用户名: 密码: 验证码:
典型土壤中铬迁移转化规律和污染诊断指标
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铬是环境中一种重要的重金属污染物,随着工业的发展,铬及其化合物应用越来越多,如印染、电镀、化工等行业。大量含铬的废水、废渣随意排放导致土壤、水体和生物遭到不同程度的污染。铬在自然环境中,通常以Cr(Ⅲ)和Cr(Ⅵ)两种稳定价态存在。铬的存在形态决定了铬在土壤中的化学行为和生物毒性。农业土壤铬污染,会导致作物可食部的铬超标,铬通过食物链在作物中积累、转化,危害人类健康。为防止土壤铬超标,保障农产品安全生产,维护人类健康,制定符合我国主要农业土壤和作物类型的土壤铬污染诊断指标意义重要。本研究以七种典型土壤类型(红壤、黄壤、砖红壤、青紫泥、黑土、潮土和石灰性紫色土)为代表,研究了七种土壤中六价铬的还原特征以及土壤性质对六价铬还原的影响,并通过PCR-DGGE-克隆测序鉴定了影响六价铬还原的耐性菌种类,并研究了水分管理方式(淹水和干湿交替)对土壤-水稻系统铬形态转化和水稻吸收积累铬的影响,此外研究了土壤-小白菜/水稻系统中铬的吸收积累规律和污染诊断指标,取得的主要研究结果如下:
     1.土壤因子对六价铬形态转化的影响及相对重要性
     本研究采用室内培养试验模拟七种土壤中Cr(Ⅵ)的还原过程,并通过相关分析和逐步回归分析相结合探讨影响Cr(Ⅵ)还原的土壤性质以及影响因子之间的相对重要性。六价铬在土壤中的还原遵循一级动力学模型,还原速率与土壤pH、有机质、可溶性有机质、亚铁、易还原态锰、土壤黏粒含量、微生物多样性Shannon指数显著相关。根据逐步回归模型,Cr(Ⅵ)在土壤中的还原主要受可溶性有机质、亚铁、pH、土壤颗粒组成等土壤性质的联合作用,模型的决定系数高达95.5%。
     2.主要农业土壤中铬耐性菌种类及对六价铬还原的影响
     本试验比较灭菌与非灭菌土壤中六价铬的还原情况,探讨土壤微生物在六价铬还原过程中的作用,并通过PCR-DGGE-克隆测序鉴定影响六价铬还原的耐性菌种类主要为芽孢杆菌Bacillus sp.、埃希氏菌Escherichia sp.、异常球菌Deinococcus sp.、小单胞菌Micromonospora sp.、甲基杆菌Methylobacterium sp.、马赛菌Massilia sp.、酸杆菌Acidobacterium sp.、丛毛单胞菌Comamonas sp.、慢生根瘤菌Bradyrhizobium sp和节杆菌Arthrobacter sp.,并证明了它们能显著促进土壤中六价铬的还原。铬对微生物群落的影响主要表现为在铬的选择作用下,铬耐性菌成为土壤中的优势菌群。土壤性质,特别是亚铁和土壤颗粒组成,影响了微生物在六价铬还原过程中的贡献率。
     3.水分管理方式对土壤-水稻系统铬形态转化的影响
     在铬污染水稻田中,铬主要以Cr(Ⅲ)和Cr(VⅥ)两种形态存在于水-土环境中,且能在一定的氧化还原电位范围内发生相互转化。干湿交替的农田系统随着周期性的淹水与落干的交替变化,使其氧化还原环境发生了剧烈的变化,从而影响到体系内铬元素的迁移转化。本试验选用红壤和黑土两种土壤,研究水分管理方式对土壤-水稻体系中土壤氧化还原电位、铬迁移转化和水稻积累铬的影响。淹水条件下的土壤氧化还原电位随淹水时间不断下降,在水稻收获时降到-370~263mv,而干湿交替条件下,土壤中水和气相互消长,导致氧化还原电位周期性变化,红壤氧化还原电位在-291和142mv之间反复波动,黑土氧化还原电位在-254和189mv之间反复波动,土壤环境在氧化状态和还原状态之间交替变化。干湿交替条件下六价铬浓度随着氧化还原电位的波动而上下波动,土壤中有效态铬的浓度和重金属铬的迁移能力显著高于淹水处理,从而导致稻米铬含量的增加。红壤和黑土干湿交替处理下水稻铬浓度均显著(P<0.05)高于淹水处理,其中黑土中水稻籽粒各部分铬浓度在干湿交替处理下高于淹水处理19.8~26.5%,红壤高于淹水处理18.4~29.8%。因此,建议在铬污染土壤中,采用淹水这种水分管理方式,降低土壤中铬的生物有效性和水稻籽粒中的铬浓度。
     4.土壤.水稻系统中铬迁移转化规律和污染诊断指标
     目前土壤铬质量标准是以总铬来作为衡量指标的,仅考虑了pH的影响,但是总铬含量并不能真正代表铬污染对环境的危害程度,并且不同土壤采用统一的标准并不科学合理。因此,在确定土壤铬元素的临界含量时,应综合研究不同的土壤类型以及土壤-作物系统。本试验通过盆栽试验研究我国主要土壤类型红壤、黄壤、青紫泥、黑土、潮土、石灰性紫色土中重要农作物小白菜和水稻重金属铬污染主控影响因子,提出主要土壤类型重金属铬污染食物链安全诊断指标,为国家完善铬污染土壤质量标准提供理论依据。根据逐步回归模型,土壤-水稻系统中水稻精米中铬的浓度主要受土壤总铬、有效态铬、六价铬、有机质、亚铁和黏粒含量控制,决定系数高达96%。根据美国国家科学院(1989)提出的人均安全的每日铬食用限量200μg以及土壤铬含量与水稻铬含量之间回归方程,计算土壤-水稻系统中铬污染的诊断指标体系。供试土壤中总铬的污染诊断指标依次为红壤(90.6mg kg-1)>青紫泥(81.1mg kg-1)>石灰性紫色土(80.8mgkg-1)>黑土(78.2mg kg-1)>黄壤(56.6mgkg-1)>潮土(51.8mgkg-1)。黄壤、红壤、黑土和潮土中水稻精米铬浓度与土壤中有效态铬浓度相关系数最高,因此这四种土壤选择有效态铬作为土壤铬污染诊断指标,且分别为1.54、0.56、0.42和2.18mgkg-1,而石灰性紫色土和青紫泥中水稻精米铬浓度与土壤中六价铬浓度相关系数最高,这两种土壤选择六价铬作为土壤铬污染诊断指标,且分别为0.68和0.84mg kg-1。
     5.土壤-小白菜系统中铬迁移转化规律和污染诊断指标
     根据逐步回归模型,土壤-小白菜系统中小白菜地上部铬浓度主要受土壤总铬、有效态铬、有机质和亚铁浓度控制,模型的决定系数高达99.6%。土壤-小白菜系统中铬污染的诊断指标也通过美国国家科学院(1989)提出的人均每日铬食用限量200μg以及土壤铬含量与小白菜铬含量之间回归方程计算。土壤中总铬的污染诊断指标依次为红壤(443mgkg-1)>青紫泥(352mgkg-1)>石灰性紫色土(274mgkg-1)>黑土(272mgkg-1)>黄壤(226mgkg-1)>潮土(204mgkg-1)。黄壤、红壤、黑土和潮土中小白菜铬浓度与土壤中有效态铬浓度相关系数最高,因此这四种土壤选择有效态铬作为土壤铬污染诊断指标,且分别为20.7、15.8、21.2和20.4mg kg-1,而石灰性紫色土和青紫泥中小白菜铬浓度与土壤中六价铬浓度相关系数最高,这两种土壤选择六价铬作为土壤铬污染诊断指标,且分别为26.5和28.0mg kg-1。
Chromium (Cr) has been extensively used in industrial activities such as ore refining, electroplating industry, tanning, paper making, steel production and automobile manufacturing. The lack of appropriate disposal facilities has led to severe Cr pollution in waters and soils throughout the world. In the natural environment, Cr exists in two common oxidation states:Cr(Ⅲ) and Cr(Ⅵ). The mobility, toxicity and plant uptake of Cr depend strongly on its oxidation states. Accumulation of Cr in soils increases the potential uptake of the metal by plants, thus posing a great threat to human health through the food chain. The need to protect consumers from Cr toxicity and ensure environmental safety is the scientific motive for establishing guidelines on Cr concentrations in food and acceptable concentrations of Cr in agricultural soils.
     Seven representative soils were used in this study:Udic Ferrisols, Typic Haplustalf, Periudic Argosols, Calcaric Regosols, Stagnic Anthrosols, Mollisols and Ustic Cambosols. The objectives of this study were:1) to investigate the relative importance of direct and indirect effects of soil physicochemical and biological properties on Cr(Ⅵ) reduction;2) to identify the species of Cr-resistant bacteria in representative agricultural soils, and investigate the effect of Cr-resistant bacteria on Cr(Ⅵ) reduction;3) to develop an empirical model to correlate the Cr phytoavailability with common soil properties and with Cr concentrations in soil extractable fractions;4) to establish Cr thresholds for potential dietary toxicity in representative agricultural soils. The main results are summarized in the following text:
     (1) The reduction of Cr(Ⅵ) in soil is not controlled by a single soil property but the result of collective effects of many involved factors. However, the influence of soil properties on Cr(Ⅵ) reduction is not fully understood due to lack of systematic studies. A microcosmos incubation experiment was conducted to investigate the reduction kinetics of Cr(Ⅵ) in seven soils and its relationships with soil properties. The results indicate that the reduction of Cr(Ⅵ) can be described by a first-order reaction. The reduction rates of Cr(Ⅵ) in the seven soils decreased in the orders:Udic Ferrisols> Stagnic Anthrosols> Calcaric Regosols> Mollisols> Typic Haplustalf> Periudic Argosols> Ustic Cambosols. Simple correlation analysis revealed that the reduction of Cr(Ⅵ) in soils was positively related to organic matter, dissolved organic matter, Fe(II) content, clay fraction and diversity index of bacterial community, but negatively correlated with easily reducible Mn content. Using the stepwise regression, the reduction of Cr(Ⅵ) in soil could be quantitatively predicted by the measurement of dissolved organic matter, Fe(Ⅱ) content, pH, and soil particle size distribution, with the fitting level of95.5%. The results indicated that the reduction of Cr(Ⅵ) in natural soils is not controlled by a single soil property but the result of the combined effects of dissolved organic matter, Fe(Ⅱ), pH, and soil particle size distribution.
     (2) In this study, seven representative agricultural soils with different physicochemical properties were used to investigate the importance of microbially mediated Cr(Ⅵ) reduction and the response of soil microbial community to Cr contamination. Soil microbial community responded to Cr contamination through changes in microbial community structure, with Cr-resistant bacteria becoming dominant species. Bacillus, Escherichia, Deinococcus, Micromonospora, Methylobacterium, Massilia, Acidobacterium, Comamonas, Bradyrhizobium, and Arthrobacter were identified as the Cr-resistant bacteria. Moreover, our results demonstrated that microbial reduction was an important Cr(Ⅵ) reduction pathway, which was mainly attributed to Cr-resistant bacteria. Soil properties, especially Fe(Ⅱ) and soil particle distribution, affected the microbially mediated Cr(Ⅵ) reduction. These results provide useful information for the bioremediation of Cr contaminated soils under a wide range of environmental conditions.
     (3) Anthropogenic chromium (Cr) pollution in soils poses a great threat to human health through the food chain. A pot experiment was conducted to investigate Cr phytoavailability to rice (Oryza sativa L.), which is a major staple food crop for the largest population of people on Earth, and establish Cr thresholds for potential dietary toxicity in representative agricultural soils. Simple correlation analysis indicated that Cr concentration in polished rice was significantly correlated with total Cr, Mehlich-3extractable Cr, and Cr(VI). Stepwise multiple regression analysis also demonstrated that the Cr phytoavailability was strongly correlated with soil total Cr, Mehlich-3extractable Cr, Cr(VI) concentration, and soil organic matter, Fe(II), and particle size distribution. Critical Cr concentrations were evaluated for rice based on maximum safe level of200μg for Cr daily intake. In soil-rice system, the total Cr thresholds for potential dietary toxicity conformed to the order of Udic Ferrisols> Stagnic Anthrosols> Calcaric Regosols> Mollisols> Periudic Argosols> Ustic Cambosols, and were90.6,81.1,80.8,78.2,56.6, and51.8mg kg-1, respectively. Mehlich-3extractable Cr are most suitable Cr thresholds for Periudic Argosols, Udic Ferrisols, Mollisols, and Ustic Cambosols, with values of1.54,0.56,0.42, and2.18mg kg-1, respectively, while Cr(VI) are adequate thresholds for Calcaric Regosols and Stagnic Anthrosols, with values of0.68and0.84mg kg-1, respectively.
     (4) As the proportion of vegetables has increased with the improvement of living standards, it is imperative to understand Cr accumulation properties in common vegetables. This study was aimed to investigate Cr accumulation in pak choi (Brassica chinensis L.), and to establish Cr thresholds for potential dietary toxicity in representative agricultural soils. Simple correlation analysis indicated that Cr concentration in pak choi was significantly correlated with the total Cr, Mehlich-3extractable Cr, and Cr(VI). Stepwise multiple regression analysis also demonstrated that the phytoavailability of Cr was strongly correlated with the extractable fraction by Mehlich-3, total Cr concentration, and soil OM, Fe(II). Critical Cr concentrations were evaluated for pak choi based on maximum safe level for daily intake of Cr. In soil-pak choi system, total soil Cr can be used as Cr thresholds for potential dietary toxicity in pak choi, which conformed to the order of Udic Ferrisols (443mg kg-1)> Stagnic Anthrosols (352mg kg-1)> Calcaric Regosols (274mg kg-1)> Mollisols (272mg kg-1)> Periudic Argosols (226mg kg-1)> Ustic Cambosols (204mg kg-1), whereas Mehlich3-extractable Cr are most suitable to be used as Cr thresholds for Periudic Argosols, Udic Ferrisols, Mollisols, and Ustic Cambosols, with values of 20.7,15.8,21.2, and20.4mg kg-1, respectively, while Cr(VI) are most suitable for Calcaric Regosols and Stagnic Anthrosols, with values of26.5and28.0mg kg-1, respectively.
     (5) Chromium exists in paddy soil as two stable oxidation states, Cr(Ⅲ) and Cr(VI), and Cr is susceptible to oxidation-reduction reactions when soil redox conditions change. Compared to continuous flooding (CF), alternating wetting and drying (AWD) may lead to the changes of soil redox potential and Cr redox state, thus Cr mobility, toxicity and plant uptake of Cr. This study was aimed to understand the behavior of Cr in intermittently irrigated rice paddies subject to varying soil redox conditions, and to determine the effects of irrigation management on Cr uptake by rice. Under CF irrigation, soil redox potential (SRP) decreased gradually with increasing flooding time, and fell to-370-263mv when rice harvested, while SRP fluctuated from-291to189mv under alternating oxic and anoxic soil conditions imposed by AWD irrigation. Compared to CF practice, soil extractable Cr and Cr mobility was significantly promoted by AWD irrigation, which resulted in higher Cr concentration in rice. AWD irrigation increased Cr concentration in rice by19.8-26.5%and18.4-29.8%, respectively for Mollisols and Udic Ferrisols. Therefore, CF is recommended to be used as irrigation management in Cr polluted soils to lower soil Cr mobility and rice Cr concentration.
引文
Ackerley, D., Gonzalez, C., Keyhan, M., Blake, R., Matin, A.,2004. Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environ. Microbiol.6,851-860.
    Adriano, D.C.,2001. Trace elements in terrestrial environments:Biogeochemistry, bioavailability, and risks of metals. Springer Verlag.
    Alvarez, A.H., Moreno-Sanchez, R., Cervantes, C.,1999. Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa. J. Bacteriol.181,7398-7400.
    Arias, Y.M., Tebo, B.M.,2003. Cr(VI) reduction by sulfidogenic and nonsulfidogenic microbial consortia. Appl. Environ. Microbiol.69,1847-1853.
    Banks, M.K., Schwab, A.P., Henderson, C.,2006. Leaching and reduction of chromium in soil as affected by soil organic content and plants. Chemosphere 62, 255-264.
    Bartlett, R.J.,2001. Chromium cycling in soils and water:links, gaps, and methods. Environ. Health Perspect.92,17-24.
    Beller, H.R., Han, R.Y., Karaoz, U., Lim, H., Brodie, E.L.,2013. Genomic and Physiological Characterization of the Chromate-Reducing, Aquifer-Derived Firmicute Pelosinus sp Strain HCF1. Appl. Environ. Microbiol.79,63-73.
    Bhattacharyya, P., Chakraborty, A., Chakrabarti, K., Tripathy, S., Powell, M.,2005. Chromium uptake by rice and accumulation in soil amended with municipal solid waste compost. Chemosphere 60,1481-1486.
    Bolan, N.S., Adriano, D.C., Natesan, R., Koo, B.J.,2003. Effects of organic amendments on the reduction and phytoavailability of chromate in mineral soil. J. Environ. Qual.32,120-128.
    Branca, M., Micera, G., Dessi, A., Kozlowski, H., Swiatek, J.,2001. Reduction of chromate ions by glutathione tripeptide in the presence of sugar ligands. J. Inorg. Biochem.39,217-226.
    Brus, D.J., de Gruijter, J.J., Romkens, P.,2005. Probabilistic quality standards for heavy metals in soil derived from quality standards in crops. Geoderma 128, 301-311.
    Buerge, I.J., Hug, S.J.,1997. Kinetics and pH dependence of chromium (Ⅵ) reduction by iron (Ⅱ). Environ. Sci. Technol.31,1426-1432.
    Buerge, I.J., Hug, S.J.,1998. Influence of organic ligands on chromium (Ⅵ) reduction by iron (Ⅱ). Environ. Sci. Technol.32,2092-2099.
    Buffle, J., De Vitre, R.R.,1994. Chemical and biological regulation of aquatic systems. Lewis:London.
    Camargo, F., Okeke, F., Frankenberger, W.,2003. Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate. J. Environ. Qual.32,1228.
    Campos, J., Martinez-Pacheco, M., Cervantes, C.,2005. Hexavalent-chromium reduction by a chromate-resistant Bacillus sp. strain. Anton. Leeuw.68,203-208.
    Cervantes, C., Campos-Garcia, J.,2007. Reduction and efflux of chromate by bacteria. Molecular Microbiology of Heavy Metals. Springer, pp.407-419.
    Cervantes, C., Campos-Garcia, J., Devars, S., Gutierrez-Corona, F., Loza-Tavera, H., Torres-Guzman, J.C., Moreno-Sanchez, R.,2001. Interactions of chromium with microorganisms and plants. FEMS Microbiol. Rev.25,335-347.
    Cervantes, C., Campos-Garcia, J., Devars, S., Gutierrez-Corona, F., Loza-Tavera, H., Torres-Guzman, J.C., Moreno-Sanchez, R.,2006. Interactions of chromium with microorganisms and plants. FEMS Microbiol. Rev.25,335-347.
    Chandra, P., Sinha, S., Rai, U.,1997. Bioremediation of chromium from water and soil by vascular aquatic plants. Acs Symposium Series. ACS Publications, pp. 274-282.
    Clark, D.P.,2004. Chromate reductase activity of Enterobacter aerogenes is induced by nitrite. FEMS Microbiol. Lett.122,233-237.
    Cooke, V.M., Hughes, M.N., Poole, R.K.,1995. Reduction of chromate by bacteria isolated from the cooling water of an electricity generating station. J. Ind. Microbiol. Biot.14,323-328.
    Costa, M., Klein, C.B.,2006. Toxicity and carcinogenicity of chromium compounds in humans. Crit. Rev. Toxicol.36,155-163.
    Cui, Y.J., Zhu, Y.G., Zhai, R.H., Chen, D.Y., Huang, Y.Z., Qiu, Y., Liang, J.Z.,2004. Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environ. Int.30,785-791.
    Dayan, A., Paine, A.,2001. Mechanisms of chromium toxicity, carcinogenicity and allergenicity:review of the literature from 1985 to 2000. Hum. Exp. Toxicol.20, 439-451.
    Dong, N.M., Brandt, K.K., Sorensen, J., Hung, N.N., Hach, C.V., Tan, P.S., Dalsgaard, T.,2012. Effects of alternating wetting and drying versus continuous flooding on fertilizer nitrogen fate in rice fields in the Mekong Delta, Vietnam. Soil Biol. Biochem.47,166-174.
    Dunbar, J., Takala, S., Barns, S.M., Davis, J.A., Kuske, C.R.,1999. Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl. Environ. Microbiol.65,1662-1669.
    Eary, L.; Rai, D,2011. Kinetics of chromate reduction by ferrous ions derived from hematite and biotite at 25℃. Am. J. Sci.289,180-213.
    Eary, L.E., Rai, D.,1987. Kinetics of chromium (Ⅲ) oxidation to chromium (Ⅵ) by reaction with manganese dioxide. Environ. Sci. Technol.21,1187-1193.
    Elangovan, R., Abhipsa, S., Rohit, B., Ligy, P., Chandraraj, K.,2006. Reduction of Cr (VI) by a Bacillus sp. Biotechnol. Lett 28,247-252.
    Elovitz, M.S., Fish, W.,1994. Redox interactions of Cr (Ⅵ) and substituted phenols: kinetic investigation. Environ. Sci. Technol.28,2161-2169.
    Elovitz, M.S., Fish, W.,1995. Redox interactions of Cr (VI) and substituted phenols: products and mechanism. Environ. Sci. Technol.29,1933-1943.
    Fendorf, S.E.,1995. Surface reactions of chromium in soils and waters. Geoderma 67, 55-71.
    Fernandez, M.D., Vega, M.M., Tarazona, J.V.,2006. Risk-based ecological soil quality criteria for the characterization of contaminated soils. Combination of chemical and biological tools. Sci. Total Environ.366,466-484.
    Fredrickson, J.K., Kostandarithes, H.M., Li, S., Plymale, A.E., Daly, M.,2000. Reduction of Fe (Ⅲ), Cr (Ⅵ), U (Ⅵ), and Tc (Ⅶ) by Deinococcus radiodurans Rl. Appl. Environ. Microbiol.66,2006-2011.
    Giller, K.E., Witter, E., Mcgrath, S.P.,1998. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils:a review. Soil Biol. Biochem.30,1389-1414.
    Graham, A.M., Bouwer, E.J.,2010. Rates of hexavalent chromium reduction in anoxic estuarine sediments:pH effects and the role of acid volatile sulfides. Environ. Sci. Technol.44,136-142.
    Guha, H., Jayachandran, K., Maurrasse, F.,2003. Microbiological reduction of chromium (Ⅵ) in presence of pyrolusite-coated sand by Shewanella alga Simidu ATCC 55627 in laboratory column experiments. Chemosphere 52,175-183.
    Han, F.X.X., Su, Y., Sridhar, B.B.M., Monts, D.L.,2004. Distribution, transformation and bioavailability of trivalent and hexavalent chromium in contaminated soil. Plant Soil 265,243-252.
    Han, R.Y., Qin, L.P., Brown, S.T., Christensen, J.N., Beller, H.R.,2012. Differential isotopic fractionation during Cr(Ⅵ) reduction by an aquifer-derived bacterium under aerobic versus denitrifying conditions. Appl. Environ. Microbiol.78, 2462-2464.
    Hellerich, L.A., Nikolaidis, N.P.,2005. Studies of hexavalent chromium attenuation in redox variable soils obtained from a sandy to sub-wetland groundwater environment. Water Res.39,2851-2868.
    Hsu, N.H., Wang, S.L., Lin, Y.C., Sheng, G.D., Lee, J.F.,2009. Reduction of Cr(Ⅵ) by crop-residue-derived black carbon. Environ. Sci. Technol.43,8801-8806.
    James, B.R., Bartlett, R.J.,1983. Behavior of chromium in soils:VII. Adsorption and reduction of hexavalent forms. J. Environ. Qual.12,177-181.
    Jardine, P., Fendorf, S., Mayes, M., Larsen, I., Brooks, S., Bailey, W.,1999. Fate and transport of hexavalent chromium in undisturbed heterogeneous soil. Environ. Sci. Technol.33,2939-2944.
    Kabata-Pendias, A.,1993. Behavioural properties of trace metals in soils. Appl. Geochem.8,3-9.
    Konovalova, V.V., Dmytrenko, G.M., Nigmatullin, R.R., Bryk, M.T., Gvozdyak, P.I., 2003. Chromium (Ⅵ) reduction in a membrane bioreactor with immobilized Pseudomonas cells. Enzyme Microb. Technol.33,899-907.
    Kourtev, P.S., Nakatsu, C.H., Konopka, A.,2006. Responses of the anaerobic bacterial community to addition of organic C in chromium(Ⅵ)-and iron(Ⅲ)-amended microcosms. Appl. Environ. Microbiol.72,628-637.
    Kozuh, N., tupar, J., Gorenc, B.,2000. Reduction and oxidation processes of chromium in soils. Environ. Sci. Technol.34,112-119.
    Kwok, C.K., Loh, K.C.,2003. Effects of Singapore soil type on bioavailability of nutrients in soil bioremediation. Adv. Environ. Res.7,889-900.
    Latour, X., Philippot, L., Corberand, T., Lemanceau, P.,1999. The establishment of an introduced community of fluorescent pseudomonads in the soil and in the rhizosphere is affected by the soil type. FEMS Microbiol. Ecol.30,163-170.
    Lauber, C.L., Strickland, M.S., Bradford, M.A., Fierer, N.,2008. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem.40,2407-2415.
    Lavado, R.S., Rodriguez, M., Alvarez, R., Taboada, M.A., Zubillaga, M.S.,2007. Transfer of potentially toxic elements from biosolid-treated soils to maize and wheat crops. Agric. Ecosyst. Environ.118,312-318.
    Lim, H.S., Lee, J.S., Chon, H.T., Sager, M.,2008. Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au-Ag mine in Korea. J. Geochem. Explor.96,223-230.
    Lin, D.X., Fan, X.H., Hu, F., Zhao, H.T., Luo, J.F.,2007. Ammonia volatilization and nitrogen utilization efficiency in response to urea application in rice fields of the Taihu Lake Region, China. Pedosphere 17,639-645.
    Losi, M.E., Amrhein, C., Frankenberger, W.T.,1994. Environmental Biochemistry of Chromium, in:Ware, G. (Ed.). Reviews of environmental contamination and toxicology. Springer New York, pp.91-121.
    Loyaux-Lawniczak, S., Lecomte, P., Ehrhardt, J.J.,2001. Behavior of hexavalent chromium in a polluted groundwater:Redox processes and immobilization in soils. Environ. Sci. Technol.35,1350-1357.
    Mae, T.,1997. Physiological nitrogen efficiency in rice:Nitrogen utilization, photosynthesis, and yield potential. Plant Soil 196,201-210.
    Mapanda, F., Mangwayana, E., Nyamangara, J., Giller, K.,2005. The effect of long-term irrigation using wastewater on heavy metal contents of soils under vegetables in Harare, Zimbabwe. Agric. Ecosyst. Environ.107,151-165.
    Marsh, T.L., McInerney, M.J.,2001. Relationship of hydrogen bioavailability to chromate reduction in aquifer sediments. Appl. Environ. Microbiol.67, 1517-1521.
    Martins, A.L.C., Bataglia, O.C., Camargo, O.A.,2003. Copper, nickel and zinc phytoavailability in an oxisol amended with sewage sludge and liming. Sci. Agr. 60,747-754.
    McBride, M., Nibarger, E., Richards, B., Steenhuis, T.,2003. Trace metal accumulation by red clover grown on sewage sludge-amended soils and correlation to Mehlich 3 and calcium chloride-extractable metals. Soil Sci.168, 29-38.
    McLean, J., Beveridge, T.J.,2001. Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl. Environ. Microbiol.67,1076-1084.
    Megharaj, M., Avudainayagam, S., Naidu, R.,2003. Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr. Microbiol.47,51-54.
    Michel, C., Brugna, M., Aubert, C., Bernadac, A., Bruschi, M.,2001. Enzymatic reduction of chromate:comparative studies using sulfate-reducing bacteria. Appl. Microbiol. Biotechnol.55,95-100.
    Mondaca, M., Gonzalez, C., Zaror, C.,1998. Isolation, characterization and expression of a plasmid encoding chromate resistance in Pseudomonas putida KT2441. Lett. Appl. Microbiol.26,367-371.
    Muyzer, G., Dewaal, E.C., Uitterlinden, A.G.,2013. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes-coding for 16s rRNA. Appl. Environ. Microbiol. 59,695-700.
    Nakatsu, C.H., Carmosini, N., Baldwin, B., Beasley, F., Kourtev, P., Konopka, A., 2005. Soil microbial community responses to additions of organic carbon substrates and heavy metals (Pb and Cr). Appl. Environ. Microbiol.71, 7679-7689.
    Nakayasu, K., Fukushima, M., Sasaki, K., Tanaka, S., Nakamura, H.,1999. Comparative studies of the reduction behavior of chromium (VI) by humic substances and their precursors. Environ. Toxicol. Chem.18,1085-1090.
    Nogawa, K., Yamada, Y., Honda, R., Ishizaki, M., Tsuritani, I., Kawano, S., Kato, T. 2005. The relationship between itai-itai disease among inhabitants of the Jinzu River basin and cadmium in rice. Toxicol. Lett.17,263.
    Pattanapipitpaisal, P., Brown, N., Macaskie, L.,2001. Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr (Ⅵ)-contaminated site. Appl. Microbiol. Biotechnol.57,257-261.
    Peterson, M.L., White, A.F., Brown Jr, G.E., Parks, G.A.,1997. Surface passivation of magnetite by reaction with aqueous Cr (Ⅵ):XAFS and TEM results. Environ. Sci. Technol.31,1573-1576.
    Priester, J.H., Olson, S.G., Webb, S.M., Neu, M.P., Hersman, L.E., Holden, P.A., 2006. Enhanced exopolymer production and chromium stabilization in Pseudomonas putida unsaturated biofilms. Appl. Environ. Microbiol.72, 1988-1996.
    Qafoku, N.P., Dresel, P.E., McKinley, J.P., Liu, C.X., Heald, S.M., Ainsworth, C.C., Phillips, J.L., Fruchter, J.S.,2009. Pathways of aqueous Cr(VI) attenuation in a slightly alkaline oxic subsurface. Environ. Sci. Technol.43,1071-1077.
    Rai, D., Sass, B.M., Moore, D.A.,1997. Chromium (Ⅲ) hydrolysis constants and solubility of chromium (Ⅲ) hydroxide. Inorg. Chem.26,345-349.
    Rattan, R., Datta, S., Chhonkar, P., Suribabu, K., Singh, A.,2005. Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater-a case study. Agric. Ecosyst. Environ.109,310-322.
    Roberts, L.C., Hug, S.J., Voegelin, A., Dittmar,J, Kretzschmar, R., Wehrli, B., Saha, G.C., Badruzzaman, A.B.M., Ali, M.A.,2011. Arsenic dynamics in porewater of an intermittently irrigated paddy field in Bangladesh. Environ. Sci. Technol.45, 971-976.
    Rock, M.L., James, B.R., Helz, G.R.,2001. Hydrogen peroxide effects on chromium oxidation state and solubility in four diverse, chromium-enriched soils. Environ. Sci. Technol.35,4054-4059.
    Roh, Y., Liu, S.V., Li, G.S., Huang, H.S., Phelps, T.J., Zhou, J.Z.,2002. Isolation and characterization of metal-reducing Thermoanaerobacter strains from deep subsurface environments of the Piceance Basin, Colorado. Appl. Environ. Microbiol.68,6013-6020.
    Romanenko, V.I., Korenkov, V.N.,2007. A pure culture of bacterial cells assimilating chromates and bichromates as hydrogen acceptors when grown under anaerobic conditions. Microbiology 46,414-417.
    Ross, D., Sjogren, R., Bartlett, R.,2004. Behavior of chromium in soils:IV. Toxicity to microorganisms. J. Environ. Qual.10,145-148.
    Shanker, A.K., Cervantes, C., Loza-Tavera, H., Avudainayagam, S.,2005. Chromium toxicity in plants. Environ. Int.31,739-753.
    Shen, H., Wang, Y.T.,2003. Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Appl. Environ. Microbiol.59, 3771-3777.
    Shentu, J.L., He, Z.L., Yang, X.E., Li, T.Q.,2008. Accumulation properties of cadmium in a selected vegetable-rotation system of southeastern China. J. Agric. Food. Chem.56,6382-6388.
    Smith, W.L.,2001. Hexavalent chromium reduction and precipitation by sulphate-reducing bacterial biofilms. Environ. Geochem. Health 23,297-300.
    Song, H., Liu, Y., Xu, W., Zeng, G., Aibibu, N., Xu, L., Chen, B.,2009. Simultaneous Cr (Ⅵ) reduction and phenol degradation in pure cultures of Pseudomonas aeruginosa CCTCC AB91095. Bioresour. Technol.100, 5079-5084.
    Souid-Mensi, G., Moukha, S., MaaroUfi, K., Creppy, E.E.,2008. Combined cytotoxicity and genotoxicity of a marine toxin and seafood contaminant metal ions (Chromium and cadmium). Environ. Toxicol.23,1-8.
    Sridhara Chary, N., Kamala, C.T., Samuel Suman Raj, D.,2008. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol. Environ. Saf.69,513-524.
    Sugiyama, M.,2001. Effects of vitamins on chromium (Ⅵ)-induced damage. Environ. Health Perspect.92,63-70.
    Sugiyama, M., Tsuzuki, K., Lin, X., Costa, M.,2002. Potentiation of sodium chromate (Ⅵ)-induced chromosomal aberrations and mutation by vitamin B2 in Chinese hamster V79 cells. Mutat. Res. Lett.283,211-214.
    Thompson, J.D., Plewniak, F., Poch, O.,1999. A comprehensive comparison of multiple sequence alignment programs. Nucleic Acids Res.27,2682-2690.
    Tokunaga, T.K., Wan, J., Firestone, M.K., Hazen, T.C., Olson, K.R., Herman, D.J., Sutton, S.R., Lanzirotti, A.,2003. In situ reduction of chromium (Ⅵ) in heavily contaminated soils through organic carbon amendment. J. Environ. Qual.32, 1641-1649.
    Turpeinen, R., Kairesalo, T., H ggblom, M.M.,2004. Microbial community structure and activity in arsenic-, chromium-and copper-contaminated soils. Ferns. Microbiol. Ecol.47,39-50.
    U.S.Committee on Diet and Health,1999.Diet and health:Implications for reducingchronic disease risk; National Academy Press:Washington, DC.
    Wang, X.J., Yang, J., Chen, X.P., Sun, G.X., Zhu, Y.G.,2009. Phylogenetic diversity of dissimilatory ferric iron reducers in paddy soil of Hunan, South China. J Soil Sediment 9,568-577.
    Wang, X.L., Sato, T., Xing, B.S., Tao, S.,2005. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci. Total Environ.350,28-37.
    Wang, X.P., Shan, X.Q., Zhang, S.Z., Wen, B.,2004. A model for evaluation of the phytoavailability of trace elements to vegetables under the field conditions. Chemosphere 55,811-822.
    Wielinga, B., Mizuba, M.M., Hansel, C.M., Fendorf, S.,2001. Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria. Environ. Sci. Technol.35,522-527.
    Wilbur, S.B.,2000. Toxicological profile for chromium. US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry.
    Wittbrodt, P.R., Palmer, C.D.,2005. Reduction of Cr (Ⅵ) in the presence of excess soil fulvic acid. Environ. Sci. Technol.29,255-263.
    Zayed, A.M., Terry, N.,2003. Chromium in the environment:factors affecting biological remediation. Plant Soil 249,139-156.
    Zeng, F.R., Ali, S., Zhang, H.T., Ouyang, Y.B., Qiu, B.Y., Wu, F.B., Zhang, G.P., 2011. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ. Pollut.159,84-91.
    Zhong, J., Yu, M., Liu, L., Chen, Y., Hu, R., Gong, W.,2006. Study on the dietary nutrition intake level in Zhejiang Province. Dis. Surveillance 21,670-672.
    GB 15618-1995.土壤环境质量标准.
    王立军,章申,.2002.土壤水介质中Cr(Ⅲ)与Cr(Ⅵ)形态的转化.环境科学4,9-9.
    白利平,王业耀,2009.铬在土壤及地下水中迁移转化研究综述.地质与资源18,144-148.
    朱其清,尹楚良,唐丽华,徐俊祥,1994.石灰岩土中微量元素的含量与分布.土壤学报1,58-69.
    朱定祥,倪守斌,2004.铬的生物地球化学及生物效应.广东微量元素科学4,1-9.
    何振立,周启星,谢正苗,1998.污染及有益元素的土壤化学平衡.中国环境科学出版社.
    李晶晶,彭恩泽,2005.综述铬在土壤和植物中的赋存形式及迁移规律.工业安全与环保31,31-33.
    李爱琴,夏诗坂,1998.环境中的铬.内蒙古科技与经济2,17-18.
    易秀,2003.黄土类土对铬,砷的净化机理及地下水防污安全埋深的研究.陕西:长安大学.
    茆智,2002.水稻节水灌溉及其对环境的影响.中国工程科学4,8-16.
    郝晓晖,肖宏宇,苏以荣,吴金水,胡荣桂,2007.长期不同施肥稻田土壤的氮素形态及矿化作用特征.浙江大学学报:农业与生命科学版33,544-550.
    彭世彰,乔振芳,徐俊增,2012.控制灌溉模式对稻田土壤-植物系统镉和铬累积的影响.农业工程学报28,94-99.
    魏复盛,杨国治,蒋德珍,刘志虹,孙本民,1991.中国土壤元素背景值基本统计量及其特征.中国环境监测1,1-6.
    刘云惠,魏显有,王秀敏,高进军,2000.土壤中铬的吸附与形态提取研究.河北农业大学学报23,16-20.
    刘婉,李泽琴,2007.水中铬污染治理的研究进展.广东微量元素科学9,5-9.
    张亚丽,沈其荣,王兴兵,孙兆海,2002.猪粪和稻草对铬污染黄泥士生物活性的影响.植物营养与肥料学报4,488-492.
    汤克勇,1996.环境中的铬与铬的生理意义.皮革科学与工程3,41-45.
    陈英旭,骆永明,朱永官,1994.土壤中铬的化学行为研究.土壤学报31,77-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700