地下水源热泵的研究现状与进展.建筑热能通风空调[J]. 2004,23(2):26-31.
    [15]蒙建东,张承虎,孙德兴.开式地表水源热泵系统工程实践若干问题探讨[J].节能技术,2008,26(2):99-102.
    [16]刘婷婷.冬冷夏热地区应用地表水源热泵系统供暖的优化方法[D].湖南大学, 2005.
    [17]胡连营.地表水地源热泵系统[J].可再生能源,2008,26(6):111-113.
    [18]曲云霞.地表水源热泵的设计[J].可再生能源, 2003,109, 3.
    [19] S.P.Kavanaugh. Lakewater Applications of Water-To-Air heat pumps[J]. ASHRAE Transactions, 1990, 96(1):813-820.
    [20] S.P.Kavanaugh. Design considerations for ground and water source heat pmps in southern climates[J]. ASHRAE Transactions, 1989,95(1).
    [21] Mahadevan Ramamoorthy. Optimal Sizing of Hybrid Ground-Source Heat Pump Systems That Use a Cooling Pond as a Supplemental Heat Rejecter-A System Simulation Approach[J]. ASHRAE Transactions, 2001,107(1):26-38.
    [22] J.M.Cantrell. Shallow Ponds for Dissipation of Building Heat: A Case Study[J].ASHRAE Transactions, 1984,90(2A):238-246.
    [23] Andrew D.Chiasson. A Model for Simulation the Performance of a Shallow Pond as a Supplemental Heat Rejecter with Closed-Loop Ground-Source Heat Pump Systems[J]. ASHRAE Transactions, 2000,106(2):107-121.
    [24] S.P.Kavanaugh. Design Considerations for Ground and Water Source Heat Pumps in Southern Climates[J]. ASHRAE Transactions, 1989,89(1):1139-1149.
    [25]张超,刘寅,周光辉.地源热泵的应用对环境的影响分析[J].制冷技术,2008,26(4):62-64.
    [26]中国建筑科学研究院. GB50366一2005.地源热泵系统工程技术规范[S].北京:中国建筑工业出版社,2005.
    [27]国家水利部. 2002年中国水资源公报[M].北京:中国水利水电出版社,2003.
    [28]聂会元,吴艳菊,王勇.中国气候区淡水源热泵适应性分析[J].重庆建筑大学学报,2008,30(3):112-115.
    [29]刘少康.环境与环境保护导论[M].北京:清华大学,2005,7:39.
    [30]沈晋.环境水文学[M].合肥:安徽科学技术出版社,1992:211-223.
    [31]陈晓.地表水源热泵系统的运行特性与运行优化研究[D].湖南:湖南大学,2006:35~36.
    [32]陈金华,付祥钊,丁勇,等.重庆市开县人民医院湖水源热泵空调系统[J].暖通空调,2008,38(4):87-89.
    [33]陈金华,刘勇,丁勇,等.重庆市开县人民医院湖水源热泵空调系统实测分析[J].暖通空调,2008,38(8):111-114.
    [34] Hattemer B, Kavanaughe S P. Design temperature data for surface water heating and cooling systems[J]. ASHRAE Transactions, 2005,111(1):695-701.
    [35] BüYüKALACA O,EKINCI F,YILMAZ T.Experimental investigation of Seyhan River and dam lake as heat source-sink for a heat pump[J]. Energy, 2003,28(2):157-169.
    [36]陈广朋.浅议地表水水源热泵系统在千岛湖景区的运用[J].民营科技,2008,12:26-28.
    [37] J.M.Cantrell.Shallow Ponds for Dissipation of Building Heat: A Case Study[J]. ASHRAE Transactions, 1984, 90(2A): 238-246.
    [38] M C.Pezent. Development and Verification of a Thermal Model of Lakes Used with Water Source Heat Pumps[J]. ASHRAE Transactions, 1990, 96(1): 574-582.
    [39] Hillel Rubin. Modelling The performance of a solar pond as a source of thermal energy[J]. Solar Energy, 1984, 32(6):771-778.
    [40] J.Srinivasan. The effect of bottom reflectivity on the performance of a solar pond[J]. Solar Energy, 1987, 39(4):361-367.
    [41] Ouni M,Simulation of the transient behavior of a salt gradient solar pond in Tunisa[J]. Renewable Energy, 1998, 14(4):69-76.
    [42]蒋红.水库(湖泊)水温的一维混掺对流模型[J].水电站设计, 1992, 8:12-16.
    [43] W.金士博.水环境数学模型[M].北京:中国建筑工业出版社,1987(1):68.
    [44]陈永灿.密云水库垂向水温模型研究[J].水利学报, 1998, 9: 21-26.
    [45]钱小蓉.水库水温预测模型研究[J].重庆大型学报(自然版),1997, 20(3):134-140.
    [46]叶闽.一维垂向水温分布模型在隔河岩水库中的应用与检验[J].水资源保护, 2001, 64(2):19-23.
    [47]李怀恩.一维垂向水库水温数学模型研究与黑河水库水温预测[J].水电能源科学,1990. 6(4):236-243.
    [48] Joseph F. A wind-mixed layer model for solar ponds[J]. Solar Energy, 1983, 31(3):243-259.
    [49] K.D.Joehnk,L.Umlauf. Modelling the Metalimnetic Oxygen Minimum in a Medium Sized Alpine Lake[J]. Ecological Modelling, 2001, 36:67-80.
    [50] Vassilis Z.Antonopoulos. Simulation of Water Temperature and Dissolved Oxygen Distribution in Lake Vegoritis, Greece[J]. Ecological Modelling, 2003. 160: 39-53.
    [51] J.Vassiljev,S.P.Harrison,Simulation of long-term thermal characteristics of three Estonian lakes[J]. Journal of Hydrology, 1994 .163:107-123.
    [52] Xing Fang,Heinz G.Stefan,Long-term lake water temperature and ice cover simulation measurements[J]. Cold Regions science and technology, 1996 .24:289-304.
    [53] Hany Hassan,Toshiya Aramaki, Lake stratification and temperature profiles simulatitde using downscaled GCM output[J]. Water Science tech, 1998, 38(11):217-226.
    [54] Vincenzo Botte, A model of the wind-driven circulation in Lake Baikal[J]. Dynamics of Atmospheres and Oceans, 2002,35: 131-152.
    [55] Paul R. Holland. A Numerical Study of the Dynamics of the Riverine[J]. Environmental Fluid Mechanics, 2001, 1: 311-332.
    [56] Yongqi Wang. A Semi-Implicit Semispectral Primitive Equation Model for Lake Circulation Dynamics and Its Stability Performance[J]. Journal of comptational physics, 1998, 139:209-241.
    [57]江春波.二维温度分层流的数值模拟[J].水力发电, 2003, 29(2):24-26.
    [58] F.Parrini, Rational analysis of mass, monentum, and heat transfer phenomena in liquid storage tanks under realistic operating conditions: 1. basic formulaion[J]. Solar Energy, 1992, 49, No(2): 87-94.
    [59] P.S.Yeates et al.Pseudo two-dimensional simulations of internal and boundary fluxes in stratified lakes and reservoirs[J]. Intl. J. River Basin Management, 2003, 1( 4): 297-319.
    [60]胡振红.温度和盐度分层流的数值模拟[J].水科学进程, 2001, 12(4):439-444.
    [61]邓云,李嘉,罗麟,等.水库温差异重流模型的研究[J].水利学报,2003,7.
    [62]韩会玲.横流中三维线源型浮力射流特性的研究[J].水利学报, 1998,No.8:46-50.
    [63]雏文生.水库垂直二维湍流与水温水质耦合模型[J].水电能源科学,1997, 15(3): 1-6.
    [64]陈小红.水库垂向二维水质分布研究[J].水利学报, 1997.No.4:9-16.
    [65]郝瑞霞.冷却水工程中湍浮力射流的三维数值模拟[J].水动力学研究与发展, A. 1999, 14, (4): 484-492.
    [66]陈丽星.模拟热分层流场的湍流模型的比较及优化[J].原子能科学技术,2003, 37(5):389-394.
    [67]郝瑞霞.潮汐水域电厂温排水的水流和热传输准三维数值模拟[J].水利学报,2004(8).
    [68]郝瑞霞,天然河道湍浮力流动的数值模拟Ⅱ:数学模型及其在冷却水工程中的应用实例[J].水利学报, 1999,6(6).
    [69]高殿武,热分层湍流计算机模拟的数学模型研究[J].黑龙江矿业学院学报,1999,9(3): 26-39.
    [70] Kavanaugh S P, Rafferty K. Ground-source heat pumps-design of geothermal systems for commercial and institutional buildings[J]. Atlanta.American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc, 1997:119-120.
    [71]徐伟等译.地源热泵工程技术指南[美] [M].北京:中国建筑工业出版社,2002: 77-78.
    [72]潘洁,刘传聚.地表水源热泵应用中的热污染隐患[J].上海节能,2007(3):27-31.
    [73]曲云霞,方肇洪,张林华,等.地表水源热泵系统的设计[J].实用技术, 2003( 3) :30- 32.
    [74]曹晓庆,郑洁,李菊.江水源热泵在上海地区应用的可行性分析[J].制冷与空调, 2009,9.( 1) :32- 35.
    [75]李艳,王昭文.开式水源热泵水系统方式的研究[J].煤炭工程,2006,5:95-97.
    [76]崔海成,张剑.地表水水源热泵系统的推广应用[J].中国建设信息供热供冷, 2008,12:46-47.
    [77]吴浩,王勇,李文.地表水源热泵以长江水作为低位冷热源的可行性分析[J].制冷与空调,2009,23(1):12-15.
    [78] http://www.utilities.cornell.edu/utl_lscfte_howlscworks.html[EB/OL].
    [79]陈慧泉,岳钧堂,陈燕茹.我国电厂取排水口规划特殊及其水力热力特性[J].水利学报,1993,10:1-11.
    [80]李振海,李贵宝,姜爱春,等.鸭河口电厂重叠式取排水口运行特性调查、观测与研究[J].水利水电技术,2003,34(9):59-65.
    [81]朱亮.供水水源保护与微污染水体净化[M].北京:化学工业出版社, 2005: 20- 22.
    [82]潘洁,刘传聚.谨防地表水源热泵可能引起的热污染[J].能源技术, 2007,28(5):287-290.
    [83]林于廉,张成,张元.水库水作为水源热泵空调系统取水水源的研究[J].中国給水排水, 2008,24(21):99-105.
    [84]郭宇,张毅,陈祖铭,等.福州大学新校区山北行政楼湖水源热泵空调系统设计[J].制冷,2008,27(4):67-72.
    [85]邓波,陈晟,龙惟定,等.大型地表水地源热泵的多因素动态能耗分析[J].暖通空调, 2008,38(8):26-29.
    [86] R. Yumrutas, M.Unsal. A computational model of a heat pump system with a hemispherical surface tank as the ground heat source[J]. Energy, 2000,25:371-388.
    [87]金权,端木琳,舒海文,敖永安,寇伟.蒸气压缩式热泵与冷水机组模型回顾及探讨[J].制冷与空调,2007,7(5):6-10.
    [88]周亚素.土壤热源热泵动态特性与能耗分析研究[D].上海:同济大学,2001, 4.
    [89]宋国军,由世俊,王志刚,李秋生,杨惠.住宅用水源热泵机组动态数学模型研究[J].流体力学,2005,33(3):59-61.
    [90]周力行.湍流两相流动与燃烧的数值模拟[M].北京:科学出版社,1991.
    [91]华祖林.湍流模型在环境水力学研究中的应用[J].水科学进展, 2001, 12(3):403 -212.
    [92]倪浩清.湍流模型在浮力回流中的应用与其发展[J].水动力学研究与发展,1994,9(6):651-665.
    [93] Joseph F. A wind-mixed layer model for solar ponds. Solar Energy[J]. 1983, 31(3): 243-259.
    [94] Jason Antenucci and Alan Imerito. The CWR Dynamic reservoir simulation model DYRESM[M]. Australia :The University of Western Australia.
    [95] John R.Hull. Dependence of ground heat loss upon solar pond size and perimeter insulation calculated and experimental results[J]. Solar Energy, 1984, 33(1):25-33.
    [96] V.V.N.Kishore. A practical collector efficiency equation for nonconvecting solar ponds[J]. Solar Energy, 1984, 33(5):391-395.
    [97] John R.Hull. Solar pond ground heat loss to moving water table[J]. Solar Energy, 1985, 35(3):211-217.
    [98] J.Srinivasan. The effect of bottom reflectivity on the performance of a solar pond[J]. Solar Energy, 1987, 39(4):361-367.
    [99]陶文铨.数值传热学[M].西安:西安交通大学出版社,2004:350-356.
    [100]韩占忠,王敬,兰小平. FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004.
    [101]王福军.计算流体动力学分析:CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [102] F.Parrini. Rational analysis of mass, monentum, and heat transfer phenomena in liquid storage tanks under realistic operating conditions: 2. application to a feasibility study[J]. Solar Energy, 1992, 49(2): 95-106.
    [103] L.Cai. Turbulent buoyant flows into a two dimensional storage tank. [J]. Int.J heat mass transfer, 1993, 36(17): 4247-4256.
    [104]应博芬.电厂取排水问题的数值模拟及优化[D].河北:华北电力大学, 2006, 4.
    [105]端木琳,李震,蒋爽,舒海文,等.大连星海湾海水源热泵空调系统热扩散数值模拟研究[J].太阳能学报, 2008, 7(29):832-834.
    [106]陈惠泉,陈燕茹.重叠式排取水口的研究与实践[J].水利水电科学研究院学研究论文集,第17集.北京:水利电力出版社, 1984:49-85.
    [107]曾玉红,槐文信.静止环境中垂直平面浮力射流稳定性与混合特性数值研究[J].水利学报, 2004,9: 56-62.
    [108]林伟波.密度分层流的浮射流模拟[J].华东师范大学学报, 2009, 3:56-61.
    [109]李炜.环境水力学进展[M].武汉:武汉水利电力大学出版社, 1999,313-31.
    [110]赵文谦.环境水力学[M].成都:成都科技大学出版社, 1986,156-15.
    [111]张大克,王玉杰.电厂冷却水在湖泊和水库中热扩散过程的数学模拟[J].应用数学与计算数学学报, 2004, 15(2):85-89.
    [112]曲云霞,李安桂,张林华,方肇洪.闭环地源热泵系统建模[J].西安建筑科技大学学报,2007,39(2):235-237.
    [113]包涛,董玉军,周翔,胡跃明,袁秀玲.水源热泵系统的稳态模拟与实验研究[J].制冷与空调, 2004,4(4):58-60.
    [114]杨卫波,施明恒.基于特性参数优化预测的水-水热泵仿真模型的探讨[J].流体机械,2007,35(8):80-83.
    [115]刘金平,张治涛,陈志勤,刘雪峰.基于动态仿真的空气源热泵热水器全年综合性能分析[J].給水排水, 2007.33(11):188-192.
    [116]罗会龙,铁燕,李明,钟浩.空气源热泵辅助加热太阳能热水系统热性能研究[J].建筑科学,2009, 25(2):52-54.
    [117]蒯大秋,朱再兴.水源热泵稳态性能的模拟计算与分析[J].湖南文理学院学报(自然科学版),2006,18(4):30-32.
    [118]由世俊,李秋生,李瑞新.水源热泵空调系统能耗的温频法模拟与分析[J].煤气与热力,2004,24(2):69-73.
    [119] Allen J J, Hamilton J F. Steady-state reciprocating water chiller models[J]. ASHRAE T ransactions, 1983,89 (2):398-407.
    [120] Stefanuk N B M, Aplevich J D, Renksizbulut. Modeling and simulation of a superheat- controlled water-to-water heat pump[J]. ASHRAE Transactions. 1992, 98(2):172-184.
    [121] Jin Hui , Spitler J D. A Parameter estimation based model of water-to-water heat pump for use in energy calculation programs[J]. ASHRAE Transactions, 2002,108 (1) :3-17.
    [122]李鹏翔,戎卫国.水源热泵机组的变工况特性研究[J].流体机械, 2004, 32 (8) :50-53.
    [123]张成宇,张欢,由世俊,等.水源热泵机组特性模拟与实验研究[J].煤气与热力, 2006, 26 (3) :45-50.
    [124]蒋文胜.离心式制冷机组负荷模拟与分析[J].低温与超导, 2009, 37(3):59-62.
    [125] Cleland A C. Computer subroutines for rapid evaluation of refrigeration thermodynamic properties[J]. International Journal of Refrigeration, 1986,9 (8):346-351.
    [126]丁国良.制冷空调装置的计算机仿真技术[J].科学通报, 2006,51(9):998-1011.
    [127]申世超,黄高飞.水源热泵空调系统能耗的分析与比较[J].医药工程设计, 2008,29(3):57-59.
    [128]肖杰,范波,刘圣先.某海水源热泵空调工程能耗分析[J].青岛理工大学学报,2008,29(2):141-144.
    [129]李莉,陶求华.居住建筑空调能耗模拟及夏季室内温度设定[J].建筑热能通风空调, 2008,27(6):78-80.
    [130]杨妩姗,王万江.建筑能耗分析方法的探讨[J].山西建筑, 2008,34(1):246-246.
    [131]毕传丽,由世俊,杨慧.某商住楼两种不同空调方案的能耗分析[J].节能,2007,298(5):45-48.
    [132]苏华,王靖.建筑能耗的计算机模拟技术[J].计算机应用, 2003, 23(2):411-414.
    [133]刘莹,郑贤德,许新明.冷水机组部分负荷性能分析[J].制冷,2000,(4):63-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700