用户名: 密码: 验证码:
温度与碳源对生物除磷系统中PAO和GAO影响及除磷效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷是水体中藻类和其他光合微生物生长的重要元素,过量的磷能够导致水体富营养化。生物除磷工艺通过系统内富集的聚磷菌实现水中磷的去除,是缓解水体富氧氧化的重要途径。然而由于受环境和操作条件约束力强,生物除磷工艺经常面临运行稳定性差、甚至运行失败的问题,其中无除磷能力而与聚磷菌竞争碳源的聚糖菌的出现与富集是导致除磷效果降低的主要原因。在影响聚糖菌增殖的众多因素中,温度能够决定微生物的稳定性及催化效能,而碳源直接参与聚磷菌和聚糖菌的竞争,因此一直受到广泛关注并存在很多对立观点。基于此,本论文以富集培养的聚磷菌和聚糖菌为研究对象,从厌氧/好氧生化反应过程中代谢化学计量关系和反应动力学的角度深入研究温度和碳源种类对生物除磷系统中聚磷菌和聚糖菌的影响及除磷效能,并在此基础上进行温度和碳源复合因素对聚磷菌和聚糖菌影响的数值模拟计算,为深入理解不同温度及碳源与聚磷菌和聚糖菌的代谢过程、相互竞争、优势地位和除磷效能的关系提供参考。
     利用常规与逐步限磷方式分别富集了以聚磷菌和聚糖菌为优势菌群的活性污泥系统,荧光原位杂交试验表明聚磷菌富集系统中聚磷菌(Accumulibacter)含量达到86%,而聚糖菌系统中聚糖菌(Competibacter)占78%。通过维持序批式试验温度为5、10、15、20、25和30℃,分别研究了不同温度对聚糖菌和聚磷菌厌氧/好氧反应过程的影响。厌氧序批式试验结果表明温度对聚磷菌厌氧代谢化学计量关系影响不大,与此相反,5和10℃时聚糖菌厌氧ΔPHAAn/ΔVFAAn和ΔGlyAn/ΔVFAAn明显降低,说明低温条件降低了聚糖菌的活性从而抑制了糖原水解能力,需通过其他方式获得能量完成厌氧代谢。温度对聚磷菌与聚糖菌厌氧反应动力学影响显著,聚磷菌和聚糖菌厌氧反应速率分别在20℃和25~30℃达到最高。相同条件下底物最大吸收速率和厌氧ATP维持系数对比结果显示,在温度低于20℃时聚磷菌和聚糖菌对底物的吸收速率差别不大,但聚磷菌自身维持代谢能需求低于聚糖菌,使其在与聚糖菌的代谢竞争中处于优势地位。好氧序批式试验结果表明,温度对聚磷菌好氧反应代谢化学计量关系影响很小,而30℃时聚糖菌好氧化学计量参数降低了约30%,同时温度对聚磷菌和聚糖菌好氧化学反应动力学影响显著。好氧化学反应过程温度系数与国际水协标准温度系数对比表明,聚磷菌和聚糖菌的好氧化学反应与温度属于中等相关关系。在25和30℃时,聚糖菌对底物的吸收速率远高于聚磷菌的吸收速率,但好氧阶段聚糖菌增殖速率始终低于聚磷菌增殖速率。
     碳源类型对低温生物除磷系统聚糖菌和聚磷菌的影响显著。厌氧底物吸收试验表明,低温条件下聚磷菌厌氧吸收丙酸钠或乙酸钠无选择性,聚磷菌对乙酸钠或丙酸钠的吸收速率基本相同,且丙酸钠能够提高聚磷菌厌氧释磷量,而聚糖菌对丙酸钠的吸收速率仅为乙酸钠吸收量的31%;聚磷菌好氧吸磷试验表明,聚磷菌对好氧PHA组成变化的适应能力的降低导致底物为乙酸钠的聚磷菌好氧吸磷速率高于丙酸钠,主要原因是以丙酸钠为底物时厌氧合成聚羟基烷酸PHA组成成分由PHB转化为PHV和PH2MV。初步研究了碳源对低温反硝化除磷的影响,发现低温生物除磷工艺中含有一定量的的反硝化除磷菌,乙酸钠为碳源时厌氧释磷量与反硝除磷效率较高,但合成的PHA中以PHB为主,降低了反硝化吸磷过程中NO3--N的利用效率;当碳源为混合基质或丙酸钠为碳源时,厌氧释磷量与乙酸钠时接近,但细胞合成的PHA中PH2MV比例逐步增加,能够提高反硝化吸磷过程中NO3--N的利用率。
     葡萄糖可以作为低温生物除磷的底物,但其启动策略和稳定运行维持方式更为复杂。通过延长厌氧反应时间和系统SRT、降低好氧区DO和反应时间能够实现较为稳定的除磷效果。葡萄糖为碳源时存在厌氧区糖原的合成情况,导致聚磷菌代谢能量来源转移为糖原的后续酵解,从而降低生物除磷系统的稳定性。与乙酸钠为底物时相比,葡萄糖为底物的生物除磷系统厌氧释磷量、PHA合成量均有所降低,厌氧合成PHA的结构由乙酸底物时的PHB为主转化为PHV为主要成分。
     进行了温度和碳源复合因素对聚糖菌和聚磷菌影响的数值模拟计算,计算结果对生物除磷系统运行状况的预测效果良好;同时不同条件下聚磷菌或聚糖菌生物占有量模拟计算结果表明低温条件下原水碳源为乙酸或丙酸对聚磷菌生物占有量影响不大,低温条件是决定聚磷菌优势地位的主要因素。在中温条件原水碳源为乙酸或乙酸/丙酸混合物时,聚磷菌和聚糖菌共同存在于生物除磷系统内,而碳源为丙酸时为聚磷菌生物占有量达到76%。在高温且原水碳源为乙酸或乙酸/丙酸混合物时,聚糖菌在系统内生物占有量高于聚磷菌,当碳源转化为丙酸时,聚磷菌为系统的优势菌群,聚磷菌和聚糖菌的生物占有量分别为45%和24%。
Phosphorus (P) is a key nutrient that stimulates the growth of algae and other photosynthetic microorganisms, and must be removed from wastewater to avoid eutrophication in aquatic water systems. In biological phosphorus removal process(BPR), the phosphorus removal can be achieved by polyphosphate accumulating organisms (PAO) which was accumulated through recirculating sludge from anaerobic and aerobic conditions, and is a vital way to control eutrophication. When operated successfully, the process is a relatively inexpensive and environmentally sustainable option for P removal; however, the stability and reliability, as well as the sensitivity to environment conditions and high operation demanding can be a problem. The enrichment of glycogen accumulating organisms (GAO) who competed with PAO for substrate has been hypothesised to be the cause of the degradation in P removal, and the control of GAO growth is significant for the stability of BPR. Among the factors which influence the growth of GAO, temperature is considered to be the key for the stability and catalytic efficiency of microorganism. Meanwhile, substrates take part in the competition of PAO and GAO directly. From the stoichiometry and kinetics aspect, systemic batch test with enriched PAO and GAO was employed to study the effects of temperature and carbon sources on the metabolism of PAO and GAO. Also the numerical simulation of the operation characteristics under the bybrid effects of temperature and carbon sources was studied. Through the study, the metabolic processes and competition relationship under different temperature and carbon sources could be well understood, and it can be a reference for improving the operation stability under low temperature condition.
     The enrichment of PAO and GAO could be achieved by traditional and stepwise limiting way, and the fluorescence in situ hybridization(FISH) results showed that the PAO(Accumulibacter) and GAO(Competibacter) content was 86% and 78% respectively. Maintaining the batch test temperature of 5, 10, 15, 20, 25 and 30℃,the effects of temperature on the metabolism of PAO and GAO was investigated. The anaerobic batch test suggested temperature has little influences on the stoichiometry of PAO, but a obvious reduction was observed for GAO in 5 and 10℃, which means a alterative metabolic pathway for GAO to cover the energy. With respect to kinetic process, the temperature has a significant effect on the anaerobic reaction rate. The reaction rate reached the maximum at 20℃and 25~30℃for PAO and GAO, respectively. The uptake rate of PAO and GAO was comparable when the temperature was below 20℃, but the anaerobic ATP maintenance coefficient was lower than that of GAO, which resulted in the superior competition to GAO. In the aerobic batch test, the temperature has a little effects on the aerobic stoichiometry of PAO and GAO, only a reduciton of GAO was found at 30℃. The aerobic kinetic rates increased with the temperature,but medium dependence was found for the aerobic kinetic. Although the growth rate of GAO was always lower than PAO, the competition superior of GAO to PAO was determined by the higher uptake rate above 20℃.
     The carbon source had a significant influence on PAO and GAO under low temperature. The anaerobic uptake test suggested, PAO had no preferable choice to acetate or propionate, and both the uptake rate was similar. The uptake rate of propionate was only of 31% with that of acetate by GAO by contrast. The adaptable capcity of PAO to PHA compositon was weak which resulted in a lower uptake rate of phosphorus with propionate than that with acetate. The main reason was the differences of PHV and PH2MV synthesized in propionate metabolism to PHB in acetate metabolism. A preliminary test was employed to study the effects of carbon source on denitrifying phosphorus removal. It was found that the low temperature BNR system contained a certain content of denitrifying PAO. The phosphorus release and denitrifying phosphorus removal was higher with acetate as substrate, but the uptake of phosphorus with NO3--N as acceptor was depressed for the component of PHA was PHB. On the other hand, the phosphorus release with compounds and propionate was close to that of acetate, but utilization of NO3--N was improved for the proportion of PH2MV increased.
     Glucose could be taken as the substrate in low temperature biological phosphorus removal process, but the startup strategy and operation characters were complex. The stability could be implemented by extend the aerobic reaction time and sludge retention time, reduce the aerobic reaction time and dissolved oxygen. The glycogen synthesization was observed in the anaerobic process with glucose as substrate, which caused the energy replaced by the hydrolyzation of glycogen. Compared to the acetate, the phosphorus release and the synthesization PHA was lower, and PHV was the main component in PHA.
     The competition of PAO/GAO under various temperature and carbon source was evaluated with a incorporated model. The simulation results was well accordance with the operation status. The simulated biomass of PAO and GAO showed that the carbon source on PAO was neglectable under low temperature, and the dominance of PAO was determined by temperature only. Under moderate temperature and acetate or the compounds as substrate, the biomass was composed of PAO and GAO simultaneously. However, the PAO was up to 76% when the sole propionate as substrate. Under high temperature and acetate or the compounds as substrate, the biomass of GAO was higher than PAO. As the substrate was propionate, the biomass of PAO and GAO was 45% and 24% respectively with the PAO as dominance.
引文
[1] LF van der Struijk,C Kroeze. Future trends in nutrient export to the coastal waters of South America:Implications for occurrence of eutrophication[J]. Global Biogeochemical Cycles,2010,24(14):1224-1239.
    [2] DW Schindler,RE Hecky,DL Findlay. Eutrophication of lakes cannot be controlled by reducing nitrogen input:Results of a 37-year whole-ecosystem experiment[J]. Proceedings of the National Academy of Sciences,2008,105(32):11254-11258.
    [3] VH Smith,DW Schindler. Eutrophication science: where do we go from here? [J]. Trends in Ecology & Evolution,2009,24(4):201-207.
    [4]水利部. 2009年中国水资源公报[EB/OL].
    [5]郭天配.中国环境质量变化的结构分解分析[J].大连海事大学学报(社会科学版),2010,9(3):41-45.
    [6] SR Carpenter. Phosphorus control is critical to mitigating eutrophication. Proceedings of the National Academy of Sciences[J],2008,105(32):11039-11040.
    [7] DW Schindler. Recent advances in the understanding and management of eutrophication[J]. Limnology and Oceanography,2006,51(1):356-363.
    [8] RB Alexander,RA Smith,GE Schwarz. Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River Basin[J]. Environ. Sci. Technol,2008,42(3):822-830.
    [9] KM Brindle,ID Campbell. NMR studies of kinetics in cells and tissues[J]. Quarterly Reviews of Biophysics,2009,19(3-4):159-182.
    [10]张波,孟紫强. DNA连接酶的结构与功能[J].生命的化学,2001,2(2):119-121.
    [11] H Wang. Mitigation of lake eutrophication:Loosen nitrogen control and focus on phosphorus abatement[J]. Progress in Natural Science,2009,19(10):1445-1451.
    [12] CM Lopez-Vazquez,CM Hooijmans,D Brdjanovic. Factors affecting the microbial populations at full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants in The Netherlands[J]. Water Research,2008,42(10-11):2349-2360.
    [13] D Houweling,Y Comeau,I Takacs. Uncertainty and variability in enhanced biological phosphorus removal (EBPR) stoichiometry : consequences for process modelling and optimization[J]. Water science and technology,2010,61(7):1793-800.
    [14] S Basu,T Wiesner,J Page. Failure and Subsequent Restoration of EBPR Capability of a Small Community Wastewater Treatment Plant[J]. Proceedings of the Water Environment Federation,2008,2008(11):5171-5184.
    [15] M Thomas,P Wright,L Blackall. Optimisation of Noosa BNR plant to improve performance and reduce operating costs[J]. Water science and technology:a journal of the International Association on Water Pollution Research,2003,47(12):141-147.
    [16]李慧.浙北市政污水强化生物除磷技术增效调控研究[D].浙江大学,2010.
    [17]刘颖,项学敏,王刃.城市生活污水中磷的回收和再利用研究进展[J].环境保护与循环经济,2008,28(005):25-27.
    [18]冯佳虹,冯利华.模糊综合评判在水质评价中的应用——以金华江为例[J].安徽农业科学,2008,36(021):9236-9237.
    [19]李荣喜,杨春平.有机磷农药废水处理技术进展[J].环境科学与管理,2008,33(009):84-87.
    [20] RB Confesor Jr,JM Hamlett,RD Shannon. Potential Pollutants from Farm, Food and Yard Waste Composts at Differing Ages:Part I. Physical and Chemical Properties[J]. Compost Science & Utilization,2008,16(4):228-238.
    [21]马海燕.畜禽污水处理新技术[J].中国牧业通讯,2009(008):34-36.
    [22]荆红卫,华蕾,孙成华.北京城市湖泊富营养化评价与分析[J]. J. Lake Sci,2008,20(3):357-363.
    [23]牛晓君,耿金菊,马宏瑞.富营养浅水湖泊中新发现的磷化氢[J].中国环境科学,2004,24(001):85-88.
    [24]郝晓地,朱景义,曹秀芹.污水强化除磷工艺的现状与未来[J].中国给水排水,2005,21(011):37-40.
    [25]於斯,程晓如,朱少华.不同混凝剂强化混凝处理富磷废水实验研究[J].节水灌溉,2010,11(4):37-39.
    [26]罗肖肖,陶禹传.污水除磷技术的研究进展[J].广东化工,37(005):182-183.
    [27]徐建宇,宫宇周,潘明富.几种混凝剂深度除磷性能的对比研究[J].广西轻工业,2009,25(001):89-91.
    [28]周登健,李洁纯.含磷废水处理药剂的选定及讨论[J].中国环保产业,2008,2(7):31-33.
    [29]徐丰果,罗建中,凌定勋.废水化学除磷的现状与进展[J].工业水处理,2003,23(005):18-20.
    [30]郭海英,陈丹.化学法除磷的试验研究[J].环境保护科学,36(002):50-52.
    [31]刘保伟,张金梅.城市污水强化一级处理技术概述[J].工程建设与设计,2008,(012):75-78.
    [32]黄天寅,夏四清.化学生物絮凝强化一级处理工艺的影响因素研究[J].中国给水排水,2010,7(2):19-26.
    [33]司妮娜,于晓华,曲颂华.混凝-微滤布过滤工艺深度处理污水厂二级出水[J].中国给水排水,2008,24(003):106-108.
    [34]任南琪,马放,周大石.水污染控制微生物学[M].黑龙江科学技术出版社. 1997.
    [35] AM Oehmen,AM Saunders,LL Blackall. The effect of GAO's on Anaerobic carbon requirements in full-scale australian EBPR plants[C]. IWA Publishing/Portland Press,2003,47(11):37-43.
    [36] LC Burow , Y Kong , JL Nielsen. Abundance and ecophysiology of Defluviicoccus spp. , glycogen-accumulating organisms in full-scale wastewater treatment processes[J]. Microbiology,2007,153(1):178-185.
    [37]张自杰,林荣忱,金儒霖.排水工程(下册) [M].北京:中国建筑工业出版社,1996.
    [38]郝晓地,汪慧贞.欧洲城市污水处理技术新概念—可持续生物除磷脱氮工艺(上) [J]给水排水,2002,28(006):6-11.
    [39] KD McMahon,MA Dojka,NR Pace. Polyphosphate kinase from activated sludge performing enhanced biological phosphorus removal[J]. Applied and Environmental Microbiology,2002,68(10):4971-4978.
    [40]万年红. A2/O工艺的改良与设计应用[J].中国给水排水,2003,19(8):81-83.
    [41]张波,高廷耀.倒置A2/O工艺的原理与特点研究[J].中国给水排水,2000,16(007):11-15.
    [42] YQ Liu, Y Liu, JH Tay. Biological Phosphorus Removal Processes[J].Environmental Bioengineering,2010,11(15):497-521.
    [43] E Vaiopoulou,A Aivasidis. A modified UCT method for biological nutrient removal:Configuration and performance[J]. Chemosphere,2008,72(7):1062-1068
    [44] T Kuba,G Smolders,MCM Loosdrecht. Biological phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor[J]. Water Science and Technology (United Kingdom),1993,27(5-6):241-252.
    [45] MCM Van Loosdrecht,FA Brandse,AC De Vries. Upgrading of waste water treatment processes for integrated nutrient removal--The BCFS(R) process[J]. Water Science and Technology,1998,37(9):209-217.
    [46] H Pei,W Hu,J Pan,et al. Simultaneous nitrogen and phosphorus removal using a double sludge switching sequencing batch reactor[J]. Journal of Environmental Engineering,2008,134:923.
    [47] PS Barker,PL Dold. Denitrification behaviour in biological excess phosphorus removal activated sludge systems[J]. Water Research,1996,30(4):769-780
    [48] GW Fuhs, M Chen. Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater[J]. Microbial Ecology,1975,2(2):119-138.
    [49] JS Cech,P Hartman. Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal systems[J]. Water Research,1993,27(7):1219-1225.
    [50] M Streichan,JR Golecki,G Schn. Polyphosphate-accumulating bacteria from sewage plants with different proceses for biological phosphorus removal[J]. Fems Microbiology Letters,1990,73(2):113-124.
    [51] TR Greeley , JL Zilles. Relating Performance And Bacterial Population Dynamics During The Startup Of A Full-Scale Enhanced Biological Phosphorus Removal Process[J]. Proceedings of the Water Environment Federation ,2008,2008(17):55-69.
    [52] MM Santos,PC Lemos,MAM Reis. Glucose metabolism and kinetics of phosphorus removal by the fermentative bacterium Microlunatus phosphovorus[J]. Applied and Environmental Microbiology,1999,65(9):3920-3928.
    [53] CM Liang , CH Hung , SC Hsu. Purple nonsulfur bacteria diversity in activated sludge and its potential phosphorus-accumulating ability underdifferent cultivation conditions[J]. Applied Microbiology and Biotechnology,2010,86(2):709-719.
    [54] GE Zengin,N Artan,D Orhon. Effect of aspartate and glutamate on the fate of enhanced biological phosphorus removal process and microbial community structure[J]. Bioresource Technology,2011,102(2):894-903.
    [55] PL Bond,R Erhart,M Wagner. Identification of some of the major groups of bacteria in efficient and nonefficient biological phosphorus removal activated sludge systems[J]. Applied and Environmental Microbiology,1999,65(9):4077-4084.
    [56] RPX Hesselmann,C Werlen,D Hahn. Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge[J]. Systematic and applied microbiology,1999,22(3):454-465.
    [57] GR Crocetti , P Hugenholtz , PL Bond. Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation[J]. Applied and Environmental Microbiology ,2000,66(3):1175-1182.
    [58] S He , KD McMahon.‘Candidatus Accumulibacter’gene expression in response to dynamic EBPR conditions[J]. The ISME Journal,2011,5:329-340.
    [59] Q Wang , Y Shao , VT Huong. Fine-scale population structure of Accumulibacter phosphatis in enhanced biological phosphorus removal sludge[J]. Journal of Microbiology and Biotechnology,2008,18(7):1290-1296.
    [60]张志剑,李慧,徐心.市政污水生物除磷效能和功能微生物分布特征[J].给水排水,2010,36(7):25-29.
    [61] AM Saunders,A Oehmen,LL Blackall. The effect of GAOs (glycogen accumulating organisms) on anaerobic carbon requirements in full-scale Australian EBPR (enhanced biological phosphorus removal) plants[J]. Water science and technology: a journal of the International Association on Water Pollution Research,2003,47(11):37-43.
    [62] MT Wong,T Mino,RJ Seviour. In situ identification and characterization of the microbial community structure of full-scale enhanced biological phosphorous removal plants in Japan[J]. Water Research,2005,39(13):2901-2914.
    [63] FR Slater,CR Johnson,LL Blackall. Monitoring associations between clade-level variation, overall community structure and ecosystem function in enhanced biological phosphorus removal (EBPR) systems using terminal-restriction fragment length polymorphism (T-RFLP) [J]. Water Research,2010,44(17):4908-4923.
    [64] S He,AZ Gu,KD McMahon. Progress toward understanding the distribution of Accumulibacter among full-scale enhanced biological phosphorus removal systems[J]. Microbial Ecology,2008,55(2):229-236.
    [65] T Mino,WT Liu,F Kurisu. Modelling glycogen storage and denitrification capability of microorganisms in enhanced biological phosphate removal processes[J]. Water Science and Technology,1995,31(2):25-34.
    [66] SJ McIlroy,T Nittami,EM Seviour. Filamentous members of cluster III Defluviicoccus have the in situ phenotype expected of a glycogen-accumulating organism in activated sludge[J]. FEMS Microbiology Ecology,2010,74(1):248-256.
    [67] GE Zengin,N Artan,D Orhon. Population dynamics in a sequencing batch reactor fed with glucose and operated for enhanced biological phosphorus removal[J]. Bioresource Technology,2010,101(11):4000-4005.
    [68] S Hanada , WT Liu , T Shintani. Tetrasphaera elongata sp. nov. , a polyphosphate-accumulating bacterium isolated from activated sludge[J]. International journal of systematic and evolutionary microbiology,2002,52(3):883.
    [69] UG Erdal,ZK Erdal,GT Daigger. Is it PAO-GAO competition or metabolic shift in EBPR system evidence from an experimental study[J]. Proceedings of the Water Environment Federation,2007,2007(13):4966-4976.
    [70] RJ Seviour,S McIlroy. The microbiology of phosphorus removal in activated sludge processes-the current state of play[J]. The Journal of Microbiology,2008,46(2):115-124.
    [71]张超,陈银广.增强生物除磷系统中微生物生理生化机制研究进展[J].环境科学与技术,2010,10(1):81-85.
    [72] CM Lopez-Vazquez,A Oehmen,CM Hooijmans. Modeling the PAO-GAO competition : Effects of carbon source, pH and temperature[J]. Water Research,2009,43(2):450-462.
    [73] AT Nielsen,WT Liu,C Filipe. Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor[J]. Applied and Environmental Microbiology,1999,65(3):1251-1258.
    [74] R Lemaire,Z Yuan,LL Blackall. Microbial distribution of Accumulibacter spp. and Competibacter spp. in aerobic granules from a lab-scale biological nutrient removal system[J]. Environmental Microbiology,2008,10(2):354-363.
    [75] Y Kong,SL Ong,WJ Ng. Diversity and distribution of a deeply branched novel proteobacterial group found in anaerobic-aerobic activated sludge processes[J]. Environmental Microbiology,2002,4(11):753-757.
    [76] M Beer , YH Kong , RJ Seviour. Environmental microbiology-are some putative glycogen accumulating organisms (GAO) in anaerobic : Aerobic activated sludge systems members of the a-Proteobacteria? [J]. Microbiology-Reading,2004,150(7):2267-2276.
    [77] MT Wong,FM Tan,WJ Ng. Identification and occurrence of tetrad-forming Alphaproteobacteria in anaerobic-aerobic activated sludge processes[J]. Microbiology,2004,150(11):3741-3748.
    [78] RJ Zeng,Z Yuan,J Keller. Effects of solids concentration, pH and carbon addition on the production rate and composition of volatile fatty acids (VFAs) in prefermenters[J]. Water Sci Technol, 2006,53(8):263-269.
    [79] K. D. McMahon,M. A. Dojka,N. R. Pace. Polyphosphate kinase from activated sludge performing enhanced biological phosphorus removal[J]. Applied and environmental microbiology,2002,68(10):4971-4978.
    [80] S. He , AZ Gu , KD McMahon. Fine-scale differences between Accumulibacter-like bacteria in enhanced biological phosphorus removal activated sludge[J]. Microbial Population Dynamics in Biological Wastewater Treatment,2006,54(1):111-117.
    [81] M. Beer , H. M. Stratton , PC Griffiths. Which are the polyphosphate accumulating organisms in full-scale activated sludge enhanced biological phosphate removal systems in Australia?[J]. Journal of applied microbiology,2006,100(2):233-243.
    [82]蔡天明,蔡舒,宁强.影响EBPR系统生物除磷的主要因素[J].环境工程,2008,26(005):74-76.
    [83]荣宏伟,陈志强,吕炳南.有机碳源对生物除磷的影响[J].南京理工大学学报:自然科学版,2004,28(004):440-444.
    [84] A. Oehmen,Z. Yuan,L. L. Blackall. Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms[J]. Biotechnology and Bioengineering,2005,91(2):162-168.
    [85] A. Z. Gu,A. Saunders,JB Neethling. Investigation of PAOs and GAOs and their effects on EBPR performance at full-scale wastewater treatment plants in US[J]. Proceedings of the Water Environment Federation,2005,2005(14):1985-1998.
    [86] Y. Chen,Y. Liu,Q. Zhou. Enhanced phosphorus biological removal from wastewater--effect of microorganism acclimatization with different ratios of short-chain fatty acids mixture[J]. Biochemical engineering journal,2005,27(1):24-32.
    [87]张超,陈银广,刘燕.不同丙酸/乙酸长期驯化的活性污泥对EBPR的影响[J].环境科学,2008,29(009):2548-2552.
    [88] A.P. Thomas,J. Alexander,JR Williamson. Relationship between inositol polyphosphate production and the increase of cytosolic free Ca2+ induced by vasopressin in isolated hepatocytes.Journal of Biological Chemistry,1984,259(9):5574-5584.
    [89] M. Pijuan,AM Saunders,A. Guisasola. Enhanced biological phosphorus removal in a sequencing batch reactor using propionate as the sole carbon source[J]. Biotechnology and Bioengineering,2004,85(1):56-67.
    [90] M. Pijuan,JA Baeza,C. Casas. Response of an EBPR population developed in an SBR with propionate to different carbon sources[J]. Water science and technology: a journal of the International Association on Water Pollution Research,2004,50(10):131-138.
    [91] M. Vargas,C. Casas,JA Baeza. Maintenance of phosphorus removal in an EBPR system under permanent aerobic conditions using propionate[J]. Biochemical engineering journal,2009,43(3):288-296.
    [92]吴昌永,彭永臻,彭轶.碳源类型对A2/O系统脱氮除磷的影响[J].环境科学,2009,30(003):798-802.
    [93] M. T. Wong,F. M. Tan,W. J. Ng. Identification and occurrence of tetrad-forming Alphaproteobacteria in anaerobic-aerobic activated sludge processes[J]. Microbiology,2004,150(11):3741-3748.
    [94] R. L. Meyer,A. M. Saunders,L. L. Blackall. Putative glycogen-accumulatingorganisms belonging to the Alphaproteobacteria identified through rRNA-based stable isotope probing[J]. Microbiology,2006,152(2):419-429.
    [95]由阳,袁志国,李夕耀.强化生物除磷系统中主要菌群的富集和培养.高技术通讯,2009,19(2):45-50.
    [96] Y. Dai. Polyhydroxyalkanoate copolymer production from synthetic carbonaceous wastewater using glycogen accumulating organisms[D]. The University of Queensland,2006.
    [97] R. J. Zeng,M. van Loosdrecht,Z. Yuan. Metabolic model for glycogen-accumulating organisms in anaerobic/aerobic activated sludge systems[J]. Biotechnology and Bioengineering,2003,81(1):92-105.
    [98] CM Lopez-Vazquez,D. Brdjanovic,CM Hooijmans. Factors affecting the occurrence of PAO and GAO at full-scale EBPR systems[D]. Tudelft,2010.
    [99] C.J. Horgan,E.R. Coats,F.J. Loge. Assessing the Effects of Solids Residence Time and Volatile Fatty Acid Augmentation on Biological Phosphorus Removal Using Real Wastewater[J]. Water Environment Research,2010,82(3):216-226.
    [100]张立卿.碳源对SBR内除磷效果的影响试验研究[D].西安建筑科技大学,2005.
    [101]C. R. Hood,A. A. Randall. A biochemical hypothesis explaining the response of enhanced biological phosphorus removal biomass to organic substrates[J]. Water research,2001,35(11):2758-2766.
    [102]C. Levantesi, L. S. Serafim, G. R. Crocetti. Analysis of the microbial community structure and function of a laboratory scale enhanced biological phosphorus removal reactor[J]. Environmental Microbiology,2002,4(10):559-569.
    [103]P. Canizares,A. De Lucas,L. Rodriguez. Anaerobic uptake of different organic substrates by an enhanced biological phosphorus removal sludge[J]. Environmental technology,2000,21(4):397-405.
    [104]侯红勋,王淑莹,闫骏.不同碳源类型对生物除磷过程释放磷的影响[J].化工学报,2007,58(008):2081-2086.
    [105]T. Mino,MCM Van Loosdrecht,JJ Heijnen. Microbiology and biochemistry of the enhanced biological phosphate removal process[J]. Water research,1998,32(11):3193-3207.
    [106]JS Cech,P. Hartman. Glucose induced break down of enhanced biologicalphosphate removal[J]. Environmental technology,1990,11(7):651-656.
    [107]Y. Wang,F. Jiang,Z. Zhang. The long-term effect of carbon source on the competition between polyphosphorus accumulating organisms and glycogen accumulating organism in a continuous plug-flow anaerobic/aerobic (A/O) process[J]. Bioresource technology,2010,101(1):98-104.
    [108]KD Tracy , A. Flammino. Biochemistry and energetics of biological phosphorus removal[M]. Ramadori,1987,15-26.
    [109]IM Sudiana , T. Mino , H. Satoh. Metabolism of enhanced biological phosphorous removal and non enhanced biological phosphorous removal sludge with acetate and glucose as carbon source[J]. Water research and technology,1999,2(1):0273-1223.
    [110]A. Carucci,M. Majone,R. Ramadori. Biological phosphorus removal with different organic substrates in an anaerobic/aerobic sequencing batch reactor[J]. Water Science and Technology,1997,35(1):161-168.
    [111]C. O. Jeon , J. M. Park. Enhanced biological phosphorus removal in a sequencing batch reactor supplied with glucose as a sole carbon source[J]. Water research,2000,34(7):2160-2170.
    [112]王冬波,李小明,杨麒.碳源对SBR单级好氧工艺中微生物摄磷能力的影响及其机理研究[J].中国科学B辑,2009,39(6):560-568.
    [113]许春生.生物复合工艺处理寒冷地区城市污水试验研究[D].哈尔滨工业大学,2006.
    [114]N. Li,N. Q. Ren,X. H. Wang. Effect of temperature on intracellular phosphorus absorption and extra-cellular phosphorus removal in EBPR process[J]. Bioresource technology,2010,101(15):6265-6268.
    [115]B. M. Kumar,S. Chaudhari. Evaluation of sequencing batch reactor (SBR) and sequencing batch biofilm reactor (SBBR) for biological nutrient removal from simulated wastewater containing glucose as carbon source[J]. Water science and technology: a journal of the International Association on Water Pollution Research,2003,48(3):73-79.
    [116]D. Mamais,D. Jenkins. The effects of MCRT and temperature on enhanced biological phosphorus removal[J]. Water Science & Technology,1992,26(5-6):955-965.
    [117]李楠. SBR系统在低温条件下的废水生物除磷性能及除磷途径分析[D].哈尔滨工业大学,2010.
    [118]T. Panswad, A. Doungchai, J. Anotai. Temperature effect on microbial community of enhanced biological phosphorus removal system[J]. Water research,2003,37(2):409-415.
    [119]LM Whang,JK Park. Competition between polyphosphate-and glycogen-accumulating organisms in biological phosphorus removal systems--effect of temperature[J]. Water science and technology:a journal of the International Association on Water Pollution Research,2002,46(1-2):191-194.
    [120]U. G. Erdal,Z. K. Erdal,C. W. Randall. The Mechanisms of EBPR Washout and Temperature Relationships[J]. Proceedings of the Water Environment Federation,2003,2003(7):550-562.
    [121]K. Johnson,J. van Geest,R. Kleerebezem. Short-and long-term temperature effects on aerobic polyhydroxybutyrate producing mixed cultures[J]. Water research,2010,44(6):1689-1700.
    [122]D. Baetens,PA Vanrolleghem,MCM Van Loosdrecht. Temperature effects in bio-P removal[J]. Water Science and Technology,1999,39(1):215-225.
    [123]SA McClintock,VM Pattarkine,CW Randall. Comparison of yields and decay rates for a biological nutrient removal process and a conventional activated sludge process[J]. Water Science & Technology,1992,26(9-11):2195-2198.
    [124]MK Winkler,JP Bassin,R. Kleerebezem. Selective sludge removal in a segregated aerobic granular biomass system as a strategy to control PAO-GAO competition at high temperatures[J]. Water research ,doi:10.1016/j.watres.2011.03.024
    [125]T. Schneider,K. Riedel. Environmental proteomics:analysis of structure and function of microbial communities[J]. Proteomics,2010,10(4):785-798.
    [126]S. He,F. I. Bishop,K. D. McMahon. Bacterial Community and" Candidatus Accumulibacter" Population Dynamics in Laboratory-Scale Enhanced Biological Phosphorus Removal Reactors[J]. Applied and environmental microbiology,2010,76(16):5479-5487.
    [127]P. A. Jones. Temporal biomass density and filamentous bacteria effects on secondary settlin[D]. University of New Mexico,2009.
    [128]U. G. Erdal,Z. K. Erdal,G. T. Daigger. Is it PAO-GAO competition OR metabolic shift in EBPR system evidence from an experimental study[J]. Proceedings of the Water Environment Federation,2007,2007(13):4966-4976.
    [129]郝晓地,甘一萍,周军.数学模拟技术在污水处理工艺设计,优化,研发中的应用(上) [J].给水排水,2004,30(005):33-36.
    [130]GJF Smolders , J Van der Meij , MCM Van Loosdrecht. Model of the anaerobic metabolism of the biological phosphorus removal process : stoichiometry and pH influence[J]. Biotechnology and Bioengineering,1994,43(6):461-470.
    [131]C. D. M. Filipe,G. T. Daigger,CP Grady Jr. A metabolic model for acetate uptake under anaerobic conditions by glycogen accumulating organisms: stoichiometry, kinetics, and the effect of pH[J]. Biotechnology and Bioengineering,2001,76(1):17-31.
    [132]N. Yagci,N. Artan,E. U. okgr. Metabolic model for acetate uptake by a mixed culture of phosphate and glycogen-accumulating organisms under anaerobic conditions[J]. Biotechnology and Bioengineering,2003,84(3):359-373.
    [133]GJF Smolders,J. Van der Meij,MCM Van Loosdrecht. Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process[J]. Biotechnology and Bioengineering,1994,44(7):837-848.
    [134]M. Henze. Activated sludge models ASM1, ASM2, ASM2d and ASM3[M]. Intl Water Assn,2000.
    [135]李满天,阚宁,张旭.活性污泥法数学模型的发展与应用展望.绿色大世界:绿色科技,2010,1:21-23.
    [136]H. Melcer. Methods for wastewater characterization in activated sludge modeling[M]. Intl Water Assn,2003.
    [137]J. Serralta,J. Ferrer,L. Borras. An extension of ASM2d including pH calculation[J]. Water research,2004,38(19):4029-4038.
    [138]J. Manga,J. Ferrer,F. Garcia-Usach. A modification to the Activated Sludge Model No.2 based on the competition between phosphorus-accumulating organisms and glycogen-accumulating organisms[J]. Water science and technology,2001,43(11):161-171.
    [139]N. Yagci,G. Insel,R. Tasli. A new interpretation of ASM2d for modeling of SBR performance for enhanced biological phosphorus removal under different P/HAc ratios[J]. Biotechnology and Bioengineering,2006,93(2):258-270.
    [140]A. J. Schuler. Diversity matters:Dynamic simulation of distributed bacterialstates in suspended growth biological wastewater treatment systems[J]. Biotechnology and Bioengineering,2005,91(1):62-74.
    [141]H. Zhao, T. J. McAvoy, C. H. Chang. Modeling nutrient dynamics in sequencing batch reactor[J]. Journal of environmental engineering,1997,123(4):311-319.
    [142]X. Hao,M. Loosdrecht,SCF Meijer. Model-based evaluation of two BNR processes--UCT and A2N[J]. Water research,2001,35(12):2851-2860.
    [143]SCF Meijer,MCM Van Loosdrecht,JJ Heijnen. Metabolic modelling of full-scale biological nitrogen and phosphorus removing WWTP's[J]. Water research,2001,35(11):2711-2723.
    [144]RC Ky,Y. Comeau,M. Perrier. Modelling biological phosphorus removal from a cheese factory effluent by an SBR[J]. Water Science and Technology,2001,43(3):257-264.
    [145]T. Saito,D. Brdjanovic,MCM Van Loosdrecht. Effect of nitrite on phosphate uptake by phosphate accumulating organisms[J]. Water research, 2004,38(17):3760-3768.
    [146]袁汉鸿,胡艳平,戚惠良.重铬酸钾法测定水中COD问题的探讨[J].净水技术,2005,24(004):67-68.
    [147]C. Way,C. D. House. Standard methods for the examination of water and wastewater[M]. PUBLIC HEALTH ASSOCIATION: NEW YORK ,2005.
    [148]王建龙,吴立波,齐星.用氧吸收速率(OUR)表征活性污泥硝化活性的研究[J].环境科学学报,1999,19(3):225-229.
    [149]R. Amann,B. M. Fuchs,S. Behrens. The identification of microorganisms by fluorescence in situ hybridisation[J]. Current Opinion in Biotechnology,2001,12(3):231-236.
    [150]王爱杰,任南琪.环境中的分子生物学诊断技术[M].化学工业出版社,2004.
    [151]H. Daims,A. Brühl,R. Amann. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set[J]. Systematic and Applied Microbiology,1999,22(3):433-434.
    [152]J. M. Kim,H. J. Lee,S. Y. Kim Analysis of the Fine-Scale Population Structure of" Candidatus Accumulibacter phosphatis" in Enhanced Biological Phosphorus Removal Sludge, Using Fluorescence In Situ Hybridization andFlow Cytometric Sorting[J]. Applied and environmental microbiology,2010,76(12):3825.
    [153]G. R. Crocetti,J. F. Banfield,J. Keller. Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes[J]. Microbiology,2002,148(11):3353-3364.
    [154]R. J. Zeng, M. C. M. van Loosdrecht, Z. Yuan. Metabolic model for glycogen-accumulating organisms in anaerobic/aerobic activated sludge systems[J]. Biotechnology and Bioengineering,2003,81(1):92-105.
    [155]D Brdjanovic,S Logemann,MC M. van Loosdrecht. Influence of temperature on biological phosphorus removal:process and molecular ecological studies[J]. Water Research,1998,32(4):1035-1048.
    [156]SA McClintock,CW Randall,VM Pattarkine. Effects of temperature and mean cell residence time on enhanced biological phosphorus removal[C]. 1991,319-324.
    [157]N Li,NQ Ren,XH Wang. Effect of temperature on intracellular phosphorus absorption and extra-cellular phosphorus removal in EBPR process[J]. Bioresource Technology,2010,101(15):6265-6268.
    [158]W Tian,W Li,H Zhang. Affecting factors and control strategies of the competition of phosphorus accumulating organisms (PAO) and glycogen accumulating organisms (GAO) in enhanced biological phosphorus removal[C],IEEE,2010,626-628.
    [159]马民.丙酸/乙酸比例及pH对聚糖菌富集系统的影响[D].同济大学,2006.
    [160]T. Mino,T. Kawakami,T. Matsuo. Location of phosphorus in activated sludge and function of intracellular polyphosphates in biological phosphorus removal process[J]. Water Science and Technology,1985,17(2/3):93-106.
    [161]A. J. Schuler,D. Jenkins. Enhanced biological phosphorus removal from wastewater by biomass with different phosphorus contents, part I : experimental results and comparison with metabolic models[J]. Water Environment Research,2003,75(6):485-498.
    [162]R. Zeng,Z. Yuan,M. van Loosdrecht. Proposed modifications to metabolic model for glycogen-accumulating organisms under anaerobic conditions[J]. Biotechnology and Bioengineering,2002,80(3):277-279.
    [163]MT Wong,WT Liu. Microbial succession of glycogen accumulating organisms in an anaerobic-aerobic membrane bioreactor with no phosphorus removal[J].Water science and technology:a journal of the International Association on Water Pollution Research,2006,54(1):29-37.
    [164]张志剑,李慧,徐心.市政污水生物除磷效能和功能微生物分布特征[J].给水排水,2010,36(7):45-50.
    [165]L. C. Burow,Y. Kong,J. L. Nielsen. Abundance and ecophysiology of Defluviicoccus spp. , glycogen-accumulating organisms in full-scale wastewater treatment processes[J]. Microbiology,2007,153(1):178-185.
    [166]Y. Kong , J. L. Nielsen , P. H. Nielsen. Identity and ecophysiology of uncultured actinobacterial polyphosphate-accumulating organisms in full-scale enhanced biological phosphorus removal plants[J]. Applied and environmental microbiology,2005,71(7):4076-4085.
    [167]A. Oehmen,P. C. Lemos,G. Carvalho. Advances in enhanced biological phosphorus removal: from micro to macro scale[J]. Water research,2007,41(11):2271-2300.
    [168]A. Oehmen , G. Carvalho , CM Lopez-Vazquezl. Incorporating microbial ecology into the metabolic modelling of polyphosphate accumulating organisms and glycogen accumulating organisms[J]. Water research,2010,44(17):4992-5004.
    [169]IM Sudiana,T. Mino,H. Satoh. Selected Papers-Metabolism of enhanced biological phosphorus removal and non-enhanced biological phosphorus removal sludge with acetate and glucose as carbon source[J]. Water Science and Technology,1999,39(6):29-36.
    [170]MCM Van Loosdrecht , GJ Smolders , T. Kuba. Metabolism of micro-organisms responsible for enhanced biological phosphorus removal from wastewater, Use of dynamic enrichment cultures[J]. Antonie van Leeuwenhoek,1997,71(1):109-116.
    [171]G. Carvalho,P. C. Lemos,A. Oehmen. Denitrifying phosphorus removal: linking the process performance with the microbial community structure[J]. Water research,2007,41(19):4383-4396.
    [172]王晓莲,王淑莹,马勇. A2/O工艺中反硝化除磷及过量曝气对生物除磷的影响[J].化工学报,2005,56(08):1565-1570.
    [173]吴广华,张耀斌,全燮.温度及反硝化聚磷对SBMBBR脱氮除磷的影响[J].环境科学,2007,28(011):2484-2487.
    [174]L. E. De-Bashan,Y. Bashan. Recent advances in removing phosphorus fromwastewater and its future use as fertilizer (1997-2003) [J]. Water research,2004,38(19):4222-4246.
    [175]王亚宜.反硝化除磷脱氮机理及工艺研究[D].哈尔滨工业大学,2004.
    [176]M. Beer , Y. H. Kong , R. J. Seviour. Are some putative glycogen accumulating organisms (GAO) in anaerobic:aerobic activated sludge systems members of the {alpha}-Proteobacteria?. Microbiology,2004,150(7):2267-2275.
    [177]A. Wachtmeister,T. Kuba,MCM Van Loosdrecht. A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge[J]. Water research,1997,31(3):471-478.
    [178]吴昌永,彭永臻,彭轶. A2O工艺中的反硝化除磷及其强化[J].哈尔滨工业大学学报,2009,41(8):46-49.
    [179]彭轶,彭永臻,吴昌永. A2/O工艺中的反硝化除磷[J].环境工程学报,2008,2(6):752-756.
    [180]Q. Wu,P. L. Bishop,T. C. Keener. Biological phosphate uptake and release: effect of pH and magnesium ions[J]. Water Environ Res,2006,78(2):196-201.
    [181]T. Tuncal,A. Pala,O. Uslu. Importance of particulate biodegradable organic compounds in performance of full-scale biological phosphorus removal system[J]. Water Environ Res,2009,81(9):886-895.
    [182]Y. Chen,A. A. Randall,T. McCue. The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid[J]. Water Res,2004,38(1):27-36.
    [183]S. Schroeder , J. Ahn , R. J. Seviour. Ecophysiology of polyphosphate-accumulating organisms and glycogen-accumulating organisms in a continuously aerated enhanced biological phosphorus removal process[J]. J Appl Microbiol,2008,105(5):1412-1420.
    [184]周岳溪.废水生物除磷机理及间歇式生物处理工艺的研究[D].清华大学,1991.
    [185]刘燕,陈银广,郑弘.乙酸丙酸比例对富集聚磷菌生物除磷系统影响研究[J].环境科学学报,2006,26(8):1278-1283.
    [186]U. G. Erdal,Z. K. Erdal,C. W. Randall. The mechanism of enhanced biological phosphorus removal washout and temperature relationships[J]. Water Environ Res,2006,78(7):710-715.
    [187]郝晓地,张向平,曹亚莉.对强化生物除磷机理与工艺认识误区的剖析[J].中国给水排水,2008,24(6):1-5.
    [188]M. Merzouki,N. Bernet,J. P. Delgenes. Effect of operating parameters on anoxic biological phosphorus removal in anaerobic anoxic sequencing batch reactor[J]. Environ Technol,2001,22(4):397-408.
    [189]J. Carrera,M. Sarra,F. J. Lafuente. Effect of different operational parameters in the enhanced biological phosphorus removal process. Experimental design and results[J]. Environ Technol,2001,22(12):1439-1446.
    [190]U. G. Erdal,Z. K. Erdal,G. T. Daigger. Is it PAO-GAO competition or metabolic shift in EBPR system? Evidence from an experimental study[J]. Water Sci Technol,2008,58(6):1329-1334.
    [191]C. O. Jeon,D. S. Lee,J. M. Park. Enhanced biological phosphorus removal in an anaerobic-aerobic sequencing batch reactor: characteristics of carbon metabolism[J]. Water Environ Res,2001,73(3):295-300.
    [192]B. M. Kumar,S. Chaudhari. Evaluation of sequencing batch reactor (SBR) and sequencing batch biofilm reactor (SBBR) for biological nutrient removal from simulated wastewater containing glucose as carbon source[J]. Water Sci Technol,2003,48(3):73-79.
    [193]T. Mino. Microbial selection of polyphosphate-accumulating bacteria in activated sludge wastewater treatment processes for enhanced biological phosphate removal[J]. Biochemistry (Mosc),2000,65(3):341-348.
    [194]O. Ichihashi,H. Satoh,T. Mino. Sludge-sludge interaction in the enhanced biological phosphorus removal process[J]. Water Sci Technol,2006,53(6):1-6.
    [195]W. Shen,X. Chen,MN Pons. Model predictive control for wastewater treatment process with feedforward compensation[J]. Chemical Engineering Journal,2009,155(1-2):161-174.
    [196]郭亚萍,陈士才,张宇坤. ASMs仿真软件在污水处理厂中的应用[J].中国给水排水,2010,26(14):23-29.
    [197]朱向东,何继文,李军.利用ASM2D模型模拟高碑店污水处理厂的工艺运行[J].中国给水排水,2010,26(3):39-41.
    [198]胡志荣,周军,甘一萍.基于BioWin的污水处理工艺数学模拟与工程应用[J].中国给水排水,2008,24(004):19-23.
    [199]姚重华,王国华,谭学军.基于仿真的新建污水处理厂工艺参数调试[J].环境科学学报,2009,29(10):2086-2093.
    [200]B. Boulkroune,M. Darouach,M. Zasadzinski. A nonlinear observer design for an activated sludge wastewater treatment process[J]. Journal of Process Control,2009,19(9):1558-1565.
    [201]E. M. Lovelady , A. A. El-Baz , D. El-Monayeri. Reverse Problem Formulation for Integrating Process Discharges with Watersheds and Drainage Systems[J]. Journal of Industrial Ecology,2009,13(6):914-927.
    [202]M. S. Bhatti , D. Kapoor , R. K. Kalia. RSM and ANN modeling for electrocoagulation of copper from simulated wastewater: Multi objective optimization using genetic algorithm approach[J]. Desalination,2011,274(1-3):74-84.
    [203]孙培德,吴革,郭茂新.“水蚯蚓-微生物共生系统”细观机理模型(T-FCASM)建立及校验[J].环境科学学报,2009,29(12).:2492-2503.
    [204]A. Oehmen,R. J. Zeng,Z. Yuan. Anaerobic metabolism of propionate by polyphosphate‐accumulating organisms in enhanced biological phosphorus removal systems[J]. Biotechnology and Bioengineering,2005,91(1):43-53.
    [205]C. Zhang , Y. Chen , A. A. Randall. Anaerobic metabolic models for phosphorus-and glycogen-accumulating organisms with mixed acetic and propionic acids as carbon sources[J]. Water research,2008,42(14):3745-3756.
    [206]郑金伟,冉炜,钟增涛.增强型生物除磷过程中聚磷酸盐积累微生物的研究进展[J].应用生态学报,2004,15(8):1487-1490.
    [207]AN Golomysova , M. Gomelsky , PS Ivanov. Mathematical modeling of bacterial metabolism. Moscow University Physics Bulletin,2010,65(3):230-233.
    [208]M. Oshiki,Y. Yang,M. Onuki. Occurrence of Polyhydroxyalkanoate as Temporal Carbon Storage Material in Activated Sludge during The Removal of Organic Pollutants[J]. Journal of Water and Environment Technology,2008,6(2):77-83.
    [209]R. J. Seviour , S. McIlroy. The microbiology of phosphorus removal in activated sludge processes-the current state of play[J]. The Journal of Microbiology,2008,46(2):115-124.
    [210]T. Zhang,D. Zhang,Z. Li. Evaluating the structural identifiability of the parameters of the EBPR sub-model in ASM2d by the differential algebramethod[J]. Water research,2010,44(9):2815-2822.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700