用户名: 密码: 验证码:
新型紫精化合物及多功能电致变色器件的探索与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电致变色器件是一类具有响应性变色功能的器件,在适当的电压驱动下可改变自身颜色。选择不同材料,可使器件调节紫外、可见光区域甚至是红外区域的光学性质,甚至可使器件具有多级变色的功能。这类器件可应用于建筑、交通工具上,改善工作和生活环境,调光节能,也可用于显示装置。作为有机小分子材料,紫精化合物具有良好的氧化还原性质和相对稳定的变色过程,拥有广泛的应用背景,是目前国内被广泛研究的电致变色材料之一
     本博士论文围绕如何提高紫精系电致变色器件综合性能的这一研究目标展开了系统论述,分别介绍了就固态和全液态两种不同形态的电致变色器件进行的探索性研究,依照新型紫精材料设计与合成,电极制备与匹配,器件结构与优化,性能寿命测试与评估这一路线,分别研制出了三种不同性质的电致变色器件。具体研究内容包括:
     快速响应电致变色器件:设计可吸附紫精材料,优化器件性质。利用富电子的三苯胺基团与膦酸基对紫精化合物的修饰作用,使紫精材料与疏松多孔的二氧化钛通过化学吸附作用固定于导电基板上制得固态电极。将其与普鲁士蓝电极配对制得器件,三苯胺基团带来的低电压变色效果以及膦酸基团提供的吸附作用赋予了该器件以快速的响应时间和较好的稳定性。
     高寿命电致变色器件:通过优化电极制备方法,确保电极的匹配性,以提高器件使用寿命。按照匹配性原则,对阴极变色材料紫精化合物和阳极变色材料三苯胺同时以膦酸基团修饰,采用化学吸附法分别制备成固态电极。相似的表面形貌、分子存在方式以及分子浓度使得该电极在颜色变化、变色电压以及电荷容量上有很高的匹配性。所组装的器件在可见光和红外区域有着卓越的变色性质,使用寿命也有了很大的提高。
     全液态电致变色器件:通过器件的结构的改变而改变其变色性质。寻找溶解性好的阳极变色小分子,与对称紫精化合物配对以溶液状态制备成器件,获得了一系列颜色丰富,制备工艺简单,且具有自擦写功能的全液态电致变色器件。通过综合性能对比,以二茂铁为配对电极材料组装的大面积器件具有良好的颜色变化和变色均匀性。
     本文通过对紫精化合物分子的设计与合成制备出一系列新型紫精化合物,针对不同结构选用不同的制备方法制作电极,组装出了变色速度最快小于1s,寿命高达15万次的固态或液态电致变色器件,实现了紫精基电致变色器件的多功能化。
Electrochromic device (ECD) is a kind of device with functions of responsive discoloration and coloration through oxidation-reduction reactions by an appropriate driving voltage. ECD could adjust optical properties of the ultraviolet, visible or infrared region, and some can even show multi-level color through different voltages, which can be realized by selecting different electrochromic materials. Such devices can be used in building windows, the transport dimming devices or displays, in order to improve the working and living environment, to save energy. The small organic viologens were extensively researched, because of their good redox properties and stable color change process.
     This dissertation focused on how to improve properties of electrohromic devices based on viologens, and explore solid and liquid eletrochromic devices. Here, we designed and systhesised novel viologens, prepared matching electrodes, optimized structures of devices and measured the cycle life to prepare three kinds of electrochomic devices. And the contents include:
     Fast color changing ECD:We used electron-rich triphenylamine and phosphonate groups to modify viologen, thus the viologen molecule could be fixed on conductive glass substrate to form film electrodes through chemisorption between phosphonate groups and titanium dioxide. The as-prepared film electrode was applied to assemble a device with Prussian blue film. The device show fast color changing speed and good stability as a result of the modification and triphenylamine and phosphonate groups.
     Stable ECD:We used phosphonic acid to modify both asymmetric viologen triphenylamine materials, and prepared electrodes through chemisorption method. The similar morphology, molecule form and molecular concentration make that the electrodes can match with each other on color change, color change voltage and charge capacity. Using the above two electrodes an ECD was assembled, which exhibit the switching effect in the visible and infrared region, and high stable life.
     Liquid ECD:We searched for anion electrochromic materials as pairs with symmetric viologens dissolved in the solvent to assemble liquid ECD. The results showed that soluble electrochromic devices had vivid color changes. By comprehensive performance comparison, ferrocene was chosen as the counter material to assemble large area electrochromic device which showed good color change and uniformity color.
     In this paper, we designed and synthesized series of novel viologens, and prepared different electrodes through different methods for different structures, and assembled the solid and liquid viologen-based electrochromic devices with color changing speed less than1s or cycle life reach up to15,0000, thus to achieve its developments in multi-functions.
引文
[1]Granqvist, C. G. Transparent Conductive Electrodes for Electreochromic Device. Applied Physics A-Materials Science & Processing 57,19-24, (1993).
    [2]Granqvist, C. G, Green, S., et al. Advances in chromogenic materials and devices. Thin Solid Films 518,3046-3053, (2010).
    [3]Sooyeun Kim, M. T., Xu, C. Electrochromic Windows based on Electrodeposited PProDOT-Me2 and V2O5-TiO2 Films with PMMA Gel Electrolytes. ECS Trans 13, 49-58, (2008).
    [4]Kim, S., Taya, M., et al. Contrast, Switching Speed, and Durability of V2O5-TiO2 Film-Based Electrochromic Windows. Journal of the Electrochemical Society 156, E40-E45, (2009).
    [5]Perltreves, R. and Galun, E. The Tomato Cu,Zn Superoxide-Dismutase Genes are Developmentally Regulated and Respond to Light and Stress. Plant Molecular Biology 17,745-760, (1991).
    [6]Dyer, A. L., Amb, C. M, et al. Navigating the Color Palette of Solution-Processable Electrochromic Polymers. Chemistry of Materials 23,397-415, (2011).
    [7]Xu, C. Y., Kong, X. X., et al. (2006). Smart glass based on elelctrochromic polymers. Smart Structures and Materials 2006:Electroactive Polymer Actuators and Devices. Y. BarCohen.6168:N1681-N1681.
    [8]Ma, C., Taya, M., et al. Smart Sunglasses Based on Electrochromic Polymers. Polymer Engineering and Science 48,2224-2228, (2008).
    [9]Deb, S. K. A Novel Electrophotographic System. Applied Optics 8,192-195, (1969).
    [10]Lampert, C. M. Towards Large-Area Photovoltaic Nanocells-Experiences Learned from Smart Window Technology. Solar Energy Materials and Solar Cells 32,307-321, (1994).
    [11]Granqvist, C. G. CHROMOGENIC MATERIALS FOR TRANSMITTANCE CONTROL OF LARGE-AREA WINDOWS. Critical Reviews in Solid State and Materials Sciences 16,291-308, (1990).
    [12]陈怡,徐征,孙金礼,邓恒涛,陈海涛,赵谡玲.大面积智能电致变色玻璃的产业化现状及未来.功能材料17,2441-2446.(2013).
    [13]Zhang, J., Tu, J. P., et al. Hydrothermally synthesized WO3 nanowire arrays with highly improved electrochromic performance. Journal of Materials Chemistry 21,5492-5498, (2011).
    [14]Deng, J., Gu, M., et al. Electrochromic properties of WO3 thin film onto gold nanoparticles modified indium tin oxide electrodes. Applied Surface Science 257, 5903-5907, (2011).
    [15]Wei, Y., Li, M., et al. Structural characterization and electrical and optical properties of V2O5 films prepared via ultrasonic spraying. Thin Solid Films 534,446-451, (2013).
    [16]Yang, S., Zheng, J., et al. A novel photoelectrochromic device based on poly(3,4-(2,2-dimethylpropylenedioxy)thiophene) thin film and dye-sensitized solar cell. Solar Energy Materials and Solar Cells 97,186-190, (2012).
    [17]Wang, Y. R., Zheng, J. M., et al. A flexible piezoelectric force sensor based on PVDF fabrics. Smart Materials & Structures 20, (2011).
    [18]Tu, X., Fu, X. K., et al. The synthesis and electrochemical properties of cathodic-anodic composite electrochromic materials. Dyes and Pigments 88,39-43, (2011).
    [19]Kannappan, R., Bucher, C., et al. Viologen-based redox-switchable anion-binding receptors. New Journal of Chemistry 34,1373-1386, (2010).
    [20]Niu, W., Bi, X. G., et al. TiO2 Gel Thin Film Doped Ce and Sm Preparation and Cyclic Voltammetry Characteristics. International Journal of Electrochemical Science 8, 11943-11950, (2013).
    [21]Camino, D., Deroo, D., et al. (CeO2)(x)-(TiO2)(1-x):Counter electrode materials for lithium electrochromic devices. Solar Energy Materials and Solar Cells 39,349-366, (1995).
    [22]Osman, J. R., Crayston, J. A., et al. Sol-gel processing of IrO2-TiO2 mixed metal oxides based on a hexachloroiridate precursor. Journal of Sol-Gel Science and Technology 44, 219-225, (2007).
    [23]Nam, Y. S., Park, H., et al. Virus-templated iridium oxide-gold hybrid nanowires for electrochromic application. Nanoscale 4,3405-3409, (2012).
    [24]Chiang, T. H. and Yeh, H. C. The Synthesis of alpha-Mo03 by Ethylene Glycol. Materials 6,4609-4625, (2013).
    [25]Ivanova, T., Gesheva, K. A., et al. Electrochromic and Optical Study of Atmospheric Pressure Chemical Vapour Deposition MoO3-Cr2O3 Films. Journal of Nanoscience and Nanotechnology 11,8017-8023, (2011).
    [26]Zhang, J. G., Benson, D. K., et al. Chromic mechanism in amorphous WO3 films. Journal of The Electrochemical Society 144,2022-2026, (1997).
    [27]Chen, A., Gao, N. W., et al. Some aspects affecting transmittance spectra of composite smart film WO3. Ieee Transactions on Components and Packaging Technologies 22, 17-20, (1999).
    [28]Crandall, R. S., Faughnan, B. W., et al. ELECTRIC-FIELD EXTRACTION OF AN ELECTRON-ION PLASMA IN AMORPHOUS WO3 FILMS. Bulletin of the American Physical Society 20,394-394, (1975).
    [29]Faughnan, B. W., Crandall, R. S., et al. ELECTROCHROMISM IN WO3 AMORPHOUS FILMS. Rca Review 36,177-197, (1975).
    [30]Patil, C. E., Jadhav, P. R., et al. Electrochromic properties of vanadium oxide thin films prepared by PSPT:Effect of substrate temperature. Proceeding of International Conference on Recent Trends in Applied Physics & Material Science (Ram 2013) 1536, 517-518, (2013).
    [31]Livage, J. Vanadium Pentoxide Gels. Chemistry of Materials 3,578-593, (1991).
    [32]Wei, Y. X., Li, M., et al. Electroactive and large area V2O5 film prepared via ultrasonic spraying. Third International Conference on Smart Materials and Nanotechnology in Engineering 8409, (2012).
    [33]Kim, S. Y., Taya, M., et al. Contrast, Switching Speed, and Durability of V2O5-TiO2 Film-Based Electrochromic Windows. Journal of the Electrochemical Society 156, E40-E45. (2009).
    [34]Xu, G. Q., Zhao, J. S., et al. Novel multicolored electrochromic polymers containing phenanthrene-9,10-quinone and thiophene derivatives moieties. Electrochimica Acta 112, 95-103, (2013).
    [35]Salamone, M. M., Silvestri, F., et al. Role played by chain length and polarity of n-substitutents in electrochromic polymers from the tri-heterocyclic monomer pyrrole-thiophene-pyrrole. Solar Energy Materials and Solar Cells 99,101-108, (2012).
    [36]Mert, O., Demir, A. S., et al. Pyrrole coupling chemistry:investigation of electroanalytic, spectroscopic and thermal properties of N-substituted poly(bis-pyrrole) films. Rsc Advances 3,2035-2042. (2013).
    [37]Lu, W., Fadeev, A. G., et al. Use of ionic liquids for pi-conjugated polymer electrochemical devices. Science 297,983-987, (2002).
    [38]Zhang, J., Tu, J. P., et al. Ultra-thin WO3 nanorod embedded polyaniline composite thin film:Synthesis and electrochromic characteristics. Solar Energy Materials and Solar Cells 114,31-37, (2013).
    [39]Yoshida, T., Okabayashi, K., et al. Polyaniline/WO3 Electrochromic Cell. Journal of the Electrochemical Society 135, C370-C370, (1988).
    [40]Xu Chunye, M. C., Taya Minoru. Vol.7874666 (ed U. S. Patent) (University of Washington through its Center for Commercialization (Seattle, WA),2011).
    [41]Wang, J., Xu, C. Y., et al. (2008). Bio-inspired tactile sensor with arrayed structures based on electroactive Polymers-art. no.69271B. Electroactive Polymer Actuators and Devices. Y. Bar-Cohen.6927:B9271-B9271.
    [42]Argun, A. A., Berard, ML, et al. Electrochromic polymers for patterned devices. Abstracts of Papers of the American Chemical Society 227, U453-U454, (2004).
    [43]Argun, A. A., Aubert, P. H., et al. Multicolored electrochromism polymers:Structures and devices. Chemistry of Materials 16,4401-4412, (2004).
    [44]Ma, C. and Xu, C. Y. (2009). Color Switchable Goggle Lens Based on Electrochromic Polymer Devices. Active Polymers. A. Lendlein, V. P. Shastri and K. Gall.1190: 155-161.
    [45]Zhou, Y, King, D. M., et al. Synthesis of Photoactive Magnetic Nanoparticles with Atomic Layer Deposition. Industrial & Engineering Chemistry Research 49,6964-6971, (2010).
    [46]Choi, K., Yoo, S. J., et al. High contrast ratio and rapid switching organic polymeric electrochromic thin films based on triarylamine derivatives from layer-by-layer assembly. Chemistry of Materials 18,5823-5825, (2006).
    [47]Park, J. W., Song, H. J., et al. Thermodynamics and kinetics of formation of orientationally isomeric [2]pseudorotaxanes between alpha-cyclodextrin and aliphatic chain-linked aromatic donor-viologen acceptor compounds. Journal of Physical Chemistry C 111,18605-18614, (2007).
    [48]Luo, M., Zhang, J., et al. A Novel Chiral Polyacetylene Containing Anthraquinone Imide and Its near-Infrared Properties. Acta Polymerica Sinica,443-449, (2013).
    [49]Badawy, W. A., Ismail, K. M., et al. Optimization of the electropolymerization of 1-amino-9,10-anthraquinone conducting films from aqueous media. Electrochimica Acta 51,6353-63601 (2006).
    [50]Kondo, K., Suwa, M., et al. Synthesis and Electrochemical Analysis of N-Substituted Pyrrole Compounds. Journal of Electroanalytical Chemistry 333,143-151, (1992).
    [51]Choi, J., Lee, B., et al. Synthesis and electroluminescent properties of pi-conjugated copolymer based on 10-hexylphenothiazine and aromatic 1,2,4-triazole. Synthetic Metals 159,1922-1927, (2009).
    [52]Ma, L. N., Niu, H. J., et al. Photoelectrochemical and electrochromic properties of polyimide/graphene oxide composites. Carbon 67,488-499, (2014).
    [53]Mortimer, R. J. and Reynolds, J. R. In situ colorimetric and composite coloration efficiency measurements for electrochromic Prussian blue. Journal of Materials Chemistry 15,2226-2233, (2005).
    [54]Gaupp, C. L., Welsh, D. M., et al. Composite coloration efficiency measurements of electrochromic polymers based on 3,4-alkylenedioxythiophenes. Chemistry of Materials 14,3964-3970, (2002).
    [55]Munro, B., Kramer, S., et al. All sol-gel electrochromic system for plate glass. Journal of Non-Crystalline Solids 218,185-188, (1997).
    [56]Sato, Y. Characterization of Thermally Oxidized Iridium Oxide-Films. Vacuum 41, 1198-1200, (1990).
    [57]Carpenter, M. K., Conell, R. S., et al. The Electrochromic Properties of Hydrous Nickel-Oxide. Solar Energy Materials 16,333-346, (1987).
    [58]Paul M. S. Monk, R. J. M., David R. Rosseinsky. Electrochromism:Fundamentals and Applications. VCH edn,3 (1995).
    [59]Mortimer, R. J. Organic electrochromic materials. Electrochimica Acta 44,2971-2981, (1999).
    [60]P.M.S.Monk (2007). The viologens. Electrochromism and Electrochromic devices. New York, Cambrige University Press:341-346.
    [61]Monk, P. M. S. Comment on:'Dimer formation of Viologen Derivatives and their electrochromic Properties'. Dyes and Pigments 39,125-128, (1998).
    [62]Sydam, R., Deepa, M., et al. A novel 1,1 '-bis[4-(5,6-dimethy1-1H-benzimidazole-l-yl)butyl]-4,4'-bipyridinium dibromide (viologen) for a high contrast electrochromic device. Organic Electronics 14,1027-1036, (2013).
    [63]Ayato, Y, Takatsu, A., et al. Evidences for adsorption of heptyl viologen cation radicals in thin deposition layers on ITO electrodes by slab optical waveguide spectroscopy. Ieice Transactions on Electronics E89c,1750-1754, (2006).
    [64]Reichman, B., Fan, F. R. F., et al. Semiconductor Electrodes.25. P-Gaas-Heptyl Viologen System-Photoelectrochemical Cells and Photo-Electrochromic Displays. Journal of the Electrochemical Society 127,333-338, (1980).
    [65]Rosseinsky, D. R. and Monk, P. M. S. Comproportionation in Propylene Carbonate of Substituted Bipyridyliums-Rates and Equilibria by Rotating-Ring-Disk Electrode and Associated Electrochemical Studies. Journal of the Chemical Society-Faraday Transactions 89,219-222, (1993).
    [66]Sakano, T., Ito, F., et al. Synthesis and electrochromic properties of a highly water-soluble hyperbranched polymer viologen. Thin Solid Films 519,1458-1463, (2010).
    [67]Wang, G, Fu, X. K., et al. Synthesis of a new star-shaped 4,4'-bipyridine derivative and its multicolor solid electrochromic devices. Organic Electronics 12,1216-1222, (2011).
    [68]Sydam, R. and Deepa, M. A new organo-inorganic hybrid of poly(cyclotriphosphazene-4,4'-bipyridinium)chloride with a large electrochromic contrast. Journal of Materials Chemistry C 1,7930-7940, (2013).
    [69]P.M.S.Monk (2007). Introduction to electrochromism. Electrochromism and Electrochromic devices. New York, Cambrige University Press:7-9.
    [70]Kim, H. J., Seo, J. K., et al. Formation of ultrafast-switching viologen-anchored TiO2 electrochromic device by introducing Sb-doped SnO2 nanoparticles. Solar Energy Materials and Solar Cells 93,2108-2112, (2009).
    [71]Zelazowska, E. and Rysiakiewicz-Pasek, E. Thin TiO2 films for an electrochromic system. Optical Materials 31,1802-1804, (2009).
    [72]Zaharescu, M., Wittmar, A., et al. TiO2-CeO2 Nanometric Powders Prepared by Sol-Gel Method. Zeitschrift Fur Anorganische Und Allgemeine Chemie 635,1917-+, (2009).
    [73]Lee, K. D. Optical and electrochromic properties of TiO2 films prepared by using RF-magnetron sputter deposition. Journal of the Korean Physical Society 52,1070-1076, (2008).
    [74]Ramsier, R. D., Henriksen, P. N., et al. Adsorption of Phosphorus-Acids on Alumina. Surface Science 203,72-88, (1988).
    [75]Gao, W., Dickinson, L., et al. Self-assembled monolayers of alkylphosphonic acids on metal oxides. Langmuir 12,6429-6435, (1996).
    [76]Bonhote, P., Gogniat, E., et al. Nanocrystalline electrochromic displays. Displays 20, 137-144, (1999).
    [77]Campus, F., Bonhote, P., et al. Electrochromic devices based on surface-modified nanocrystalline TiO2 thin-film electrodes. Solar Energy Materials and Solar Cells 56, 281-297, (1999).
    [78]Bongard, D., Moller, M., et al. Synthesis of nonsymmetrically N,N'-diaryi-substituted 4,4'-bipyridinium salts with redox-tunable and titanium dioxide (Ti02)-anchoring properties. Helvetica Chimica Acta 88,3200-3209, (2005).
    [79]Asaftei, S. and Walder, L. Modification of mesoporous TiO2 electrodes with cross-linkable B-12 derivatives. Langmuir 22,5544-5547, (2006).
    [1]Yen, H. J., Chen, C. J., et al. Flexible Multi-Colored Electrochromic and Volatile Polymer Memory Devices Derived from Starburst Triarylamine-Based Electroactive Polyimide. Advanced Functional Materials 23,5307-5316, (2013).
    [2]Choi, K., Yoo, S. J., et al. High contrast ratio and rapid switching organic polymeric electrochromic thin films based on triarylamine derivatives from layer-by-layer assembly. Chemistry of Materials 18,5823-5825, (2006).
    [3]Zhou, W. J., Wischert, R., et al. Highly Selective Liquid-Phase Oxidation of Cyclohexane to KA Oil over Ti-MWW Catalyst:Evidence of Formation of Oxyl Radicals. Acs Catalysis 4,53-62, (2014).
    [4]Ouyang, M., Fu, Z. Y., et al. Enhanced Film-Forming and Electrochromic Properties by Incorporating Bithiophene into Triphenylamine. Acta Physico-Chimica Sinica 29, 996-1002, (2013).
    [5]Cheng, S. H., Hsiao, S. H., et al. Novel electrochromic aromatic poly(amine-amide-imide)s with pendent triphenylamine structures. Polymer 46, 5939-5948, (2005).
    [6]Beaupre, S., Dumas, J., et al. Toward the development of new textile/plastic electrochromic cells using triphenylamine-based copolymers. Chemistry of Materials 18, 4011-4018, (2006).
    [7]Hocek, M., Havelkova, M., et al. Synthesis of 6-phenylpurine bases and nucleosides by Suzuki-Miyaura cross-coupling reactions of 6-chloropurines with substituted phenylboronic acids. Chemistry of Nucleic Acid Components 2,27-30, (1999).
    [8]Yen, H. J. and Liou, G. S. Enhanced near-infrared electrochromism in triphenylamine-based aramids bearing phenothiazine redox centers. Journal of Materials Chemistry 20,9886-9894, (2010).
    [9]Yen, H. J. and Liou, G. S. Novel blue and red electrochromic poly(azomethine ether)s based on electroactive triphenylamine moieties. Organic Electronics 11,299-310, (2010).
    [10]Wang, H. M. and Hsiao, S. H. Enhancement of Redox Stability and Electrochromic Performance of Aromatic Polyamides by Incorporation of (3,6-Dimethoxycarbazol-9-yl)triphenylamine Units. Journal of Polymer Science Part A-Polymer Chemistry 52,272-286, (2014).
    [11 Wang, H. M. and Hsiao, S. H. Ambipolar, multi-electrochromic polypyromellitimides and polynaphthalimides containing di(tert-butyl)-substituted bis(triarylamine) units. Journal of Materials Chemistry C 2,1553-1564, (2014).
    [12]Garciajareno, J. J., Navarro, J. J., et al. Impedance Analysis of Prussian-Blue Films Deposited on Ito Electrodes. Electrochimica Acta 40,1113-1119, (1995).
    [13]GarciaJareno, J. J., NavarroLaboulais, J., et al. Charge transport in Prussian Blue films deposited on ITO electrodes. Electrochimica Acta 41,835-841, (1996).
    [14]Goncalves, R. M. C., Kellawi, H., et al. Notes. Electron-transfer processes and electrodeposition involving the iron hexacyanoferrates studied voltammetrically. Journal of the Chemical Society, Dalton Transactions,991-994, (1983).
    [15]Mortimer, R. J. and Rosseinsky, D. R. Iron hexacyanoferrate films spectroelectrochemical distinction and electrodeposition sequence of'soluble' (K+-containing) and 'insoluble'(K+-free) Prussian Blue, and composition changes in polyelectrochromic switching. Journal of the Chemical Society, Dalton Transactions, 2059-2062, (1984).
    [16]P.M.S.Monk (2007). The viologens. Electrochromism and Electrochromic devices. New York, Cambrige University Press:341-346.
    [17]杨宗志.超微细二氧化钛——一种前景广阔的新型化工材料.现代化工1,38-39,(1994).
    [18]赵文宽,方.,张开诚,王怡中.高热稳定性锐钛矿型Ti02纳米粉的制备.无机材料学报13,608-612.(1998).
    [19]张卫弟.超微细二氧化钛制备方法进展.河南化工 7,13-14,(22).
    [20]刘孝恒,汪.,杨绪杰,陆路德.纳米二氧化钛的制备、表征及应用.江苏化工27,5-7.(1997).
    [21]Li, S. J., Lin, Y., et al. Preparation and application of TiO2 film with large pores in dye-sensitized solar cell. Chinese Journal of Inorganic Chemistry 23,1965-1969, (2007).
    [22]Zhang, L. D., Zhang, H. F., et al. Dielectric behaviour of Nano-TiO2 bulks. Physica Status Solidi A-Applied Research 157,483-491, (1996).
    [23]Kim, T. Y. and Moon, D. G. Low voltage red phosphorescent organic light-emitting devices with triphenylphosphine oxide and 4,4'-bis(2,2'-diphenylvinyl)-1,1'-biphenyl electron transport layers. Current Applied Physics 10,1108-1111, (2010).
    [24]Bazzan, G., Deneault, J. R., et al. Nanoparticle/Dye Interface Optimization in Dye-Sensitized Solar Cells. Advanced Functional Materials 21,3268-3274; (2011).
    [25]Cozzoli, P. D., Kornowski, A., et al. Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. Journal of the American Chemical Society 125,14539-14548, (2003).
    [26]Karyakin, A. A. Prussian Blue and its analogues:Electrochemistry and analytical applications. Electroanalysis 13,813-819, (2001).
    [1]Armstr ong, N. R., Li u, A. W. C., Fujihi ra, M. and Ku wana. T. Electrochemical and surface characterics of tin oxide and indium oxide electrodes. Analytical Chemistry 48, 741-750, (1976).
    [2]Vandenmeerakker, J. E. A. M., Baarslag, P. C., et al. On the Mechanism of Ito Etching in Halogen Acids-the Influence of Oxidizing-Agents. Journal of the Electrochemical Society 142,2321-2325, (1995).
    [3]Goldner, R. B., Foley, G., et al. Electrochromic Behavior in Ito and Related Oxides. Applied Optics 24,2283-2284, (1985).
    [4]Golden, S. J. and Steele, B. C. H. Thin-Film Tin-Doped Indium Oxide Counter-Electrode for Electrochromic Applications. Solid State Ionics 28,1733-1737, (1988).
    [5]P.M.S.Monk (2007). Device durability. Electrochromism and Electrochromic devices. New York, Cambrige University Press:341-346.
    [6]Aubert, P. H., Argun, A. A., et al. Microporous patterned electrodes for color-matched electrochromic polymer displays. Chemistry of Materials 16,2386-2393, (2004).
    [7]Lusis, A. Functional models of electrochromic devices:Cycling capacity and degradation. Vol.2968 (1997).
    [8]Ho, K. C. The influence of charge capacity ratio on the performance of a complementary electrochromic system. Solar Energy Materials and Solar Cells 56,271-280, (1999).
    [9]颜建平,张.周.咔唑类化合物研究新进展.有机化学6,783-796,(2010).
    [10]Goldie, D. M., Hepburn, A. R., et al. Characterization and Application of Carbazole Modified Polysiloxanes in Electrochemical Displays. Molecular Crystals and Liquid Crystals Science and Technology Section A-Molecular Crystals and Liquid Crystals 234, 627-634, (1993).
    [11]Hu, B., Lv, X. J., et al. Effects on the electrochemical and electrochromic properties of 3,6 linked polycarbazole derivative by the introduction of different acceptor groups and copolymerization. Organic Electronics 14,1521-1530, (2013).
    [12]Ponnapati, R., Felipe, M. J., et al. Conjugated Polymer Network Films of Poly(p-phenylene vinylene) with Hole-Transporting Carbazole Pendants:Dual Photoluminescence and Electrochromic Behavior. Acs Applied Materials & Interfaces 4, 1211-1218, (2012).
    [13]Wang, B., Zhao, J. S., et al. Electrosyntheses, characterizations and electrochromic properties of a copolymer based on 4,4'-di(N-carbazoyl)biphenyl and 2,2'-bithiophene. Solar Energy Materials and Solar Cells 95,1867-1874, (2011).
    [14]Reddinger, J. L., Sotzing, G. A., et al. Multicoloured electrochromic polymers derived from easily oxidized bis[2-(3,4-ethylenedioxy)thienyl]carbazoles. Chemical Communications,1777-1778, (1996).
    [15]Beaupre, S., Breton, A. C., et al. Multicolored Electrochromic Cells Based On Poly(2,7-Carbazole) Derivatives For Adaptive Camouflage. Chemistry of Materials 21, 1504-1513, (2009).
    [16]Wei, Z. H., Xu, J. K., et al. Low-potential electrochemical polymerization of carbazole and its alkyl derivatives. Journal of Electroanalytical Chemistry 589,112-119, (2006).
    [17]Zheng, S. J., Barlow, S., et al. A convenient method for the synthesis of electron-rich phosphonates. Tetrahedron Letters 44,7989-7992, (2003).
    [1]John S. Anderson, D. A. T., William L. Tonar. Vol.5679283 (ed U. S. Patent) (Gentex Corporation,1997).
    [2]Harlan J. Byker, H., Mich. Vol.5679283 (ed U. S. Patent) (Gentex Corporation, 1992).
    [3]Baumann, K. L., Byker, H. J., et al. Vol.5998617 (ed U. S. Patent) (Gentex Corporation,2000).
    [4]Cardona, C. and Kaifer, A. E. Dendritic-ferrocene derivatives. Abstracts of Papers of the American Chemical Society 213,423-ORGN, (1997).
    [5]Albinati, A., Herrmann, J., et al. Ferrocene-based chiral dinuclear thiolato-bridged complexes of Pd(II) and Pt(Ⅱ). Inorganica ChimicaActa 264,33-42, (1997).
    [6]刘举正,钱.孙.具有电子给-受体结构的二茂铁衍生物的分子二阶非线性极化率.化学学报 56,304,(1998).
    [7]Kong, X. X., Kulkarni, A. P., et al. Phenothiazine-based conjugated polymers:Synthesis, electrochemistry, and light-emitting properties. Macromolecules 36,8992-8999, (2003).
    [8]Simokaitiene, J., Sakalyte, A., et al. Electrochromic Properties of 1,3-Di(2-[10-{4-methoxyphenyl}phenothiazin-3-yl]vinyl)benzene. Materials Science-Medziagotyra 15,236-239, (2009).
    [9]Leventis, N. and Chen, M. G Electrochemically assisted sol-gel process for the synthesis of polysiloxane films incorporating phenothiazine dyes analogous to methylene blue. Structure and ion-transport properties of the films via spectroscopic and electrochemical characterization. Chemistry of Materials 9,2621-2631, (1997).
    [10]Fungo, F., Jenekhe, S. A., et al. Plastic electrochromic devices:Electrochemical characterization and device properties of a phenothiazine-phenylquinoline donor-acceptor polymer. Chemistry of Materials 15,1264-1272, (2003).
    [11]Tu, X., Fu, X. K., et al. The synthesis and electrochemical properties of anodic electrochromic materials phenothiazine derivatives and their electrochromic devices. Displays 31,150-154, (2010).
    [12]Tu, X., Fu, X. K., et al. The synthesis and electrochemical properties of cathodic-anodic composite electrochromic materials. Dyes and Pigments 88,39-43, (2011).
    [13]Ho, K. C., Fang, Y. W., et al. A study on the electro-optical properties of HV and TMPD with their application in electrochromic devices. Electrochromic Materials and Applications 2003,266-278, (2003).
    [14]Ho, K. C., Fang, Y. W., et al. The influences of operating voltage and cell gap on the performance of a solution-phase electrochromic device containing HV and TMPD. Solid State Ionics 165,279-287', (2003).
    [15]Nishikitani, Y., Kobayashi, M., et al. Electrochemical properties of non-conjugated electrochromic polymers derived from aromatic amine derivatives. Electrochimica Acta 46,2035-2040, (2001).
    [16]陈怡,徐征,孙金礼,邓恒涛,陈海涛,赵谡玲.大面积智能电致变色玻璃的产业化现状及未来.功能材料17,2441-2446,(2013).
    [17]Syrrakou, E., Papaefthimiou, S., et al. Environmental assessment of electrochromic glazing production. Solar Energy Materials and Solar Cells 85,205-240, (2005).
    [18]Papaefthimiou, S., Syrrakou, E., et al. An alternative approach for the energy and environmental rating of advanced glazing:An electrochromic window case study. Energy and Buildings 41,17-26, (2009).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700