用户名: 密码: 验证码:
草原湿地土壤细菌和氨氧化细菌群落结构分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿地是自然界中人类重要的环境资源,具有巨大的环境调节功能及生态效益。内蒙古高原湿地资源丰富,但也是最受威胁的生态系统。湿地作为氮素的源、汇或转化器的功能在生态学和环境科学领域日渐受到重视。内蒙古高原湿地资源丰富,也是最受威胁的生态系统,但这个区域中氮素循环微生物群落结构变化分析的研究还是空白。
     本文以内蒙古高原区域内陆河湿地土壤氨氧化微生物动态变化为切入点,通过16S rDNA-PCR-DGGE技术研究了内蒙古高原锡林河湿地不同土壤的细菌和氨氧化细菌(AOB)的群落结构和遗传多样性,并对AOB中的优势菌群进行测序研究,构建了N-J系统发育树。主要结果如下:
     从河心底泥(HX)→河边底泥(HB)→低河漫滩(DQ)→高河漫滩(EQ)→典型草原(TN)河流陆向分布的5个样点中,Shannon-wiener Index(H)、Richness(S)、Evenness(E)都呈先增后减的单峰趋势,土壤细菌和AOB群落结构及其多样性呈现明显的湿地过渡带分布特征,表明湿地高度的土壤微生物多样性为该区域巨大的植物生产力提供了基础条件。
     塔头湿地土壤细菌以及AOB的这些指数均表现为塔头高于塔头间,说明塔头土壤更适合细菌以及AOB的生长。
     通过对9个湿地土壤样品DGGE图谱进行聚类分析,发现河心底泥(HX)、河边底泥(HB)、低河漫滩(DQ)样点土壤中细菌群落的多样性相似;河心底泥(HX)、河边底泥(HB)样点和围封塔头间湿地(WJ)、放牧塔头间湿地(FJ)长期积水的塔间样地的AOB群落结构图谱可以分别聚为一类,说明水生环境是影响细菌群落结构的重要因素。
     对AOB的DGGE优势条带切胶测序及系统发育分析发现,β-Proteobacteria占主导地位,大部分为亚硝化单胞菌(Nitrosomonas)和类亚硝化螺旋菌(Nitrosospira-related)。据此推断,河流湿地土壤中,Nitrosomonas为AOB群落中的优势菌。研究结果可以为内蒙古高原湿地土壤微生物研究提供基础数据,并为氮素循环研究提供理论依据。
Wetlands are important natural environment of human resources, it has great environmental regulation features and ecological benefits. Though there are rich resources in Inner Mongolia Plateau wetland soil, it is also the most threatened ecosystems which is rarely studied and reported. The function of Wetlands as a nitrogen source, sink or converter in the global biogeochemical cycles has increasingly attracted people's attention. Though there are rich wetland resources in Mongolian Plateau, it is also the most threatened ecosystems which is rarely studied and reported. The study about the community structure changes of N-cycle bacteria in the area is almost blank.
     In this paper, we studied the community structure and Genetic diversity of wetland soil bacteria and ammonia oxidizing bacteria (AOB) in Xilin River of Inner Mongolia Plateau by 16S rDNA-PCR-DGGE, and sequenced certain typical dominant AOB groups, constructed the phylogenetic tree. The main results are as follows:
     Shannon-wiener Index (H)、Richness (S) and Evenness (E) both in bacteria and AOB increased and then decreased from the 5 terrestrial distribution samples:samples of sediment collected in the bottom at the centre river (HX)→samples of sediment collected in the riverside (HB)→samples collected in the low floodplain (DQ)→samples collected in the high floodplain (EQ)→samples collected in the typical steppe (TN), showed that the community structure and diversity of bacteria and AOB had obviously land distribution features. Wetland transition areas of high soil microorganisms diversity, can provide a microbial ecology basis for the high biological productivity in this area.
     Shannon-wiener Index (H)、Richness (S) in the towertip was higher than the indexes in the sample among towers whether in enclosed or garzing plots. Indicating that the towertip was more sutiable for the aerobic bateria to survive.
     Cluster analysis of the DGGE patterns demonstrated that the diversity of bacterial in 3 river samples HX, HB, DQ was simple with each other; the AOB in 2 river samples HX, HB and WJ, FJ samples between towers that Perennial flooded can be clustered together, concluded that water environment is a very important factor infect the bacteria's community structures.
     From the sequencing of the AOB partial 16srRNA genes fragments and study of phylogenetic tree, we find that the community was dominanted by beta Proteobacteria, most of them were Nitrosospira-related and Nitrosomonas-related sequences, we infered that in the river environment, Nitrosomonas sp. may be the dominant species. Our research can provide basic data for the Inner Mongolia Plateau wetlands nitrogen cycle, contribute to global climate change and provide a theoretical basis for ecological and environmental protection.
引文
[1]傅国斌,李克让.地理研究[J],2001;20(1):120-128.
    [2]张钢,赵晶.植物生态学指导下的湿地植物建设.山西农业科学[J],2009,37(6):59-61.
    [3]韩兴国,李凌浩,黄建辉.生物地球化学概论.高等教育出版社,施普林格出版社[M]1985:230-235.
    [4]王敬国.农业生态系统和大气间的温室气体交换.环境科学[J],14(2):49-53.
    [5]国家环境保护总局主持.中国生物多样性国情研究报告编写组编.中国生物多样性国情研究报告.北京:中国环境科学出版社,1998.
    [6]Gosselink J G, Maltby E. Wetland losses and gains[A]. In:Williams M (eds). Wetland:A Threatened Landscape. Basil Blackwell Ltd. [M], Oxford, UK,1990.296-322.
    [7]Clark J. Freshwater wetlands:habitats for aquatic invertebrates, amphibians, reptiles, and fishes[A]. In:Greeson P E, Clark J R (eds). Wetland Function and Values:the State of Our Understanding[M].AmericanWater Resources Association Technical Application, Minneapolis, MN, USA,1979.330-343.
    [8]Mitsch WJ, Gosselin JG. Wetlands. New York:Van Nostrand Reinhold Company Inc.,2000: 89-125.
    [9]周念清,王燕,钱家忠,江思珉.湿地氮循环及其对环境变化影响研究进展.同济大学学报[J],2010,06.
    [10]Dorge J.Modeling nitrogen transformations in fresh-water wetlands-estimating nitrogen-retention and removal in natural wetlands in relation to their hydrology and nutrient loadings.Ecological Model[J],1994,75:409.
    [11]Kowalchuk G A, Stephen J R. Ammonia-oxidizing bacteria:A model for molecular microbial ecology. Annual Review of Microbiology[J],2001,55:485-529.
    [12]WANG ShiPing, WANG YanFen and CHEN ZuoZhong. Effect of climate change and grazing on populations of Cleistogenes squarrosa in Inner Mongolia steppe. Acta Phytoecologica Sinica[J],2003,27(3):337-343.
    [13]C Nakatsu.Soil Sci Soc Am J,2007,71:562-571.
    [14]Li Jing-Yu,Zhao Ji, Bian Yu,Wu Lin-Hui,Yu Jing-Li..DNA Extraction and Removing Humic Substance from Wetland Soil, Microbiology China[J] 2010,8:1130-1137.(In Chinese)
    [15]Tomvik V.Curr Opin Microbiol.2002,5:240-245.
    [16]Wittebolle L,Van Vooren N,Verstraete W,Boon N..High reproducibility of ammonia-oxidizing bacterial communities in parallel sequential batch reactors. J Appl Microbiol[J],2009,107(2): 385-94.
    [17]Enwall, K. and S. Hallin..Comparison of T-RFLP and DGGE techniques to assess denitrifier community composition in soil. Lett Appl Microbiol[J],2009,48(1):145-8.
    [18]Dong, X. and G. B. Reddy. "Soil bacterial communities in constructed wetlands treated with swine wastewater using PCR-DGGE technique." Bioresour Technol[J],2010,101(4): 1175-82.
    [19]梁威,吴苏青,吴振斌.分子技术在湿地微生物群落解析中的应用.生态环境学报[J].2010,04:974-978.
    [20]Elsas J D van, Duarte G F, Rosado A S, et al. Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment. Jour. Microbial. Methods[J],1998,32:133-154.
    [21]Nemergut D. R., E. K. Costello, A. F. Meyer, M. Y. Pescador, M. N. Weintraub, S. K. Schmidt. Structure and function of alpine and arctic soil microbial communities. Research in Microbiology[J],2005,156:775-784.
    [22]Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev[J],1995,59(1):143-169.
    [23]Brock TD.The study of microorganisms in situ:progress and problems. Symp.Soc.Gene Microbiol[J],1987,41:1-17.
    [24]Vestal J R, White D C. Lipid analysis in microbial ecology:Quanti-tative approaches to the study of microbial communities. Bioscience[J],1989,39:535-541.
    [25]颜慧,蔡祖聪,钟文辉.磷脂脂肪酸分析方法及其在土壤微生物多样性研究中的应用.土壤学报[J].2006,43(5):851-859.
    [26]Saetre P, Baath E. Spatial variation and patterns of soil microbialcommunity structure in a mixed sprucebirch stand. Soil Biol. Biochem. [J],2000,32:909-917.
    [27]FelixP J, MahasinT. Phospholipid fatty acids in forest soil fouryears after organic matter removal and soil compaction. Appl. Soil Ecol. [J],2001,19:173-182.
    [28]Zhang W J, Rui W Y, Tu C,et al. Responses of soil microbial community structure and diversity to agricultural deintensification. Pedosphere[J],2005,15(4):440-447.
    [29]Yao HY, He Z L, Huang C Y. Phospholipid fatty acid profiles of Chinese red soils with varying fertility levels and land use histories. Pedosphere[J],2001,11(2):97-103.
    [30]Vepsalainen M, Erkomaa K, Kukkonen S,et al. The impact of cropplant cultivation and peat amendment on soil microbial activity and structure. Plant and Soil[J],2004,264(1/2): 273-286.
    [31]Hesselsoe M, Boysen S, Iversen N,et al. Degradation of organic pollutants by methane grown microbial consortia. Biodegradation[J],2005,16 (5):435-448.
    [32]Wilke B M, Gattinger A, Frohlich E,et al. Phospholipid fatty acid composition of a 2,4,6-trinitrotolune contaminated soil and an uncon-taminated soil as affected by a humification remediation process. SoilBiol. Biochem[J],2004,36(4):725-729.
    [33]Frostegard A, Tunlid A, Baath E. Phospholipid fatty acid composi-tion, biomass, and activity of microbial communities from two soiltypes experimentally exposed to different heavy metals. Appl. Envi-ron. Microbiol[J],1993,59 (11):3605-3617.
    [34]ohn J K, MaxM, Haggblom,et al. Effects of heavymetal contami-nation and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phos-pholipid fatty acid profiles. Biol. Fertil. Soils[J],2003,38:65-71.
    [35]MurataT, KanaoKM, TakamatsuT. Effects of Pb, Cu, Sb, In and Ag contamination on the proliferation of soil bacterial colonies, soil dehydrogenase activity, and phospholipid fatty acid profiles of soil mi-crobial communities. Water, Air Soil Poll[J],2005,164(1/4):103-118.
    [36]PrihaO, Susan J,etal. Microbial community structure and characteristics of the organicmatter in soilsunderPinus sylvestris,Picea abiesandBetulapendulaat two forest sites. Bio.l Ferti.1 Soils[J],2001,33:17-24.
    [37]Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis(TGGE) in microbial ecology. Antonie van Leeuwenhoek[J],1998,73:127-1411.
    [38]Muyzer G, Waal EC, Uitterlinden AG Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes encoding for 16S rRNA. Appl Environ Microbiol[J],1993,59:695-7001.
    [39]Vallaeys T,Topp E,Muyzer G,et al. Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs.FEMS Microbiol.Ecol[J],1997,24:279-285.
    [40]Niemi RM,Heiskanen I,Wallenius K,et al. Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia.J.Microbial.Method[J], 2001,45:155-165.
    [41]Yu Z, Morrison M. Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis.Appl.Environ.Microbiol. [J],2004,70:4800-4806.
    [42]Takeshi W, Susumu A, Asumi N, et al.DGGE method for analyzing 16S rDNA of methanogenic archaeal community in paddy field soil.FEMS Microbiology Letters[J],2004,232:153-163.
    [43]Taina, Laura P, Jarkko H,et al. Rapid PCR-based method for the direct analysis of fungal communities in complex environmental samples. Soil Biology & Biochemistry[J],2001,33: 697-699.
    [44]Sheffield VC, Cox D R, Myers RM. Attachment of a 40bp G+C rich sequence (GC clamp) to genomic DNA fragments by polymerase chain reaction results in improved detection of single-base changes. Proc Natl Acad Sci USA[J],1989,86:232-2361.
    [45]Petra M, Ellen K, Bernd Marschner. Structure and function of the soil microbial community in a long-term fertilizer experiment.Soil Biology & Biochemistry [J],2003,35:453-461.
    [46]MandyM, Michalsen, AaronD,et al. Changes in Microbial Community Composition and Geochemistryduring Uranium and Technetium Bioimmobilization. Applied and Environmental Microbiology [J],2007,5885-5896.
    [47]Engelen B, Mcinken K, Wintzingerode F,et al. Monitoring impact of a pesticide treatment on bacterial soil communities by metabolic and genetic fingerprinting in addition to conventional testing procedures Applied and Environmental Microbiology[J],1998,64:2814-2821.
    [48]Baneljee MR, Burton DL, Depoe S. Impact of sewage sludge application on soil biological characteristics. Agriculture Ecosystems & Environment[J],1997.66:241-249.
    [49]Vaneechoutte M,Beenhouwer HD,Claeys G,et al. Identification of Mycobacterium species with amplified rDNA restriction analysis. Journal of Clinical Microbiology[J],1993,31: 2061-2065.
    [50]Vaneechoutte M, Dijkshoorn L, Tjernberg I. Identification of Acinetobacter Genomic Species by Amplified Ribosomal DNA Restriction Analysis. Journal of Clinical Microbiology[J],1995,33:11-15.
    [51]Botstein D, White RL, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet[J],1980,32: 314-331.
    [52]Williams JGK, Kubelik AR, Livak KJ, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res[J],1990,18(22):6531-6535.
    [53]Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers[J]. Nucl Acids Res[J],1990,18(24):7213-7218.
    [54]Hadrys H, Balick M, Schierwater B. Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Molecular Ecology[J],1992,1:55-63.
    [55]Orita M, Suzuki Y, Sekiya T, et al. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics[J],1989,5(4): 874-879.
    [56]Orita M, Iwahana H, Kanazawa H, et al. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms[J]. Proc Natl Acad Sci, 1989,86(8):2766-2770.
    [57]Hayashi K. PCR-SSCP:A method for detection of mutations[J]. Genetic Analysis: Biomolecular Engineering[J],1992,9(3):73-79.
    [58]http://www.lbl.gov/tt/techs/lbnl2229.html.
    [59]He ZL, Gentry TJ, Schadt CW. GeoChip:a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME Journal[J],2007,1:67-7
    [60]高淑静,吴凤芝.PCR-DGGE技术在土壤微生物多样性研究中的应用,生物信息学[J],2007,4;174-175.
    [61]Zhang, B., B. Sun, et al. "Quantification and comparison of ammonia-oxidizing bacterial communities in MBRs treating various types of wastewater." Bioresour Technol[J], 2010,101(9):3054-9.
    [62]Shannon, A.E., Weaver, W.,1963. The Mathematical Theory of Communication. University Illinois Press, Urbana, IL.
    [63]Pielou, E.C.,1969. An Introduction to Mathematical Ecology. Wiley, New York
    [64]Gafan GP,Lucas VS,Roberts GJ,Petrie A,Wilson M,Spratt DA. Statistical analyses of complex denaturing gradient gelelectrophoresis profiles Journal of Clinical Microbiology[J],2005,43(8):3971-8.
    [65]Sun HY,Deng SP,Raun WR. Bacterial community structure and diversity in a century-old manure-treated agroecosystem. Applied and Environmental Microbiology [J],2004,70(10):5868-74.
    [66]T ian Y B,X iongM B,Song G Y.R estorat ion su ccession of w et land soils and their ch anges of w ater and nu trient in R uoergai Plateau.Chinese Journal of E cology[J],2005,24(1):2125.
    [67]牛佳,周小奇,蒋娜,王艳芬.若尔盖高寒湿地干湿十壤条件下微生物群落结构特征[J].生态学报,2011,31(2):04740482.
    [68]W ard le D A.A comparative assessment of factors which influencem icrobial biomass carbon and nitrogen levels in soi.l B iological Reviews [J],2008,67(3):321-358.
    [69]Marika Truu,Jaanis Juhanson,Jaak Truu.Microbial biomass,activity and community composition in constructed wetlands.Science Of The Total Envitonment[J].2009,407 (13):3958-71.
    [70]Ni-Bin Chang, Marty Wanielista, and Ammarin Daranpob. Filter Media for Nutrient Removal in Natural Systems and Built Environments:Ⅱ-Design and Application Challenges. Environmental Engineering Science[J],2010,27(9):707-720.
    [71]Ibekwe, A. M., C. M. Grieve, et al."Characterization of microbial communities and composition in constructed dairy wetland wastewater effluent." Appl Environ Microbiol[J], 2003,69(9):5060-9.
    [72]Ward, B. B. Eveillard, D. Kirshtein, J. D. Nelson, J. D. Voytek, M. A. Jackson, G. A.Ammonia-oxidizing bacterial community composition in estuarine and oceanic environments assessed using a functional gene microarray, Environmental Microbiology[J],2007,9(10):2522-38.
    [73]Purkhold et al. U. Purkhold, A. Pommerening-Roser, S. Juretschko, M.C. Schmid, H.P. Koops and M. Wagner, Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis:implications for molecular diversity surveys, Appl Environ Microbiol[J].66,2000, pp.5368-5382. Full Text via CrossRef|View Record in Scopus| Cited By in Scopus (316).
    [74]Ahn, J. H., Y. J. Kim, et al. Quantitative improvement of 16S rDNA DGGE analysis for soil bacterial community using real-time PCR. J Microbiol Methods[J],2009,78(2):216-22.
    [75]Coelho, M. R., N. P. Carneiro, et al. "Molecular detection and quantification of nifH gene sequences in the rhizosphere of sorghum (Sorghum bicolor) sown with two levels of nitrogen fertilizer." Applied Soil Ecology [J],2009,48(5):611-7.
    [76]Lin, X., Y. Zhao, et al. "Analysis of culturable and unculturable microbial community in bensulfuron-methyl contaminated paddy soils." J Environ Sci (China) [J],2008,20(12): 1494-500.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700