用户名: 密码: 验证码:
小麦抗病相关基因的转化及瞬间表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦是我国乃至世界的重要粮食作物。小麦真菌病害是影响小麦产量的重要因素。随着植物分子生物学和功能基因组学的快速发展,我们对植物复杂的抗病反应过程有了越来越清晰的了解。同时,越来越多的抗病和抗病反应过程相关基因的克隆也成为可能。对这些基因进行功能鉴定和抗病效果分析,并利用基因工程手段开展小麦抗病分子育种将具有广阔的前景。结合传统的育种方法,对小麦抗病性状的改良将更为快速和高效。本实验首先利用基因枪转化方法,将两个抗病相关基因TaTBL和TaTST转入到感病小麦品种杨麦158中,获得经过分子鉴定和抗性分析的转化植株。随后,又利用瞬间表达技术对TaTBL、TaPK1、TaTST、G1b3s2、Cht4和G1b3s6等6个抗病相关基因的功能进行了分析,表明其在感病小麦叶片表皮细胞中的过量表达能显著抑制白粉菌对细胞的侵入和吸器的形成,提高表达细胞的抗性。
     1.1 小麦抗病相关基因的转化
     利用花青素合成酶调节基因作为报告基因对影响基因枪转化的多个参数进行了深入的分析,优化了转化过程。随后,分别构建了两个抗病相关基因小麦类Beclin1基因TaTBL和硫代硫酸硫转移酶基因TaTST的植物高效表达载体,目标基因的启动子为来源于玉米泛素基因的单子叶植物高效启动子ubi,植物选择标记基因为除草剂抗性基因bar。使用基因枪将表达载体分别导入到再生频率较高的感白粉病小麦品种杨麦158的幼胚愈伤组织细胞中。轰击后经过两轮除草剂bialaphos筛选和抗性愈伤组织的再生,分别获得转TaTBL基因的抗性植株50株;转TaTST基因的抗性植株30株。提取抗性植株基因组DNA,分别依据bar基因、Ubi启动子和目标基因的序列设计并合成引物进行PCR扩增,结果分别有6株和5株能够同时正确扩增出bar基因、Ubi启动子和相应的目标基因TaTBL或TaTST基因片断,初步表明外源基因确已整合到了小麦基因组上。转化植株苗期离体叶片的白粉病接种实验表明,TaTBL和TaTST基因的导入,在一定程度上增强了转化植株对白粉菌的抗性,表现为延缓了白粉菌的发育。
     1.2 小麦抗病相关基因的瞬间表达研究
     采用瞬间表达技术分析了小麦类Beclin1基因TaTBL、丝氨酸/苏氨酸激酶基因TaPK1、硫代硫酸硫转移酶基因TaTST、β-1,3-葡聚糖苷酶基因G1b3s2、几丁质酶基
Wheat is a member of the Triticae group of cereals and indisputably one of the major food crops of the world and a foundation of human nutrition worldwide. Fungus disease is an important biotic stress that greatly impacts the productivity of wheat. With the fast progress of plant molecular biology and plant functional genomics, the complicated resistance reaction process of plant have been understood much clearly, and more and more resistance genes and related genes have been cloned. To effectively analyze the potential resistance functions of these genes and tranform them into wheat to get resistant cultivars are in great need for crop resistance breeding (molecular breeding). In this experiment, two resistance-related genes TaTBL and TaTST were respectively transformed into wheat susceptible cultuvar Yangmai158 and transgenic plants were identified by PCR analysis. Increased resistance of transgenic plants to powdery mildew was observed after inoculation of wheat powdery mildew pathogen fungus Erysiphe graminis f.sp. tritici conidiospores on detached leaf segments. Besides stable transformation, transient expression system were also performed to identify resistance functions of six resistance-related genes TaTBL TaPK1 TaTSTs Glb3s2, Cht4 and Glb3s6. Over-expression of five of them in wheat epidermal cells can partly inhibit penetration of conidiospores and formation of haustoria, and to some extent increase the resistance of expression cells to powdery mildew.1.1 Transformation of two resistance-related genes into wheat and resistance analysis of transgenic plants.Anthocyanin synthesis regulatory genes Cl/Lc were used to optimize the parameters of gene-gun transformation protocol through counting of red spots on wheat calli after transient expression. Two plant expression vectors respectively carrying the wheat resistance-related genes TaTBL and TaTST driven by the ubi promoter and the bar gene with resistance to PPT were constructed. And then immature embryo derived calli of wheat cultivar of Yangl58 which has a high regeneration efficiency in tissue culture were used to perform particle bombardment. Through two sets of bialaphos screening and regeneration of resistance calli, 50 and 30 bialaphos-tolerrent plants of the two genes
    respectively were got out of about 500 initial calli. Genomic DNA were extracted and PCR was conducted with primers designed based on the sequence of bar gene, ubi promoter and target genes. Totally five plants transformed with the TaTBL gene and 6 plants transformed with the TaTST showed positive bands, which means exogenous genes have been integrated into host genomic DNA. Seedling leaves of transgenic plant were challenge inoculated with Erysiphe graminis f.sp. tritici conidispores and increased resistance was observed to varied degrees for different transformant.1.2 Analysis of wheat resistance-related genes by a transient expression systemTransient expression system was used to analyze the functions of six wheat resistance-related genes: TaTBL(Beclinl-like gene), TaPK1(serine/threonine protein kinase gene), TaTST(thiosulfate sulfurtransferase) Glb3s2( β -l,3-glucosidase) Cht4(chitinase gene) and Glb3s6(β -1,3-glucosidase) which had an increased expression against induction by Erysiphe graminis f.sp. tritici in other research. Target genes were constructed into plant expression vectors and transformed into leaf epidermal cells of powdery mildew-susceptible wheat variety by particle bombardment. GUS gene was co-transformed with either target gene to mark transformed cells. After transformation, leaf surface was inoculated with Erysiphe graminis f.sp. tritici conidiospores. 48 hours after inoculation, penetration of the fungus and formation of haustoria in transformed cells were observed to evaluate the effects of the target gene's products on the invasion of powdery mildew. The results implied that five of these six genes, TaTBL, TaPKl, TaTST, Glb3s2 and Cht4, when transiently expressed in leaf epidermal cells of susceptible wheat variety, can partially inhibit penetration of conidios
引文
[1] 安海龙,卫志明,黄健秋.基因枪法转化小麦的金粉用量及转基因植株表型特征分析.植物生理学报,2001,27(1):21-27
    [2] 安海龙,卫志明,黄健秋.小麦幼胚培养高效成株系统的建立.植物生理学报,2000,26(6):532-538
    [3] 蔡国平,沈子威,郑昌学,梁俊峰,赵南明,余新龙,刘诗荣,林忠平,于春辉,彭立红,麻密,汪惠,赖百塘.生物弹道法基因导入技术及影响其有效性的因素.自然科学进展——国家重点实验室通讯,1996,6(4):499-504
    [4] 陈大华,叶和春,李国凤,刘本叶.绿色荧光蛋白基因在青蒿转基因芽中的表达.植物学报,1999,41(5):490-493
    [5] 陈乐玫,章力健,郭宝燕,贾士荣,许宁,赵南明.应用基因枪将外源基因导入小麦幼胚获可育的转基因植株.自然科学进展—国家重点实验室通讯,1996,6(6):705-712
    [6] 陈新民,陈孝.小麦×玉米产生单倍体及双单倍体研究进展.麦类作物,1998,18(3):1-4
    [7] 程炜中.小麦成熟种子胚愈伤组织的快速诱导研究.陕西农业科学,1999,3:12-14
    [8] 单丽波,李义文,赵铁汉,梁辉,欧阳俊闻,贾双娥,贾旭.利用花色素苷合成调节基因C1-R作为基因枪转化效果指示的研究.遗传学报,2000,27(1):65-69
    [9] 邓定辉.抗性基因工程育种.世界农业,2000,27-28
    [10] 丁国华,烟草转基因研究的动态和展望,黑龙江农垦师专学报,2002,第2期:81-83
    [11] 董槿,张凌娣,翟亚锋,邓新,韩成贵,于嘉林.蔗糖在小麦基因枪法转化体系中的应用.麦类作物学报,2002,22(4):1-5
    [12] 方进,翟文学,王文明,李素文,朱立煌.转基因水稻T-DNA侧翼序列的扩增与分析.遗传学报,2001,28(4):345-351
    [13] 郭殿京,傅荣昭,李文彬,孙颖,张晓东,张利明,孙勇如.小麦中外源基因瞬间表达调控研究及兔防御素(NP-1)基因的转化.遗传学报,1999,26(2):168-173
    [14] 何定钢,欧阳俊闻.小麦不同发育时期花药对离体培养的反应.遗传,1984,6(2):6-9
    [15] 黄国存,张寒霜,高鹏,李俊兰,朱生伟,孙敬三.GFP基因在棉花转化中的应用.遗传,2001,23(2):131-134
    [16] 黄健秋,卫志明,安海龙,徐淑平,农杆菌转化获得转B.t.基因水稻及其生物学鉴定, 植物生理学报,2000,26(6):519-524
    [17] 贾力,吴茂森,张文蔚,肖红,成卓敏.大麦黄矮病毒单双价外壳蛋白基因植物表达载体构建及小麦遗传转化.农业生物技术学报,2001,9(1):23-27
    [18] 金鹰.绿荧光蛋白(GFP)研究进展.激光生物学报,1999,8(3):228-232
    [19] 李师弢,王胜华,杨弘远.植物幼小原胚的电激转化.科学能报,2000,45(6):598-602
    [20] 李友勇,刘金枝,吴艳菊.离体小麦胚胎对6种植物激素的生长反应.河南职业技术师范学院学报,2003,31(1):1-3
    [21] 梁辉,赵铁汉,李良材.欧阳俊闻,田文忠,贾旭.影响基因枪法转化小麦幼胚的几个因素的研究.遗传学报,1998,25(5):443-448
    [22] 梁辉,朱银峰,孙东发,朱祯,贾旭.雪花莲凝集素基因转化小麦及转基因小麦抗蚜性的研究.1-7
    [23] 梁雪莲,王引斌,卫建强,缑建芳.作物抗除草剂转基因研究进展.生物技术通报,2001,17-21
    [24] 梁竹青,高明尉,成雄鹰.供育种用的小麦未成熟胚离体培养技术研究.作物学报,1988,14(2):137-142
    [25] 梁竹青,高明尉.不同小麦基因型对体细胞组织培养的反应.中国农业科学,1986,2:42-47
    [26] 廖祥儒,杜建芳,王俊霞,王俊丽,宋陆铧,陈丕铃,朱宝成.预处理对小麦成熟胚愈伤组织形成的影响.河北大学学报(自然科学版),1999,19(1):41-44
    [27] 廖祥儒,郭中伟,杜建芳,宋陆铧,王俊丽,孙丕铃.低温和PEG预处理对小麦愈伤组织形成及IAA氧化的影响.植物学通讯,2000,17(3):257-259
    [28] 林拥军,陈浩,曹应龙等,农杆菌介导的牡丹江8号高效转基因体系的建立,2002,Vol.28:294-300
    [29] 刘颖,金振华,林忠平.利用PCR技术鉴别转化根癌农杆菌中外源和内源的GUS基因.生物工程进展,1995,15(2):46-47
    [30] 柳建军,于洪欣,冯兆礼.小麦成熟愈伤组织诱导及分化的研究.山东农业大学学报,1996,27(4):451-456
    [31] 陆维忠,佘建明,吴鹤呜,周邗扬,葛美蓉.小麦幼穗、茎、节组织培养和植株再生.江苏农业学报,1988,4(1):14-18
    [32] 陆晓春,郭长英,胡守荣.转基因植物中的标记基因.东北农业大学学报,2000,31(1):86-90
    [33] 罗小英,侯磊,李德谋,裴炎,大麦β-1,3-葡聚糖基因表达载体的构及其对马铃薯的遗传转化,西南农业学报,2000,Vol.13:1-5
    [34] 牟红梅,刘树俊,周文娟,文玉香,张文俊,魏荣碹.慈菇蛋白酶抑制剂通过花粉途径 对小麦的导入及转基因植株分析.遗传学报,1999,26(6):634-642
    [35] 彭朝华,毛炎麟.小麦成熟胚愈伤组织的诱导和植株再生。北京农业大学学报,1989,15(4):397-401
    [36] 苏军,段榕琦,胡昌泉,王峰,农杆介导小白菜的gus基因瞬间表达,福建果树,2000,2:3-5
    [37] 孙敬三,路铁刚,辛化伟,王群.染色体消除法获得小麦单倍体.36-42
    [38] 王常云,王作全,谢永福,李晓亮,何忠诚.小麦不同基因型幼胚离体培养的研究.莱阳农学院学报,1996,13(2):109-112
    [39] 王广金.小麦与玉米杂交产生单倍体频率的研究.麦类作物,1998,18(6):12-14
    [40] 王海波,魏景芳,葛亚新,石西平,范云六.小麦愈伤组织状态调近代与原生质体培养.中国农业科学,1996,29(6):8-14
    [41] 王亚馥,崔凯荣,陈克民,刘志学.小麦幼胚培养中体细胞胚发生和植株再生.29
    [42] 王永飞,马三梅,韩毅科,王呜.利用基因工程创造植物雄性不育的策略.遗传,2001,23(3):276-280
    [43] 吴茂森,田苗英,陈彩层,张文蔚,成卓敏.通过花粉途径将BYDV-GPV株系缺失复制酶基因导入小麦.农业生物技术学报,2000,8(2):125-127
    [44] 武丽敏,郑有良,魏育明,吴卫,颜泽洪,张志清.小麦转基因研究进展.四川农业大学学报,2003,21(2):176-181
    [45] 肖兴国,张爱民,聂秀玲.转基因小麦的研究进展与展望.农业生物技术学报,2000,8(2):111-116
    [46] 徐琼芳,李连城,马有志,叶兴国,李晓兵,杜丽璞,辛志勇,张增艳,邵鹏柱.用天花粉蛋白基因转化小麦获得转基因植株.遗传,2001,23(2):135-137
    [47] 徐增富,李宝键.农杆菌LBA4404不含内源GUS基因.生物化学与生物物理进展.1996,23(3):286-287
    [48] 徐子勤.重要禾谷类植物转基因研究.生物工程进展,2001,21(1):59-74
    [49] 叶兴国,徐惠君,杜丽璞,辛志勇,Lee Seyong, Hong J H.小麦遗传转化中适宜选择剂浓度和标记基因的确定.农业生物技术学报,2000,8(2)增刊:71-73
    [50] 叶兴国,Shriley Smo,徐惠君等,小麦农杆菌介导转基因植株的稳定获得和检测,中国农业科学,2001,34(5):469-474
    [51] 叶兴国,徐惠君,杜丽璞,辛志勇.小麦遗传转化几个因素的研究.中国农业科学.2001,34(2):128-132
    [52] 易自力,曹守云,王力等,提高农杆菌转化水稻频率的研究,遗传学报,2001,28(4):352-358
    [53] 于晓红,朱祯,付志明,安利佳,李向辉.提高小麦愈伤组织分化频率的因素.植物生理学报,1999,25(4):388-394
    [54] 于晓红,朱祯,徐鸿林,朱玉,吴茜,高越峰,付志明,肖桂芳,安利佳,李向辉.基因枪法转化小麦及转基因植株的获得.高技术通讯,2000,13-16
    [55] 曾寒冰.小麦未熟胚离体培养的研究——愈伤组织的诱导及再生植株.东北农学院学报,1988,19(1):1-8
    [56] 翟文学,李晓兵,田文忠等,由农杆菌介导将白叶枯病抗性基因Xa21转入我国的5个水稻品种,中国科学(C),2000,Vol.30:200-206
    [57] 张宏军,崔海兰,倪汉文,周志强,江树人,杨逢玉.抗草铵膦转基因水稻品种的快速检测方法的比较.生物技术通报,2003,45-48
    [58] 张晓东,李冬梅.徐文英,蒋有绎,胡道芬,韩立新.利用基因枪将HMW谷蛋白亚基因与除草剂Basta抗性基因导入小麦不同外植体获得转基因植株.遗传,1998,20(增刊):3-8
    [59] 章冰,卫志明.植物遗传转化中存在的问题及对策.植物生理学通讯,2000,36(3):245-251]
    [60] 赵天永,王国英,黄忠,张云芳,谢友菊.玉米愈伤组织对草丁膦的抗性及氨基酸对这种抗性的影响.植物学报,1998,40(11):1-8
    [61] 赵艳,高振宇,黄大年.植物的MAR及其对转基因表达的效应.遗传,2001,23(3):281-284
    [62] 中国科学院遗传研究所三室一组.应用马铃薯培养大幅度提高小麦花粉植株的诱导频率.遗传学报,1976,3(1):25-29
    [63] 周丛照,钱信果,李振刚.MAR的分子结构.遗传,1999,21(3):39-43
    [64] 朱乾浩,汪若海.转基因植物研究新进展.世界农业,2000,23-25
    [65] 庄家骏,贾旭,陈国庆.诱导小麦花粉愈伤组织分化植株的研究.遗传学报,1984,11(5):374-381
    [66] Deng X W, Stacey M G. Cloning vectors for the expression of green fluorescent protein fusion proteins in transgenic plants. Gene, 1998, 221: 35-43
    [67] Abdul Razzaq, Ma Z Y, Wang H B. Genetic transformation of wheat (Triticum aestivum L): A review. Molecular Plant Breeding, 2004, 2(4): 457-464
    [68] Ahlandsberg S, Sathish P, Sun C X, Jansson C. Green fluorescent protein as a reporter system in the transformation of barley cultivars. Physiologia plantarum, 1999, 107: 194-200
    [69] Ahloowalia B S. Plant regeneration from callus culture in wheat. Crop Science, 1982, 22: 405-410
    [70] Alicja ZiemienowicZ,Thomas Merkle.Fabrice Schoumacher .Barbara Hohn,Luca Rossi. Import of Agrobacterium T-DNA into Plant Nuclei:Two Distinct Functions of VirD2 and VirE2 Proteins.The Plant Cell,2001,Vol 13:369-383
    [71] Altpeter F, Vasil V, Srivastava V, Vasil I K. Integration and expression of the high-molecular-weight glutenin subunit lAxl gene into wheat. Research Article, 1996, 1155-1159
    [72] Andrew N.Binns. T-DNA of Agrobacterium tumefaciens:25 years and counting. TRENDS in Plant Science,2002,Vol.7:231-233
    [73] B.H. Wu,Y.L.Zhang,D.C.Liu, Y.H.Zhou. Trait correlation of immature embryo culture in bread wheat. Plant Breeding,2003,122:47-51
    [74] B.K.Amoah,H.Wu, C.Sparks,H.D.Jones. Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue. Journal of Experimental Botany,2001,Vol.52:1135-1142
    [75] Bansal K C, Viret J F, Haley J, Khan B M, Schantz R, Bogorad L. Transient expression from cab-ml and rbcS-m3 promoter sequences is different in mesophyll and bundle sheath cells in maize leaves.Proc Natl Acad Sci USA, 1992, 89:3654-3658
    [76] Barro F, Cannell M E. Lazzeri P A, Barcelo P. The influence of auxins on transformation of wheat and tritordeum and analysis of transgene integration patterns in transformants. Theor Appl Genet, 1998, 97:684-695
    [77] Bartok T, Sagi F. A new, endosperm-supported callus induction method for wheat (Triticum aestivum L.). Plant Cell, Tissue and Organ Culture, 1990,22:37-41
    [78] Bevan M. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Research, 1984,12(22): 8711-8721
    [79] Bhat S R, Srinivasan S. Molecular and genetic analysis of transgenic plants: consideration and approaches. Plant Science, 2002,163:673-681
    [80] Bieri S, Potrykus I, Futterer J. Expression of active barley seed ribosome-inactivating protein in transgenic wheat. Theor Appl Genet, 2000, 100:755-763
    [81] Binns A N. T-DNA of Agrobacterium tumefaciens:25 years and counting. Trends in Plant Science, 2002,7(5): 231-233
    [82] Birch R G, Franks T. Development and Optimisation of Microprojectile Systems for Plant Genetic Transformation. Aust. J Plant Physiol, 1991,18:453-469
    [83] Bliffeld M, Mundy J, Potrykus I, Futterer J. Genetic engineering of wheat for increased resistance to powdery mildew disease. Theor Appl Genet, 1999,1079-1086
    [84] Breyne P, Montagu M V, Depicker A, Gheysen G. Characterization of a plant scaffold attachment region in a DNA fragment that normalizes transgene expression in tobacco. The Plant Cell, 1992, 4: 463-471
    [85] Brigitte Huss, Bruno Tinland, Francois Paulus, Bernard Walter. Functional analysis of a complex oncogene arrangement in biotype Ⅲ Agrobacterium tumefaciens strains. Plant Molecular Biology, 1990, 14: 173-186
    [86] Brosius J. Plasmid vectors for the selection of promoters. Gene, 1984, 27: 151-160
    [87] Cao J, Duan X L, McElroy D, Wu R. Regeneration of herbicide resistant transgenic rice plants following microprojectile-mediated transformation of suspension culture cells. Plant Cell Reports, 1992, 11: 586-891
    [88] Casas A M, Kononowicz A K, Bressan R A, Hasegawa P M. Cereal transformation through particle bombardment. Plant Breeding Reviews, 1995, 235-257
    [89] Casas A M, Kononowicz A K. Bressan R A and Hasegawa P M. Cereal Transformation through particle bombardment. 1995,
    [90] Chen W P, Gu X, Liang G H, Muthukrishnan, Chert P D, Liu D J, Gill B S. Introduction and constitutive expression of a rice chitinase gene in bread wheat using biolistic bombardment and the bar gene as a selectable markers. Theor Appl Genet, 1998, 1296-1306
    [91] Christensen A H, Sharrock R A, Quail P H. Maize polyubiqutin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Molecular Biology, 1992, 18: 675-689
    [92] Christof Sautter. Development of a microtargeting device for particle bombardment of plant meristems. Plant Cell. Tissue and Organ Culture, 1993, 33: 251-257
    [93] Christou P. Rice transformation: bombardment. Plant Molecular Biology, 1997, 35: 197-203
    [94] Chugh A, Khurana P. Herbicide-resistant transgenics of bread wheat(T.aestivum) and emmer wheat (T.dicoccum) by particle bombardment and Agrobacterium-mediated approaches. Research communications, 2003, 78-83
    [95] Chugh A, Khurana P. Regeneration via somatic embryogenesis from leaf basal segments and genetic transformation of bread and emmer wheat by particle bombardment. Plant Cell, Tissue and Organ Culture, 2003, 74: 151-161
    [96] Datla R S S, Hammerlindl J K, Pelcher L E, Crosby W L, Selvaraj G. A bifunctional fusion between β-glucuronidase and neomycin phosphotransferase: a broad-spectrum markrer enzyme for plants. Gene, 1991, 101: 239-246
    [97] Davis R E, Parra A, Loverde P T, Ribeiro E, Glorioso G, Hodgson S. Transient expression of DNA RNA in parasitic helminthes by using particle bombardment. Proc. Medical Sciences, 1999,96:8687-8692
    [98] Delporte F, Mostade O, Jacquemin J M. Plant regeneration through callus initiation from thin mature embryo fragments of wheat. Plant Cell, Tissue and Organ Culture, 2001, 67:73-80
    [99] Dennis McCabe & Paul Christou. Direct DNA transfer using electric discharge particle acceleration (ACCELL TM technology). Plant Cell. Tissue and Organ Culture, 1993, 33:227-236
    [100] Dirk Valvekens,Marc Van Montagu,Mieke Van Lusebettens. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc.Natl.Acad.Sci.USA,1988,Vol.85:5536-5540
    [101] Does M P, Dekker B M M, Groo M J A, Offringa R. A quick method to estimate the T-DNA copy number in transgenic plants at an early stage after transformation, using inverse PCR. Plant Molecular Biology, 1991,17:151 -153
    [102] Evessva N V, Tkachenko L V, Lobachev Y V, Mitrophanov A Y. Djatchouk T I, Shchyogolev S Y. Studies on the embryogenic processes in the in vitro culture of wheat somatic tissues by using a proliferative antigen of initial cells. Wheat Information Service, 2002, 94:1-4
    [103] Fang Y D, Akula C, Altpeter F. Agrobacterium-mediated barley (Hordeum vulgare L.) transformation using green fluorescent protein as a visual marker and sequence analysis of the T-DNA: barley genomic DNA junctions. Journal of Plant Physiology, 2002,1-8
    [104] Foiling L, Olesen A. Transformation of wheat (Triticum aestivum L.) microspore-derived callus and microspores by particle bombardment. Plant Cell Rep, 2001,20:629-636
    [105] Fujiwara T, Lessard P A, Beachy R N. Seed-specific repression of GUS activity in tobacco plants by antisense RNA. Plant Molecular Biology, 1992,20:1059-1069
    [106] Gu X, Wang M, Murray F, Upadhyaya N, Brettell R. Agrobacterium tumefaciens-mediated transformation of wheat tissue cultures using GFP as a visual marker. Volume 3: Poster Presentations, 183-185
    [107] H.K.Khanna,GE.Daggard. Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium. Plant Cell Rep,2003,21:429-436
    [108] H.Machii,H.Mizuno,T.Hirabayashi,H.Li,T.Hagio. Screening wheat genotype for high callus induction and regeneration capability from anther and immature embryo cultures.Plant Celljissue and Organ Culture,1998,53:67-74
    [109] H.Wu,C.Sparks,B.Amoah,H.D.Jones. Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep,2003,21:659-668
    [110] Hajdukiewicz P, Svab Z, Maliga P. The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Molecular Biology, 1994,25:989-994
    [111] Hamilton C M. A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene, 1997,200:107-116
    [112] Harvey A, Moisan L, Liudup S, Lonsdale D. Wheat regenerated from scutellum callus as a source of material for transformation. Plant Cell, Tissue and Organ Culture, 1999, 57:153-159
    [113] Hauptmann R M, Vasil V, Ozias-akins P, Tabaeizadeh Z, Rogers S G, Fraley R T, Horsch R B, Vasil I K. Evaluation of selectable markers for obtaining stable transformants in the grarm'neae. Plant Physiol, 1988, 86:602-606
    [114] Hellens R P, Edwards E A, Leyland N R, Bean S, Mullineaux P M. pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Molecular Biology,2000,42:819-832
    [115] Hellens R, Mullineaux P, and Klee H. A guide to Agrobacterium binary Ti vectors. Trends in Plant Science.2000,5(10):446-451
    [116] Hensgens LAM, Bakker E P H M de, Os-Ruygrok E P, Rueb S, Mark F, Heleen Maas M, Transient and stable expression of gusA fusions with rice genes in rice, barley and perennial ryegrass. Plant Molecular Biology, 1993, 22:1101-1127
    [117] Hobbs SLA, Warkentin T D, Delong C M O. Transgene copy number can be positively or negatively associated with transgene expression. Plant Molecular Biology, 1993,21:17-26
    [118] Hoekema A, Hirsch P R, Hooykaas P J J, Schilperoort R A. A binary plant vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature, 1983,303(12):179-180
    [119] Hooykaas P J J, Schilperoort R A. Agrobacterium and plant genetic engineering. Plant Molecular Biology, 1992,19:15-38
    [120] Huang J K, Rozelle S, Pray C, Wang Q F. Plant Biotechnology in China. 295(5555):674-682
    [121] Hwang Y S, McCullar C, Huang N. Evaluation of expression cassettes in developing rice endosperm using a transient exepression assay. Plant Science, 2001,161:1107-1116
    [122] I.M.Ben Amer.The relationship between green spot initiation and plantlet regeneration of wheat callus grown under short-term conditions. Plant Cell,Tissue and Organ Culture, 1997,50:67-69
    [123] Ishige F, Takaichi M, Foster R, Chua N H, Oeda K. A G-box motif (GCCACGTGCC) tetramer confers high-level constitutive expression in dicot and monocot plants. The Plant Journal , 1999, 18(4):443-448
    [124] J.GCarman,N.E.Jefferson,W.F.Campbell. Induction of embryogenic Triticum aestivum L.calli.I. Quantification of genotype and culture medium effects. Plant Cell,Tissue and Organ Culture,1987,10:101-113
    [125] Jackson S A, Zhang P, Chen W P, Phillips R L, Friebe B, Muthukrishnan S, Gill B S. High-resolution structural analysis of biolistic transgene integration into the genome of wheat. Theor Appl Genet, 2001,103:56-62
    [126] James Oard. Development of an airgun device for particle bombardment. Plant Cell. Tissue and Organ Culture, 1993, 33:247-250
    [127] Jauhar P P, Chibbar R N. Chromosome-mediated and direct gene transfers in wheat. Genome, 1999,42:570-583
    [128] Jauhar P P. Genetic engineering and accelerated plant improvement: Opportunities and challenges. Plant Cell, Tissue and Organ Culture, 2001, 64:87-91
    [129] Jimenez V M, Bangerth F. Endogenous hormone concentrations and embryogenic callus development in wheat. Plant Cell Tissue and Organ Culture, 2001, 67:37-46
    [130] Jordan M C. Green fluorescent protein as a visual marker for wheat transformation. Plant Cell Reports, 2000,19:1069-1075
    [131] Julie Russell Kikkert. The Bioloistic? PDS-1000/He device. Plant Cell. Tissue and Organ Culture, 1993, 33:221-226
    [132] K.H.Han,R.Meilan,C.Ma,S.H.Strauss. An Agrobacterium tumefaciens tranformation protocol effective on a variety of cottonwood hybrids(genus Populus). Plant Cell Reports,2000,19;315-320
    [133] K.Kaleikan,R.GSears,B.S.Gill. Control of tissue culture response in wheat(Triticum aestivum L.). Theor Appl Genet,1989,78:783-787
    [134] Kaeppler H F, Carlson A R, Menon G K. Routine utilization of green fluorescent protein as a visual selectable marker for cereal transformation. In Cell Dev Biol-Plant, 2001, 37:120-126
    [135] Kaeppler H F, Menon G K, Skadsen R W, Nuutila A M, Carlson A R. Transgenic oat plants via visual selection of cells expressing green fluorescent protein. Plant Cell Reports, 2000, 19:661-666
    [136] Karimi M, Inze D, Depicker A. GATEWAY vector for Agrobacterium-mediated plant transformation. Trends in Plant Science, 2002, 7(5): 193-195
    [137] Klein T M, Fromm M, Weissinger A, Tomes D, Schaaf S, Sletten M, Sanford J C. Transfer of foreign genes into intact maize cells with high-velocity microprojectiles. Proc Natl Acad Sci USA, 1988, 85: 4305-4309
    [138] Klein T M, Wolf E D, Wu R, Sanford J C. High-velocity microprojectiles for delivering nucleic acids into living cells. Letters Tonature, 1987, 71-73
    [139] Klein T M. Wolf E D, Wu R, Sanford J C. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature. 1987, 327(7): 70-73
    [140] Kluth A, Brettschneider R, Lorz H, Becker D. Inheritance and expression of transgenes in hexaploid wheat. Volume 3, Section 5-transgenics, 192-201
    [141] Kohli, J.Xiong, R.Greco, P.Christou, A.Pereira. Tagged Transcriptome Display(TTD) in indica rice using Ac transposition. Mol Genet Genomics, 2001, 266: 1-11
    [142] L.M.Ben Amer, V.Korzun, A.J.Worland. Genetic mapping of QTL controlling tissue-culture respone on chromosome 2B of wheat(Triticum aestivum L.) in relation to major genes and RFLP markers. Theor Appl Genet, 1997, 94: 1047-1052
    [143] Leckband G, Lorz H. Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theor Appl Gene, 1998, 96: 1004-1012
    [144] Li Y W, Seo Y W, Li Z S, Jia X. Genetic transformation in Triticeae crops. Acta Botanica Sinica, 2002, 44(5): 505-518
    [145] Li Z Y, Xia G M, Chen H M. Somatic embryogenesis and plant regeneration from protoplasts isolated from embryogenic cell suspensions of wheat (Triticum aestivum L.). Plant Cell Tissue and Organ Culture, 1992, 28: 79-85
    [146] Lin R C, Ding Z S, Li L B, Kuang T Y. A rapid and efficient DNA minipreparation suitable for screening transgenic plants. Plant Molecular Biology Reporter, 2001, 19-379a-379e
    [147] Ludwig S R, Habera L F, Dellaporta S L, Wessler S R. Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proc Natl Acad Sci USA, 1989, 86: 7092-7096
    [148] Luthra R, Varsha, Dubey R K, Srivastava A K, Kumar S.Microprojectile mediated plant transformation: A bibliographic search. Euphytica, 1997, 95: 269-294
    [149] M.D.Lazar, G.B.Collins, W.E.Vian. Genetic and environmental effects on the growth and differentiation of wheat somatic cell culture. The Journal of Heredity, 1983, 74: 353-357
    [150] M.D.Lazar, T.H.H.Chen, G.J.Scoles ,K.K.Kartha. Immature embryo and anther culture of chromosome addition lines of rye in Chinese spring wheat. Plant Science, 1987, 51: 77-81
    [151] M.K.Alsheikh, H.P.Suso, M.Robson, N.H.Battey. Appropriate choice of antibiotic and Agrobacterium strain improves transformation of antibiotic-sensitive Fragaria vesca and F.v.semperflorens. Plant Cell Rep,2002,20:l 173-1180
    [152] Maas C, Laufs J, Grant S, Korfhage C, Werr W. The combination of a novel stimulatory element in the first exon of the maize Shrunken-1 gene with the following intron 1 enhances reporter gene expression up to 1000-fold. Plant Molecular Biology, 1991,16:199-207
    [153] Maddock S E, Lancaster V A, Risiott R, Franklin J. Plant regeneration from cultured immature embryos and inflorescences of 25 cultivars of wheat (Triticum aestivum ). Journal of Experimental Botany, 1983,34(144):915-926
    [154] Marc De Block,Dirk De Brouwer.Paul Tenning.Transformation of Brassica napus and Brassica oleracea Using Agrobacterium tumefaciens and the Eepression of the bar and neo Genes in the Trangenic Plants. Plant Physiol, 1989,91:694-701
    [155] McBride K, Summerfelt K R. Improved binary vectors for Agrobacterium-mediated plant transformation. Plant Molecular Biology, 1990,14:269-276
    [156] McCormac A C, Elliott M C, Chen D F. A flexible series of binary vectors for agrobacterium-mediated plant transformation. Molecular Biotechnology, 1997,199-213
    [157] McCormac A C, Elliott M C, Chen D F. A simple method for the production of highly competent cells of Agrobacterium for transformation via electroporation. Molecular Biotechnology, 1998,155-159
    [158] McCormac A C, Elliott M C, Chen D F. pBECKS2000: a novel plasmid series for the facile creation of complex binary vectors, which incorporates " clean-gene" facilities. Mol Gen Genet, 1999,261:226-235
    [159] McCormac A C, Wu H X, Bao M Z, Wang Y B, Xu R J, Elliott M C, Chen D F. The use of visual marker genes as cell-specific reporters of Agrobacterium-mediated T-DNA delivery to wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). Euphytica, 1998,99:17-25
    [160] McElroy D, Blowers A D, Jenes B, Wu R. Construction of exepression vectors based on the rice actin 1 (Act 1)5' region for use in monocot transformation. Mol Gen Genet, 1991,231:150-160
    [161] Mchughen A. Short communications rapid regeneration of wheat in vitro. Ann Bot, 1983, 51:851-853
    [162] Melchiorre M N, Lascano H R, Trippi V S. Transgenic wheat plants resistance to herbicide BASTA obtained by microprojectile bombardment. Biocell, 2002, 26(2):217-223
    [163] Ming Chen,Joyce E.Fry,Shengzhi Pang,Huaping Zhou .Catherine M.Hironaka. Genetic Transformation of Wheat Mediated by Agrobacterium tumefaciens.Plant Physiol,1997,Vol.l 15:971-980
    [164] Ming-Tsair Chan,Hsin-Hsiung Chang,Shin-Lon Ho. Agrobacterium -mediated production of transgenic rice plants expressing a chimeric (?)-amylase promoter /β-glucuronidase gene.Plant Molecular Biology,1993,22:491-506
    [165] Mozo C, Hooykaas P J J. Design of a novel system for the construction of vectors for Agrobacterium-mediated plant transformation. Mol Gen Genet, 1992,236:1-7
    [166] Muhitch M J, Shatters R G Regulation of the maize ubiquitin (Ubi-1) promoter in developing maize(Zea mays L.) seeds examined using transient gene expression in kernels grown in vitro. Plant Cell Reports, 199817:476-481
    [167] Murat ozgen,Mtlge Turet,Melahat Avci. Cytoplasmic effects on the tissue culture response of callus from winter wheat mature embryos. Plant Cell,Tissue and Organ Culture,2001,64:81-84
    [168] Myslik J T, Nassuth A. Rapid detection of viruses, transgenes, and mRNAs in small plant leaf samples. Plant Molecular Biology Reporter, 2001,19:329-340
    [169] Nuutila A M, Ritala A, Skadsen R W, Mannonen L, Kauppinen V. Expression of fungal thermotolerant dndo-1, 4-P-glucanase in transgenic barley seeds during germination. Plant Molecular Biology, 1999,41:777-783
    [170] Ow D W. Recombinase-directed plant transformation for the post-genomic era. Plant Molecular Biology, 2002,48:183-200
    [171] Ow D W. The right chemistry for marker gene removal ? Nature Biotechnology, 2001, 19:115-116
    [172] Ozgen M, Turet M, Altmok S, Sancak. Efficient callus induction and plant regeneration from mature embryo culture of winter wheat (Triticum aestivum L. )genotypes. Plant Cell reports, 1998,18:331-335
    [173] P.Higgins,R.J.Mathias. The effect of the 4B chromosomes of hexaploid wheat on the growth and regeneration of callus cultures. Theor Appl Genet, 1987,74:439-444
    [174] Pang S Z, DeBoer D L, Wan Y C, Ye G N, Layton J G, Neher M K, Agmstrong C L, Fry J E, Hinchee M A W, Fromm M E. An improved green fluorescent protein gene as a vital marker in plants. Plant Physiol, 1996,112:893-900
    [175] Patnaik D, Khurana P. Genetic transformation of Indian bread (T.aestivum) and pasta (T.durum) wheat by particle bombardment of mature embryo-derived calli. BMC Plant Biology, 2003,1-11
    [176] Patnaik D, Khurana P. Wheat biotechnology: A minireview. Plant Biotechnology, 2001,
    [177] Pauline A.mooney,Peter B.Goodwin,Elizabeth S.Dennis,Danny J.Llewellyn. Agrobacterium tumefaciens-gene transfer into wheat tissue. Plant Cell .Tissue and Organ Culture,1991,25:209-218
    [178] Pauline A.Mooney,Peter B.Goodwin. Adherence of Agrobacterium tumefaciens to the cells of immature wheat embryos. Plant Cell.Tissue Organ Culture, 1991,25:199-208
    [179] Perl A, Kless H, Blumenthal A, Galili G, Galun E. Improvement of plant regeneration and GUS expression in scutellar wheat calli by optimization of culture conditions and DNA-microprojectile delivery procedures. Mol Gen Genet, 1992,235:279-284
    [180] Peters N R, Ackerman S, Davis E. A Modular Vector for Agrobacterium Mediated Transformation of Wheat. Plant Molecular Biology Reporter, 1999,17:323-331
    [181] Philippe Vain, Noel Keen, Jesus Murillo, Jesus Murillo, Carl Rathus, Cheri Nemes & John J. Finer. Development of the particle inflow gun. Plant Cell. Tissue and Organ Culture, 1993, 33:237-246
    [182] Pietrzeak M, Shillito R D, Hohn T, Potrykus I. Expression in plants of two bacterial antibiotic resistance genes after protoplast transformation with a new plant expression vector. Nucleic Acids Research, 1986,14:5857-5867
    [183] Potrykus,C.T.Harms .Callus formation from cell culture protoplasts of corn(Zea mays L.). Theor Appl Genet,1979,54:209-214
    [184] Puddephat I J, Thompson N, Robinson H T, Sandhu P, Henderson J. Biolistic transformation of broccoli. 1999, 715-720
    [185] Quaedvlieg N E M, Schlaman H R M, Admiraal P C, Wijting S E, Stougaard J, Spaink H P. Fusions between green fluresecent proteins and P -glucuronidase as sensitive and vital biftinctional reporters in plants. Plant Molecular Biology, 0998,38:861-873
    [186] R.GSears,E.L.Deckard. Tissue Culture Variability in wheat: Callus Induction and Plant Regeneration. Crop Science ,1982,Vol 22:546-550
    [187] R.J.Mathias ,K.Fukui,C.N.Law.Cytoplasmic effects on the tissue culture response of wheat (Triticum aestivum L.)callus. Theor Appl Genet, 1986,72:70-75
    [188] R.J.Mathias ,K.Fukui.The effect of specific chromosome and cytoplasm substitutions on the tissue culture response of wheat(Triticum aestivum L.) callus . Theor Appl Genet, 1986,71:797-800
    [189] RJ.Mathias,E.Atkinson. In vitro expression of genes affecting whole plant phenotype the effect of Rht/Gai alleles on the callus culture response of wheat (Triticum aestivum L.em.Thell). Theor Appl Genet, 1988 75:474-479
    [190] R.J.Mathias,E.S.Simpson. The interaction of genotype and culture medium on the tissue culture responses of wheat (Triticum aestivum L.) callus. Plant Cell,Tissue and culture,1986,7:31-37
    [191] Rasco-Gaunt S, Riley A, Barcelo P, Lazzeri P A. Analysis of particle bombardment parameters to optimize DNA delivery into wheat tissues. Plant Cell Reports, 1999,118-127
    [192] Rasco-Gaunt S, Riley A, Cannell M, Barcelo P, Lazzeri P A. Procedures allowing the transformation of a range of European elite wheat (Triticum aestivum L.) varieties via particle bombardment Journal of Experimental Botany, 2001,52(357):865-874
    [193] Redway F A, Vasil V, Lu D, Vasil I K. Identification of callus types for long-term maintenance and regeneration from commercial cultivars of wheat (Triticum aestivum L.). Theor Appl Genet, 1990, 79:609-617
    [194] Register J C. Approaches to evaluating the transgenic status of transformed plants. Elsevier Science Ltd, All rights reserved, 1997m 141-146
    [195] Repellin A, Baga M, Jauhar P P, Chibbar R N. Genetic enrichment of cereal crops via alien gene transfer: New challenges. Plant Cell Tissue and Organ Culture, 2001,64:159-183
    [196] Riva G A, Gonzalez-Cabrera J, Vazquez-Padr6n R, Ayra-Pardo C. Agrobacterium tumefaciens: a natural tool for plant transformation. Molecular Biology and Genetics, EJB Electronic Journal of Biotechnology, 1998,1(3):
    [197] Russell J A, Roy M K, Sanford J C. Major improvements in biolistic transformation of suspension-cultured tobacco cells. In Vitro Cell Dev Biol, 1992,28P:97-105
    [198] Russell J A,Roy M K ,Sanford J C .Physical trauma and tungsten toxicity reduce the efficiency of biolistic transformation. Plant Physical, 1992,98:1050-105
    [199] S.Fennell,N.Bohorova,M.van Ginkel,J.Crossa,D.Hoisington. Plant regeneration from immature embryos of 48 elite CIMMYT bread wheat. Theor Appl Genet, 1996,92:163-169
    [200] S.H.Park,B.M.Lee,M.GSalas,M.Srivatanakul,R.H.Smith. Shorter T-DNA or additional virulence genes improve Agrobacterium-mediated transformation. Theor Appl Genet,2000,101:1015-1020
    [201] Sahrawat A K, Becker D, Lutticke S, Lorz H. Genetic improvement of wheat via alien gene transfer, an assessment. Plant Science, 2003,165:1147-1168
    [202] Sanford J C. Biolistic plant transformation. Physiologia plantarum, 1990,79:206-209
    [203] Sawasaki T, Takahashi M, Goshima N, Morikawa H. Structures of transgene loci in transgenic Arabidopsis plants obtained by particle bombardment: Junction regions can bind to nuclear matrices. Gene, 1998, 218:27-35
    [204] Schneider M, Ow D W, Howell S H. The in vivo pattern of firefly luciferase expression in in transgenic plants. Plant Molecular Biology, 1990,14:935-947
    [205] Sharma H C, Crouch J H, Sharma K K, Seetharama N, Hash C T. Applications of biotechnology for crop improvement: prospects and constraints. Plant Science, 2002,163:381-395
    [206] Shimamoto K, Terada R, Izawa T, Fujimoto H. Fertile transgenic rice plants regenerated from transformed protoplasts. Nature,1989,338:274-276
    [207] Sparkes C, Rasco-Gaunt S, Riley A, Barcelo P, Lazzeri P A. Development of transformation systems for current wheat varieties. Volume 3, Section 5-transgenics, 212-214
    [208] Srivastava V, Dnderson O D, Ow D W. Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc Ntal Acad Sci USA, 1999,
    [209] Stromvik M V, Sundararaman V P, and Vodkin L O. A novel promoter from soybean that is active in a complex developmental pattern with and without its proximal 650 base pairs. Plant Molecular Biology, 1999,41:217-231
    [210] Sun J Q, Niu Q W, Tarkowski P, Zheng B L, Tarkowska D, Sandberg G, Chua N H, Zou J R. The arabidopsis AHPT8/PGA22 gene encodes an isopentenyl transferase that is involved in de novo cytokinin biosynthesis. Plant Physiology, 2003, 131:167-176
    [211] T.Felsenburg,M.Feldman,E.Galun.Aneuploid and alloplasmic as tools for the study of nuclear and cytoplasmic control of culture ability and regeneration of scutellar calli from common wheat. Theor Appl Genet, 1987,74:802-810
    [212] T.Shimada ,T.Makino. In vitro Culture of Wheat .ⅢAnther Culture of the A Genome Aneuploids in Common Wheat. Theor Appl Genet,1975,46:407-41
    [213] Takaiwa F, Oono K, Kato A. Analysis of the 5' flanking region responsible for the endosperm-specific expression of a rice glutelin chimeric gene in transgenic tobacco. Plant Molecular Biology, 1991,16:49-58
    [214] Takumi S, Murai K, Mori N, Nakamura C. Trans-activation of a maize Ds transposable element in transgenic wheat plants expressing the Ac transposase gene. Theor Appl Genet, 1999,98:947-953
    [215] Tian L, Brown D C W, Webb J. Transient expression of a reporter gene changes significantly during somatic embryogenesis in alfalfa. Canadian Journal of Plant Science. 2000,765-771
    [216] Toyoda H, Yamaga T, Matsuda Y, Ouchi S. Transient expression of the β-glucurondase gene introduced into barley coleoptile cells by microinjection. Plant Cell Reports, 1990,9:299-302
    [217] Vancanneyt G, Schmidt, O'Connor-Sanchez, Willmitzer L, and Rocha-Sosa M .Construction of an intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet, 1990,220:245-250
    [218] Vasil V, Vasil I K. Isolation and culture of cereal protoplasts. Theor Appl Genet, 1980, 56:97-99
    [219] Vickers J E, Graham G C, Henry R J. A protocol for the efficient screening of putatively transformed plants for bar, the selectable marker gene, using the polymerase chain reaction. Plant Molecular Biology Reporter, 1996,14(4):363-368
    [220] Walters D A, Vetsch C S, Potts D E, Lundquist R C. Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants. Plant Molecular Biology, 1992,18:189-200
    [221] Wang M B, Waterhouse P M. A rapid and simple method of assaying plants transformed with hygromycin or PPT resistance genes. Plant Molecular Biology Reporter, 1997,15:209-215
    [222] Weeks J T, Anderson O D, Blechl A E. Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol, 1993,102:1077-1084
    [223] Whrzens B, Brettell R I S, Murray F R, McElroy D, Li Z Y, Dennis E S. Comparison of three selectable marker genes for transformation of wheat by microprojectile bombardment. Aust J Plant Physiol, 1998,25:39-44
    [224] Wright M, Dawson J, Dunder E, Suttie J, Reed J, Kramer C, Chang Y, Novitzky R, Wang H, Artim-Moore L. Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep, 2001,20:429-436
    [225] XIA Guang-Min,LI Zhong-Yi,HE Chen-Xia.Transgenic Plant Regeneration from Wheat (Triticum aestivum L.) Mediated by Agrobacterium tumefaciens. Acta Phytophysiologica Sinica,1999,25(l):22-28
    [226] Xiu-Qing Li ,Chang-Nong Liu,Steven W.Ritchie,Jian-ying Peng,S.B.Gelvin,Thomas K.Hodges.Factors influencing Agrobacterium-mediated transient expression of gusA in rice. Plant Molecular Biology,1992,20:1037-1048
    [227] Yamashita T, Iida A, Morikawa H. Evidence that more than 90% of β-glucuronidase-expressing cells after particle bombardment directly receive the foreign gene in their nucleus. Plant Physiol. 1991, 97:829-831
    [228] Ye G N, Daniell H, Sanford J C. Optimization of delivery of foreign DNA into higher-plant chloroplasts. Plant Molecular Biology, 1990,15:809-819
    [229] Yukon Hiei,Toshihiko Komari,Tomoaki Kubo. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Molecular Biology, 1997,35:205-218
    [230] Zamora A B, Scott K J. Callus formation and plant regeneration from wheat leaves. Elsevler Scientific Publishers Ireland Ltd. 1982,183-189
    [231] Zhang 1, Rybczynski J J, Langenberg W G, Mitra A, French R. An efficient wheat transformation procedure: transformed calli with long-term morphogenic potential for plant regeneration. Plant Cell Reports, 2000,19:241-250
    [232] Zuo J R, Chua N H. Chemical-inducible systems for regulated expression of plant genes. Current Opinion in Biotechnology, 2000, 11:146-151
    [233] Zuo J R, Niu Q W, Chua N H. An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. The Plant Journal, 2000, 24(2):265-273
    [234] Zuo J R, Niu Q W, Frugis G, Chua N H. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. The Plant Journal, 2002, 30(3):349-359
    [235] Zuo J, Niu Q W, Moller G, Chua N H. Chemical-regulated, site-specific DNA excision in transgenic plants. Research Articles. 2000,157-161

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700