用户名: 密码: 验证码:
水稻选择导入系产量和抗倒伏性状改良及QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究选用生产上大面积推广应用的籼型水稻恢复系明恢86和蜀恢527为轮回亲本,以桂99、R2004、lemont、云恢72四个品种为供体亲本,构建了8个BC2F4回交导入系群体,经过田间目测对产量性状和茎秆形态学性状进行鉴定、并结合测力计测定茎秆抗折力进行产量性状和抗倒伏性状的双重筛选,构建了8个高产、抗倒伏能力强的选择回交导入系BC2F4群体。于2008年和2009年在合肥进行产量性状和抗倒伏相关性状的表型鉴定,在2009年在中国农科院作物科学研究所重大工程楼进行基因型鉴定,进而对实粒数、总粒数、结实率、千粒重、理论产量等5个产量性状和茎秆粗、壁厚、基部第二节间抗折力、基部第三节间抗折力、倒伏指数等5个抗倒伏性状进行了表型和基因型分析。分析内容包括:产量和抗倒伏能力的选择效果分析、产量和抗倒伏性状的相关性分析、产量性状和抗倒伏性状的QTL定位和效应分析、产量性状与抗倒伏性状的遗传重叠分析。研究结果对于高产、抗倒伏水稻育种中有利基因/QTL的利用、后代材料的直接和间接利用、高产和抗倒伏性状的同步协同改良有重要参考价值。主要研究结果如下:
     1、高产、抗倒伏选择回交导入的选择效果
     以蜀恢527和明恢86为轮回亲本的8个回交导入系群体在BC2F4代进行产量和抗倒伏相关性状的鉴定选择,入选的190个选择回交导入系于2008年和2009年进行了表型鉴定。两年分别有150个、154个株系的单株产量高于轮回亲本,占入选株系数的78.9%和81.1%,在两年中均比对照增产的株系有143个,占75.3%。两年均稳定增产达到10%以上的株系有101株,占53.2%,比例较高,可见入选优良株系以基因型决定为主,选择效果良好。产量选择的效果在不同轮回亲本的组合间表现有一定差异,以蜀恢527为轮回亲本的四个组合产量选择效果相对较好。
     2008年和2009年中分别有128个、131个株系的倒伏指数低于轮回亲本,分别占67.4%和68.9%。两年中均比轮回亲本倒伏指数小的株系数有108个,占56.8%。两年倒伏指数均比轮回亲本降低5%以上的株系有63株,占33.2%。两年中株系倒伏指数表现趋势总体上一致,以基因型决定为主,选择效果良好。不同组合的选择效果略有差异,其中527-99、527-72入选株系倒伏指数低于轮回亲本的比率在两年中均较高,表现好且稳定。
     两年中比轮回亲本增产、倒伏指数降低的株系数有82个,占43.2%。从结果看把产量性状和抗倒伏性状同步进行选择改良是可行的,高产和抗倒伏能够得到协同改良。采用选择回交导入系对产量和抗倒伏能力结合起来同步进行改良方法可行、效果良好。
     从选择导入系的表现看,桂99作为供体亲本对改良轮回亲本的产量性状有很好效果,R2004作为供体对改良轮回亲本的抗倒伏能力的效果很好,在实践育种中可加强利用。
     从两年在产量性状和抗倒伏两方面稳定表现优良的株系产量因子看,要做到既高产又抗倒,需要一个理想的穗粒结构,一般总粒数在200粒左右,实粒数在160-180粒为宜。
     2、产量和抗倒伏相关性状的相关性
     高产育种重点要从提高分蘖力和结实率、确保一定的实粒数和保持较高的千粒重几个方面着手,不可以追求长穗和特大穗。保持足够穗数和较大穗的基础上主攻结实率是关键,特别是把高产、抗倒伏两方面作为育种目标时,应从有效穗、实粒数、结实率上下功夫,保持较高的粒重,不能追求大穗、长穗。
     提高水稻的抗倒伏能力,首先要从增加茎秆粗和壁厚、增加节数入手,改良水稻的秆型指数,进而提高抗倒伏能力。
     在选育中矮秆、高产、抗倒伏品种时,对品系抗倒伏能力的评价可以直观地把节数、茎秆粗和壁厚作为重要指标,结合测定茎秆抗折力或抗推力,对水稻的抗倒伏能力进行科学准确的评价。
     3、主效QTL及其利用
     定位到了多个P值小于0.01、贡献率在30%以上、加性效应较大、且在两年都稳定表达的主效QTL位点,这些位点可以作为产量性状和抗倒伏性状改良的重点。如控制实粒数的qGN10.1、qGN7.1、qGN1.2、qGN1.3、qGN11.4、qGN2.1,控制总粒数的qSN2.1、qSN1.3、qSN1.4、qSN1.5、qSN2.4,控制结实率的qSF10.1、qSF5.1、qSF1.1、qSF3.4、qSF4.1、qSF5.3、qSF6.2、qSF1.3、qSF1.4,控制千粒重的qGW2.1、qGW7.1、qGW12.1、qGW1.5、qGW1.6、qGW6.4、qGW7.5,控制理论产量的qGY3.1,控制茎秆粗的qSD2.2、qSD1.1、qSD1.6、qSD1.3、qSD1.4、qSD2.8、qSD1.9,控制壁厚的qCT2.2、qCT2.1、qCT7.3、qCT1.3、qCT1.4,控制基部第二节间抗折力的qCS7.1、qCS9.1、qCS1.3、qCS1.4、qCS1.5,控制基部第三节间抗折力的qCSⅢ7.1、qCSⅢ9.1、qCSⅢ12.4、qCSⅢ1.2、qCSⅢ1.3、qCSⅢ1.4、qCSⅢ2.1,控制倒伏指数的qLI1.2、qLI7.2。
     有的QTL中供体基因的导入可以使某个产量指标或抗倒伏指标得到大幅度改良,但导致另外主要产量因子的下降,所以有利基因/QTL的利用要考虑到主要性状之间的相关性。
     4、产量和抗倒伏相关性状的遗传重叠
     在群体内产量性状间、抗倒伏性状间、产量和抗倒伏性状间、相同背景不同供体间都有较多的遗传重叠,这些遗传重叠为产量性状和抗倒伏性状的同步改良创造了条件。如在527-72群体中检测到在第1染色体上的三个相邻的主效位点qGN1.2(qSN1.3、qCS1.3、qCSIII1.2)、qGN1.3(qSN1.4、qCS1.4、qCSIII1.3)、qGN1.4(qSN1.5、qCS1.5、qCSIII1.4),对实粒数、总粒数、基部第二和第三节间抗折力都表现为较大的负向加性效应,增效作用来自于供体云恢72,在这几个位点导入供体亲本基因能较好地提高实粒数、总粒数和第二、第三节间抗折力,可利用分子标记辅助选择在这些位点上表现为供体基因型的个体,对蜀恢527从高产、抗倒伏两大目标进行改良和后代选择具有重要意义。
     有的一因多效QTL对不同性状的同步改良不利,要因具体亲本材料和育种目标而灵活应用,并加强选择,使有利的效应得到充分发挥,在一定程度上避免负面作用。在相同遗传背景、不同供本材料中,相同位点的作用效果也会有差异。在育种中要对亲本充分的评价和了解,弄清有利的基因/QTL表达特点及其与环境的互作,进而有效的利用。
In this study, Shuhui527and Minghui86, which were two widely used eliteindica restorers in China, were used as the recurrent parents, Gui99, R2004, lemont andYunhui72as donors for developing eight BC2F2backcrossing introgression populations.These populations were imposed critical screening for yield and lodging resistance (LR)traits, through field estimation of yield traits and morphology traits of culms combiningwith the determination of culm bending force using dynamometer, from which eight BC2F4selected backcrossing introgression populations with high yield and lodging resistancewere developed. The progeny of the BC2F4backcrossing populations and their parentswere tested for yield and LR traits in2008and2009in Hefei. The identification ofgenotyping was conducted in the National Key Facility for Crop Gene Resources andGenetic Improvement/Institute of Crop Science in Chinese Academy of AgriculturalSciences (CAAS) in2009. Five yield traits (filled-grain number per panicle, spikelets perpanicle, spikelet fertility, thousand grain weight and theoretical yield) and five LR traits(stem diameter, wall thickness, flexural strength of the second internode, flexural strengthof the third internode and lodging index) were used for phenotypic and genotypic analysis.The analysis included the selection effect analysis of yield and LR, correlation analysis ofyield and LR traits, QTL mapping and effect analysis of yield traits and LR traits, thegenetic overlap analysis of yield and LR traits. The results in this study provide importantinformation for the application of favourable gene or QTLs in high yield and LR breeding,the direct and indirect use of progenies, and the simultaneous improvement of yield andLR traits. The main results are as follows:
     1. The effectiveness of the selection for yield and lodging resistance traits
     The eight BC2F4backcrossing populations in the genetic background of Shuhui527andMinghui86were imposed critical selections for yield and LR traits, from which a total of190introgression lines (ILs) were selected. Progeny testing allowed the identification of150(78.9%) and154(81.1%) lines which showed better yield performances than therecurrent parents. Of which,140lines had higher yield than the recurrent parents in two years, accounted for75.3%of the ILs. Furthermore,101lines with10%stably increasedyield in two years accounted for a lager portion (53.2%), the selected superior lines weremainly determined by genotypes, thus demonstrated the effectiveness of the selection.There was a certain difference in the effectiveness of the yield selection between thepopulations of different recurrent parents, the four populations with Shuhui527as therecurrent parent had better performances.
     In2008and2009, there were128and131lines which had lower lodging index thanthe recurrent parent, account for67.4%and68.9%respectively. Of which,108lines hadlower lodging index than the recurrent parents in two years, accounted for56.8%of the ILs.Furthermore,63lines with5%decreased lodging index in two years accounted for33.2%.In general, the ILs showed the consistent trend of the lodging index, they were mainlydetermined by genotypes, thus demonstrated the effectiveness of the selection. There weredifferences in the effectiveness of the selection among different populations. There was ahigh percentage of ILs in527-99and527-72populations which had lower lodging index intwo years with good and stable performances.
     Compared with the recurrent parents,82ILs had higher yield and low lodging index,accounted for43.2%. These findings indicated that it is feasible to make improvement ofyield and LR traits simultaneously, thus achieve high yield and LR together. Therefore, ourresults revealed an efficient breeding strategy using selected backcross introgression linesfor improving yield and LR in rice.
     The donor parent Gui99play an important role in the improvement for yield traits ofthe recurrent parents while the donor parent R2004contributed more in the improvementof LR traits, they could be used as materials in the practice breeding.
     Take the yield components of superior lines with stable performances in both yield andLR into consideration, if high yield and LR is to achieve, an ideal grain structure is needed,the general spikelets per panicle is about200, filled-grain number with160-180grains isadvisable.
     2. Correlation between yield and lodging resistance related traits
     The key points in high yield breeding could be conducted to improve the tilleringability and spikelet fertility, to ensure certain filled-grain number per panicle, maintaininghigh thousand grain weight, rather than pursuit the long and huge panicle. On the basis ofenough panicle number and large panicle, the high or low spikelet fertility is the mostimportant point. Panicle number, filled-grain number per panicle, and spikelet fertility should be considered, especially when the high yield and lodging resistance were set as thebreeding goal.
     In order to improve the lodging resistance of rice, stem diameter, wall thickness andthe number of internodes should be increased, the culm type should be improved, thusimprove the lodging resistance.
     During the breeding process of developing dwarf, high yield and lodging resistancevarieties, the number of internodes, stem diameter and wall thickness can be used as animportant index. Furthermore, the determination of stem bending force or thrust is alsoconsidered to evaluate the lodging resistance of rice.
     3. The main effect QTL and its application
     The results of QTL mapping showed that many QTLs were identified at the significantlevel P<0.01. These identified QTLs were explained over30%of the phenotypic variationswith large additive effect and expressed stably in two years. It is indicated that these lociare important for the improvement of yield and lodging resistance traits, such as qGN10.1,qGN7.1, qGN1.2, qGN1.3, qGN11.4and qGN2.1controlling the filled-grain number,qSN2.1, qSN1.3, qSN1.4, qSN1.5and qSN2.4controlling spikelets per panicle, qSF10.1,qSF5.1, qSF1.1, qSF3.4, qSF4.1, qSF5.3, qSF6.2, qSF1.3and qSF1.4controlling spikeletfertility, qGW2.1, qGW7.1, qGW12.1, qGW1.5, qGW1.6, qGW6.4and qGW7.5controllingthousand grain weight, qGY3.1controlling grain yield, qSD2.2, qSD1.1, qSD1.6, qSD1.3,qSD1.4, qSD2.8and qSD1.9controlling stem diameter, qCT2.2, qCT2.1, qCT7.3, qCT1.3and qCT1.4controlling wall thickness, qCS7.1, qCS9.1, qCS1.3, qCS1.4and qCS1.5controlling flexural strength of the second internode, qCS Ⅲ7.1,qCS Ⅲ9.1,qCS Ⅲ12.4,qCS Ⅲ1.2, qCS Ⅲ1.3, qCS Ⅲ1.4and qCS Ⅲ2.1controlling flexural strength of thethird internode, qLI1.2and qLI7.2controlling lodging index. The introgressions of thedonor at some loci have greatly improved some index of yield and lodging resistance, butled to a decline in other major yield components. Therefore, the correlations among themain traits should be taken into account when some favorable genes/QTLs would beintrogressed.
     4. The genetic overlap of yield and lodging resistance traits
     There were genetic overlaps among yield traits within the same population, betweenyield and LR traits, among the donors in the same genetic background. These geneticoverlaps provided useful information for the simultaneous improvement of yield and lodging resistance traits. For example, three adjacent main effect QTL, qGN1.2(qSN1.3qCS1.3qCSIII1.2), qGN1.3(qSN1.4qCS1.4qCSIII1.3) and qGN1.4(qSN1.5qCS1.5qCSIII1.4) which were detected on the chromosome1in the527-72population, hadnegative additive effect on filled-grain number, spikelets per panicle, flexural strength ofthe second internode and flexural strength of the third internode. The favorable alleles werefrom Yunhui72, which contributed to the increased filled-grain number, spikelets perpanicle, flexural strength of the second internode and flexural strength of the thirdinternode. These QTLs could be applied in the marker-assisted selection (MAS), thus playan important role in the improvement of high yield and LR and progeny selection.
     To a certain extent, several pleiotropic QTLs were unfavorable for the improvementof different traits simultaneously, so the strategy should be flexible according to differentmaterials and breeding goals and critical selection is needed, thus make good advantage ofthe effects of these QTLs and avoid negative effects. In addition, the expression of thesame QTL is different in different donors under the same genetic background. During thebreeding process, adequate evaluation of the parent is needed. Then, we should get tounderstand the characteristics of the expressions of those favorable genes/QTLs and theirinteractions with the environment in order to make good advantage of them.
引文
1. Zhao Z. The middle Yangtze region in China is one place where rice was domesticated:phytotypic evidence from The Diaotonghuan Cave, northern Jiangxi. Antiquity1998(72):885–897
    2. Fuller DQ, Qin L, Zheng YF, etc. The Domestication Process and Domestication Rate inRice: Spikelet Bases from the Lower Yangtze.Science,2009(323):1607-1610
    3. Hossain.M.,Gascon,F.&Marciano.E. Income distribution and poverty in ruralPhilippines:Insights from repcat village study. Economic and Political Weekly,2000(19):52-53
    4.袁隆平.杂交水稻超高产育种.杂交水稻,2000,(15):31-33.
    5.万常照,陆家安,范洪良,等.水稻超高产育种研究进展.上海农业学报,2000,16(4):38-42.
    6. Charles,C.Man. Crop scieniists seek a new revolution.Science,1999,283:310-314.
    7.吴文革,张洪程,吴桂成,等.超级稻群体籽粒库容特征的初步研究.中国农业科学.2007,40(2):250-257
    8.张忠旭,陈温福,杨振玉,等.水稻抗倒伏能力与茎秆物理性状的关系及其对产量的影响.沈阳农业大学学报,1999,30(2):81-85.
    9.马均,马文波,田彦华,等.重穗型水稻植株抗倒伏能力的研究.作物学报,2004,30(2):143-148.
    10.李文熙.水稻倒伏的原因及危害的对策.韩国作物学会,1991,36(5):383-393.
    11. Wang Danying, Xu Chunmei, Yuan Jiang et al. Changes in Agronomic Traits of IndicaHybrid Rice During Genetic Improvement.2010,24(2):157-161
    12.姜恭好、徐才国、李香花,等.利用双单倍体群体剖析水稻产量及其相关性状的遗传基础.遗传学报,2004,31(1):63-72
    13.津野幸人著,蒋彭炎译.稻的科学.1980.杭州:浙江科学技术出版社.
    14. Sidwell RJ, Smith EL, McNew RM. Inheritance and interrelationships of grain yieldand selected yield related traits in a lard red winter wheat cross. Crop Sci,1976(16):650-654.
    15.郑景生,江良荣,曾建敏,等.应用明恢86和佳辐占的F2群体定位水稻部分重要农艺性状和产量构成的QTL.分子植物育种,2003(1):633-639
    16.郭龙彪,罗利军,钟代斌,等.籼粳交重组自交系群体主要农艺性状分析.中国水稻科学.2001,15:221-224
    17.季彪俊.影响水稻产量因子的研究.西南农业大学学报(自然科学版).2005(27):579-583
    18.郭龙彪,罗利军,邢永忠,等.汕优63重组自交系群体重要农艺性状遗传分析和利用.作物学报,2002(28):644-649.
    19.李强,王敬国,安光日,等.水稻产量与株型性状的相关及通径分析.中国农业科技导报.2008(10):48-55
    20.许凌,张亚东,朱镇,等.不同年份水稻产量性状的QTL分析.中国水稻科学.2008(22):370-376
    21.徐云碧,朱立煌.分子数量遗传学.1994,北京:中国农业出版社.
    22.石英尧,陈多璞,张文明,等.杂交早稻产量性状和品质性状的相关性研究.种子,2002,125(5):28-30
    23. Guo LB,Xing YZ,Mei HW,etc. Dissection of component QTL expression in yieldformation in rice.Plant Breeding,2005(124):127-132
    24.陈友订,万邦惠,张旭.华南双季超级稻产量构成模式探讨.作物学报.2005(21):323-329
    25.王利锋,郝宪彬,何云霞,等.利用选择回交导入群体进行粳稻优良恢复系抗旱性改良与QTL定位.安徽农业大学学报,2007,34(3):311-319
    26.张海峰.优质早籼稻产量性状分析及育种策略探讨.分子植物育种,2005(3):853-856
    27.高良艳,周鸿飞.水稻产量构成因素与产量的分析.辽宁农业科学.2007(58):26-28
    28.吴文革,张洪程,吴桂成,等.超级稻群体籽粒库容特征的初步研究.中国农业科学.40:250-257
    29.姚立生,高恒广,杨立彬,等.江苏省五十年代以来中籼稻品种产量及有关性状的演变.江苏农业学报,1990(6):38-44.
    30.黄育民,陈启锋,李义珍.我国水稻品种改良过程库源特征的变化.福建农业大学学报,1998(27):271-278.
    31. Li C L, Wang Y Q, Liu L C, etal. A Rice Plastidial Nucleotide Sugar Epimerase IsInvlved in Galactolipid Ciosynthesis and Improves Photosynthetic Efficiency. PLoSGenetics,2011,7(7):192-196
    32.石英尧,钱益亮,吴险峰,等.安徽中籼稻主要产量因子结构研究.中国农学通报,2007,23(12):190-193
    33. Jiao Y, Wang Y,,Xui D, et al. Regulation lf OsSPL14by OsmiR156defines ideal plantarchitecture in rice. Nat Genet,2010,42(6):541-544
    34. Li Y, Fan C, XingY, et al. Natural variation in GS5plays an important role inregulating grain size and yield in ricce Nat Genet,2011,43(12):1266-1279
    35. Ashikari M, Sakakibara H, Lin S, et al. Cytokinin oxidase regulates rice grainproduction. Science,2005,309(5735):741-745
    36. Fan C, Xing Y, Mao H, et al. GS3,a major QTL for graing length and weight and minorQTL for grain width and thickness in rice, encodes a putative transmembrane protein.Theor Appl Genet,2006,112(6):1164-1171
    37. Huang X, Qian Q, Liu Z, et al. Natural variation at th DEP1locus enhances grainyield in rice Nat Gent,2009,41(4):494-497
    38. Song X J, Huang W, Shi M, et al. A QTL for rice grain width and weight encodes apreviously unknown RING-type E3ubiquitin ligase. Nat Genet,2007,39(5):623-630
    39. Jin J, Huan W, Gao JP, et al. Genet control of rice plant architecture underdomestication. Nat Genet,2008,40(11):1365-1369
    40. Xie W. Xomg Y, Weng X, et al. Natural variation kn Ghd7is an important regulator ofheading date and yield potential in rice. Nat Genet,2008,40(6)761-777
    41.黎志康.我国水稻分子育种计划的策略.分子植物育种,2005(3):603-608
    42.康乐,李宏,孙勇,等.应用导入系群体进行水稻产量相关性状的遗传剖析.作物学报,2008,(34):1500-1509
    43.陈温福,徐正进,张正步,等.水稻超高产育种研究进展与前景.中国工程科学,2002,4(1):31-34
    44. Kazuo Terashima, Shigemi Akita, and Nagao Sakai. Eco-physiological characteristicsrelated with lodging tolerance of rice in direct sowing cultivation. I. Comparison of theroot lodging tolerance among cultivars by the measurement of pushing resistance. CropSci.,1992,61(3):380-387
    45. Kazuo Terashima, Takefumi Ogata, and Shigemi Akita. Eco-physiologicalcharacteristic related with lodging tolerance of rice indirect sowing cultivation II. Rootgrowth characteristic of tolerant cultivars to root lodging.Crop Sci.,1994,63(1):34-41
    46. Kazuo Terashima, Shigemi Akita, and Nagao Sakai. Eco-physiological characteristicsrelated with lodging tolerance of rice in direct sowing cultivation. III. Relationshipbetween the characteristic of root distribution in the soil and lodging tolerance.CropSci.,1995,64(2):243-250
    47.田保明,杨光圣.农作物倒伏及其评价方法.中国农学通报,2005(7):111-114
    48.艾治勇,马国辉.水稻倒伏研究现状.作物研究,2004(5):334-338
    49.袁志华,赵安庆.水稻茎秆抗倒伏的力学分析.生物数学学报,2003,18(2):234-237
    50.徐正进,张树林.水稻穗型与抗倒伏性关系的初步分析.作物学报,2004,10(5):561-563
    51.李荣田,姜延波,秋太权,等.水稻倒伏对产量影响及倒伏和株高关系的研究.黑龙江农业科学,1996(1):13-17
    52.杨惠杰,杨仁崔,李义珍,等.水稻茎秆性状与抗倒伏能力的关系.福建农业学报,2000,15(2):1-7
    53. Terashima K. Eco-physiological study of root lodging tolerance indirect-seedes ricecultivars. JARQ,1997,31(3):155-162
    54.松江勇次.移栽和倒伏时期对稻米食味理化特性的影响.日本作物学会纪事,1991,60(4):490-496
    55.李文熙.水稻倒伏的原因及危害的对策.韩国作物学会,1991,36(5):383-393
    56.季永华,冯福生.(强)热带风暴影响下林网内外水稻倒伏的初步分析.江苏林业科技,1995,22(2):19-22.
    57.杨长明,杨林章,颜廷梅,等.不同养分和水分管理模式对水稻抗倒伏能力的影响.应用生态学报,2004,15(4):646-650.
    58.董明辉,张洪程,戴其根.不同粳稻品种倒伏指数及其相关农艺性状的分析.吉林农业大学学报,200325(2):120-123
    59.堀内久满,古贺义昭.水稻抗倒伏性与育种.农业技术,1989,44(9):41-45.
    60.张忠旭,陈温福,杨振玉,等.水稻抗倒伏能力与茎秆物理性状的关系及其对产量的影响.沈阳农业大学学报,1999.30(2):81-85.
    61.关玉萍,沈枫.水稻抗倒伏能力与茎秆物理性状的关系及对产量的影响,吉林农业科学,2004,29(4):6-11.
    62.田保明,杨光圣.农作物倒伏及其评价方法.中国农学通报,2005,(12):235-239.
    63.唐拴虎,陈建生,徐培智,等.一次性全层施肥增强水稻抗倒伏性效应研究初报.广东农业科学,2004,1:32-34.
    64. Duan Chuanren, Wang Bochu,Wang Pingqing,et al. Reationship between the minutestructure and the lodging resistace of rice. Colloids and Surfaces B:Biointerfaces,2004(35):155-158.
    65.管延安,李健和,任莲菊,等.禾谷类作物倒伏性的研究.山东农业大学学报,1998,(5):51-54.
    66.堀内久满,古贺义昭.水稻抗倒伏性与育种[J].农业技术,1989,44(9):41-45.
    67.华泽田,郝宪彬,沈枫,等.东北地区超级杂交粳稻倒伏性状的研究.沈阳农业大学学报,2003,34(3):161-164.
    68.杨守仁,张龙步,陈温福,等.水稻超高产育种的理论与方法.中国水稻科学,1996,10(2):115-120.
    69. IRRI.The Rice Reporter[C].September,1991.
    70.杨守仁.水稻理想株型育种的理论和方法初论.中国农业科学,1984,17(3):6-12.
    71.霍中洋,董明辉,张洪程,等.不同粳稻品种倒伏指数及其相关农艺性状分析.西南农业大学学报,2003,25(3):234-237.
    72.莫永生,何龙飞,黄天进,等.高大韧稻育种论.中国农学通报,2004,20(5):82-86
    73.张忠旭,陈温福,杨振玉,等.水稻抗倒伏能力与茎秆物理性状的关系及其对产量的影响.沈阳农业大学学报,1999.30(2):81-85.
    74.陈温福,徐正进,张文忠等.水稻新株型创造与超高产育种.作物学报,200l,27(5):665-672.
    75.徐正进,陈温福,张文忠等.水稻的产量潜力与株型演变.沈阳农业大学学报,2000,3l(6):534-536.
    76.孙旭初.水稻茎秆抗倒伏能力的研究.中国农业科学,1987,20(4):32-37.
    77.邹德堂,秋太权,赵宏伟,等.水稻倒伏指数与其它性状的相关和通径分析.东北农业大学学报,1997,28(2):61-64.
    78.万宜珍,马国辉.超级杂交稻抗倒生理与形态机能研究II.培矮64S/E32与汕优63茎秆抗倒力学差异.湖南农业大学学报,2003,29(2):92-94.
    79.杨惠杰.超级稻品种的遗传生理研究.福州:福建农业大学,1999
    80.段传人,王伯初,王凭青.水稻茎秆的结构及其性能的相关性.重庆大学报,2003,26(11):38-40.
    81.八木忠之.水稻茎秆强度与有关性状的品种差异.育种学杂志1983,33(4):4
    82.星川清亲.倒伏水稻茎秆的观察.水稻倒伏的研究:第1报日作,1990(4):509-814(徐正进译)
    83.申广勒,石英尧,黄艳玲,等.水稻抗倒伏特性及其与茎秆性状的相关性研究.中国农学通报,2007,23(12):58-62
    84.申广勒.水稻抗倒伏性状分析及其品种间差异研究.硕士论文,2008年
    85.黄艳玲,石英尧,申广勒,等.水稻茎秆性状与抗倒伏及产量因子的关系.中国农学通报,2008,24(4):203-206
    86.高福平,赵磊,昊硕林.节间长度与中粳西光的抗倒性探讨.安徽农学通报,2001,7(6):39-42
    87.唐甫林,侯秀芬,胡石海,等.对水稻抗倒能力初步探讨.上海农业科技.2000(6):9-10.
    88.李得孝,康宏,员海燕.作物抗倒伏性研究方法.陕西农业科学,2001(7):20-22
    89. Kim J K et al. Characteristics of the rice plant associated with lodging highly adapted inbroadcast-seeded cultivation. RDA J of Agri. Sci., rice,1995,37(2):20-28.
    90.徐正进,彭应财.水稻穗颈维管束性状的类型间差异及其遗传的研究.作物学报,1996,
    91.都华.水稻茎秆抗倒伏能力构成因素及其品种间差异的研究.[硕士学位论文].沈阳:沈阳农业大学,2002.
    92. G. Skubisz.The effect of sowing density on the lodging and mechanical properties ofrape stalks.Int. Agrophys.1996(10):303-307.
    93.马国辉,邓启云,万宜珍,等.超级杂交稻抗倒生理与形态机能研究I.培矮64S/E32与汕优63植株钾、硅和纤维素含量差异.湖南农业大学学报,2000,26(5):329-331.
    94.凌启鸿,张洪程,苏祖芳,等.稻作新理论.北京:科学出版社,1992,267-286.
    95.王秀凤,苗雨佳,陈富忠,等.水稻茎秆抗倒性构成因素研究进展.现代农业科技,2006,4:65-66.
    96.徐正进,彭应财.水稻穗颈维管束性状的类型间差异及其遗传的研究.作物学报,1996,22(2):167-172
    97.刘立军,袁莉民,王志琴,等.旱种水稻倒伏生理原因分析与对策的初步研究.中国水稻科学,2002,16(3):225-230
    98.王善本.水稻倒伏的研究第2节折弯位置茎的形态特征.日本作物学会纪事,1991,60(4):566-573(徐正进译).
    99.万宜珍,马国辉.超级杂交稻抗倒生理与形态机能研究-Ⅱ.培矮64S/E32与汕优63茎秆抗倒力学差异.湖南农业大学学报自然科学版,2003,29(2):92-94.
    100. Sao Sakata,Makoto Sakai,Tokio Imbe.The correlation of the resistance to rootlodging with growth angle, diameter and pulling strength of grown roots in riceseedlings.Jpn J Crop Sci,2003,72(1):56-61.
    101. Kiyochika H, Shan-Ben Wang. Studies on lodging in rice plants. I.A generalobservation on lodged rice culms.JNP. J Crop Sci,1990,59:809-814.
    102.徐正进,陈温福,张龙步,等.水稻直立穗性状评价与利用研究进展.沈阳农业大学学报,1995,26(4):335-341.
    103.徐正进,张树林,周淑清,等.水稻穗型与抗倒伏性关系的初步分析.植物生理学通讯,2004,40(5):561-563.
    104.都兴林,疗秀琴,刘忱,等.水稻直立穗型与抗倒伏性关系的理论分析与模拟测定.吉林农业科学,2004,29(2):3-4.
    105.周丽华,昊厚雄,刘辉,等.杂交水稻茎秆形态学优势性状与抗倒伏能力研究.种子,2006,25(6):10-13
    106.林俊泽.与倒伏性状有关的性状分析.韩国作物学会志,1992,37(1):78-85(孙宗修译)
    107王善本.水稻倒伏的研究第2节折弯位置茎的形态特征.日本作物学会纪事,1991,60(4):566-573(徐正进译).
    108. M.Ichii, K.Hada.水稻再生能力与抗倒性的关系.育种学杂志,1983,33M:251-258
    109. Hitaka N. Experimental studies on the mechanisms of lodging and is efect on yield inrice plants. Bull. Nat. Inst. Agri. Sci.,1986, A15:1-175.
    110. Wang D L, Zhu J, Li Z K. Paterson A H. Mapping QTLs with epistatic efects andQTL×environment interaction by mixed linear model approaches. Theor Appl Genet,1999,99:1255-1264
    111.郭玉华,朱四光,张龙步.不同栽培条件对水稻茎秆生化成分的影响.沈阳农业大学学报,2003,34(2):89-91.
    112.吴耀民,卓亚男.水稻倒伏及栽培技术对策.垦殖与稻作,1999,3:12-14
    113. Ookawa T, Ishibara K. Varietal diference of physical characteristic of the culm relatedto lodging resistance in paddy rice. Japan. Journal Crop Sci.,1992,61(3):419-425.
    114. Albrecht, K A, Zuber M S, Grogan C O,et al. Selection reversal in strains of cornpreviously long-term selected for chemical composition. Crop Sci,1986,26(5):1051-1055
    115. Romagosal, FoxPN.Genotype×environment interaction and adaptation[A].HaywardMD,Bose mark No Romagosal,planbreeding principles and prospects.Chapaman andHall,1993,373-390
    116.周青,潘国庆,施作家,等.不同时期施用硅肥对水稻群体质量及产最的影响,耕作与栽培,2001,3:25-27.
    117.杨长明,杨林章,颜廷梅,等.不同养分和水分管理模式对水稻抗倒伏能力的影响.应用生志学报,2004,15(4):646-650
    118. Kazuo Terashima, Shigemi Akita, and Nagao Sakai. Eco-physiological characteristicsrelated with lodging tolerance of rice in direct sowing cultivation. I. Comparison of theroot lodging tolerance among cultivars by the measurement of pushing resistance. CropSci.,1992,61(3):380-387.
    119. Kazuo Terashima, Takefumi Ogata, and Shigemi Akita. Eco-physiologicalcharacteristic related with lodging tolerance of rice indirect sowing cultivation II. Rootgrowth characteristic of tolerant cultivars to root lodging.Crop Sci.,1994,63(1):34-41.
    120. Kazuo Terashima, Shigemi Akita, and Nagao Sakai. Eco-physiological characteristicsrelated with lodging tolerance of rice in direct sowing cultivation. III. Relationshipbetween the characteristic of root distribution in the soil and lodging tolerance.CropSci.,1995,64(2):243-250.
    121.石扬娟.施肥方式和栽插密度对水稻抗倒伏性状影响研究.硕士论文,2008年
    122.史春余,金留福.助壮素对与水稻倒伏有关性状的影响(简报).植物生理学通讯,1996,32(1):21-23.
    123.戴元才,刘襄.水稻化调后期防倒早衰促早熟试验研究.安徽农业科学,1996,24(1):25-26.
    124.陈嫩华.直播水稻喷施烯效唑防倒效果简报.耕作与栽培,1997,1:80-81
    125.汤日圣,吴鹤鸣,张金渝,等.多效哇防止水稻倒伏的原因剖析.植物生理学通讯,1989,1:23-26.
    126.唐拴虎,谢春生,孙小文,等.水稻施用控释肥料生长效应研究.中国农学通报,2004,20(1):149-151.
    127.唐拴虎,陈建生,徐培智,等.控释肥料氮素释放与水稻吸收动态研究.土壤通报,2004,35(2):186-190.
    128.唐拴虎,徐培智,张发宝,等.一次性全层施用控释肥对水稻根系形态发育及抗倒伏能力的影响.植物营养与肥料学报,2006,12(1):63-69.
    129.王旭伟,张尧锋,孙健,等.硅肥对水稻的应用效果初探.浙江农业学,2002,(2):76-77.
    130.田保明,杨光圣,曹刚强,等.农作物倒伏及其影响因素分析.中国农学通报,2006,(4):163-167.
    131.徐正进,张树林,周淑清,等.水稻穗型与抗倒伏性关系的初步分析.植物生理学通讯,2004,40(5):561-563.
    132.都兴林,疗秀琴,刘忱,等.水稻直立穗型与抗倒伏性关系的理论分析与模拟测定.吉林农业科学,2004,29(2):3-4.
    133.黄绍明,黄海珍.水稻连年免耕直播高产栽培.广西农业科学,2002,1:31-32.
    134.邹应斌,李克勤,任泽民.水稻直播和免耕直播栽培研究进展.作物研究,2003,17(1):52-59
    135.顾掌根,王岳钧.水稻直播高产机理研究初报.江西农业科学,2001,2:51-54
    136.邹德堂,崔成焕.水稻倒伏指数的配合力分析.东北农业大学学报,1997,28(4):328-333
    137.孙旭初.水稻茎秆抗倒性的研究.中国农业科学,1987,20(4):32-37.
    138.梁康通,杨仁崔,杨蜀岚,等.水稻茎秆性状的遗传效应分析田.全国作物育种学术讨论会讨论集,北京,中国农业科技出版社.1998:80-86.
    139. Huang N,Courtois B,KhushG S, et al.Association of quantitative trait loci for plantheight with major dwarfing genes in rice.Heredity,1996,(77):130-137
    140.张秋英,欧阳由男,戴伟民,等.水稻基部伸长节间性状与倒伏相关性分析及QTL定位.作物学报,2005,31(6):712-717
    141. Fujimoto H, Qian,Q,Wu W,et al. QTL analysis of lodging resistance relatedproperties in paddy rice,Japanese Journal of Crop Science,2004,73(1),206-207.
    142.肖应辉,罗利华,闻晓燕,等.水稻品种倒伏指数QTL分析.作物学报,2005,31(3):348-354.
    143. MU Ping, Li ZiChao. QTL analysis for lodging resistance in rice using a DHpopulation under lowland and upland ecosystems.Acta GeneticaSinica,2004,31(7):717-723.
    144.张建新,谢华安,郑家团,等.1996.优质抗瘟强优恢复系“明恢86”.福建农业科技,5:2-3
    145.王玉平,李仕贵,黎汉云,等.2004.高配合力优质水稻恢复系蜀恢527的选育与利用.杂交水稻,19(4):12-14
    146. Khush G.S. Green revolution: the way forward. Nature Reviews Genetics,2001,2:815-822
    147. Khush G.S. What will it take to feed5.0billion rice consumers in2030? PlantMolecular Biology,2005,59:1-6
    148. Liu H.N.,Wang S.P.,Deng Q.M.,et al. Analysis of key genome regions related yieldcharacters of Shuhui527, an elite rice backbone parent. Journal of AgriculturalBiotechnology,2011,19:393-406
    149. Liu G.F.,Zhang Z.M.,Zhu H.T.,et al. Detection of QTLs with additive effects andadditive-by-environment interaction effects on panicle number in rice(Oryza sativa L.)with single-segment substitution lines. Theoretical and applied Genetics.2008,116:923-931
    150. Ali A.J.,Xu J.J.,Ismail A.M.,et al. Hidden diversity fo abiotic and biotic stresstolerances in the primary gene pool of rice revealed by a large backcross breeding program.Field Crops Research2006,97:66-76
    151. IRRI. IRRI redesigns rice plant to yield more grain.IRRI Reporter,1994,(4):1
    152.高用明.复杂上位性及其与环境互作的QTL定位方法和杂种优势预测研究.2000,博士学位论文,杭州:浙江大学,
    153.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.2002,北京:科学出版社
    154. Tian F, Zhu ZF,Zhang BS,et al. Fine mapping of a quantitative trait locus for grainnumber per panicle from wild rice (Oryza ruWpogon GriV.).Theor Appl Genet,2006.113:619–629
    155. Cockerham C. An extension of the concept of partitioning hereditary variance foranalysis of covariances among relatives when epistasis is present. Genetics,1954.39:859-882.
    156. Fasoulas AC,Allard RW.Nonallelic gene interactions in the inheritance of quantitativecharacters in barley. Genetics,1962.47:899–907
    157. Wright S. The roles of mutation, inbreeding, crossbreeding,and selection in evolution.Proceedings of the6th international congress of genetics,1932.1:356-366.
    158.钱益亮.水稻BC2F3选择导入系产量及耐盐QTL定位与遗传重叠的研究.2009,硕士学位论文.合肥:安徽农业大学
    159. Li ZK, Fu BY, Gao YM, et al. Genome-wide introgression lines and their use ingenetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.).PlantMolecular Biology,2005.59:33-52
    160. Hittalmani S,Huang N,Courtois B, et al. Identification of QTL for growth-and grainyield-related traits in rice across nine locations of Asia.Theor Appl Genet,2003,107:679–690
    161.姜恭好,徐才国,李香花,等.利用双单倍体群体剖析水稻产量及其相关性状的遗传基础.遗传学报,2004,31:63-72
    162. Hu Jiang,Kan Fujimoto,Guo Longbiao et al. QTL Analysis of Lodging ResistanceForce and Lodging Resistance-Related Traits in Rice.2008,22(2):211-214
    163.吕建群,曾宪平.四川省中籼中熟杂交水稻10年区试分析.四川农业大学学报,2006,24(4):391-393
    164.王曙光,谢成林,谢仁康.杂交中籼稻产量与主要经济性状关系的分析.中国稻米,2009(2):

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700