用户名: 密码: 验证码:
人食管癌细胞多药耐药的机制及药物干预的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分人食管癌多药耐药细胞株的建立及其生物学特性
     目的:
     建立人食管癌细胞多药耐药细胞株(YES-2/DDP),并分析其生物学特性。
     方法:
     本实验应用顺铂浓度递增和间歇诱导法建立YES-2/DDP耐药株。采用CCK-8法检测不同抗肿瘤药物对人食管癌野生型和耐药型细胞的增殖作用影响,计算半数抑制率(IC50)和耐药指数(RI),并观察冻存、撤药对耐药稳定性的影响。进一步比较野生与耐药细胞株细胞贴壁率、生长曲线、群体倍增时间的差异,并用双层软琼脂实验观察YES-2/WT(人食管癌野生型)和YES-2/DDP克隆形成率。流式细胞仪检测细胞周期、罗丹明外排、细胞凋亡。免疫印迹法检测耐药相关蛋白(MDR-1,MRP-1和LRP)的表达。
     结果:
     历时九个月诱导的人食管癌YES-2/DDP耐药细胞株对顺铂的耐药指数为16.4,并且YES-2/DDP对其它不同类型的抗肿瘤药物均产生不同程度的耐药,冻存和撤药对YES-2/DDP的耐药指数无明显影响。相对于YES-2/WT细胞株,YES-2/DDP生长曲线缓慢,细胞群体倍增时间延长,细胞克隆形成率显著增加,细胞周期中G1和S期所占比例增加而G2期减少。免疫印迹发现YES-2/DDP耐药细胞株MRP1表达明显增强,而MDR1和LRP表达无明显变化。细胞内罗丹明外排出实验发现YES-2/DDP细胞内罗丹明明显减少。用10μg/ml的顺铂分别处理YES-2/WT和YES-2/DDP细胞72小时后,流式细胞和荧光显微镜分析表明DDP对耐药细胞YES-2/DDP的凋亡率明显减少。
     结论:
     成功建立人食管癌多药耐药细胞株YES-2/DDP,其耐药机制可能与MRP1的表达增加,导致抗癌药物摄入减少,外排增多。减少药物对肿瘤细胞的凋亡作用相关。
     第二部分人食管癌细胞多药耐药机制的初步研究
     目的:
     研究COX-2、PPAR-β在人食管癌细胞多药耐药中的作用,分析COX-2、PPAR-β、MRP-1三者之间的关系,揭示人食管癌细胞发生多药耐药的机制。
     方法:
     1、首先用免疫印迹法检测YES-2/WT和YES-2/DDP细胞中COX-2、 PPAR-β的表达,用酶联免疫法和荧光素酶检测仪测定PGE2的生成和PPRE报告基因活性,以评价COX-2、PPAR-β、的活性。
     2、分别用25μM的COX-2特异性抑制剂NS398或1μM的PGE2干预YES-2/DDP耐药细胞株72小时,免疫印迹法检测MRP-1和PPAR-β的表达,荧光素酶检测仪测定PPRE报告基因活性,流式细胞仪检测细胞内罗丹明浓度以明确细胞外排药物能力,CCK-8检测不同浓度顺铂处理不同干预组细胞48小时后细胞增殖能力,以评价顺铂的半数抑制率(IC50)和耐药指数(RI)。进一步用110μg/ml的顺铂分别处理上述干预组的YES-2/DDP细胞株,高效液相法测定顺铂处理1小时后细胞内顺铂浓度,流式细胞仪检测顺铂处理72小时后细胞凋亡率。
     3、分别用2μM的PPAR-β特异性抑制剂GSK0660或转染5gg的PPAR-β表达质粒干预YES-2/DDP耐药细胞株72小时,免疫印迹法检测MRP-1和COX-2的表达,酶联免疫法测定细胞上清中PGE2含量,流式细胞仪检测细胞内罗丹明浓度以明确细胞外排药物能力,CCK-8检测不同浓度顺铂处理不同干预组细胞48小时后细胞增殖能力,以评价顺铂的半数抑制率(IC50)和耐药指数(RI)。进一步用10μg/ml的顺铂分别处理上述干预组的YES-2/DDP细胞株,高效液相法测定顺铂处理1小时后细胞内顺铂浓度,流式细胞仪检测顺铂处理72小时后细胞凋亡率。
     结果:
     1、与YES-2/WT细胞相比,YES-2/DDP细胞COX-2蛋白表达和PGE2生成量增加,PPAR-β蛋白表达和PPRE活性也增加,同时MDR1蛋白表达增加,细胞内顺铂浓度明显降低,10μg/ml顺铂处理细胞后凋亡率也明显减少。
     2、与YES-2/DDP细胞相比,25μM的COX-2特异性抑制剂NS398干预YES-2/DDP后,MRP-1和PPAR-β蛋白表达明显降低,PPRE活性减少,细胞内罗丹明浓度增高,同时顺铂的半数抑制率(IC50)和耐药指数(RI)明显减少;10μg/ml顺铂分别处理NS398干预的YES-2/DDP细胞后,细胞内顺铂浓度增高,72小时凋亡率也明显增加(均相对于YES-2/DDP细胞,P<0.05)。
     与YES-2/DDP细胞相比,1μM的PGE2干预YES-2/DDP后,MRP-1和PPAR-β蛋白表达明显增加,PPRE活性也增加,细胞内罗丹明浓度减少,同时顺铂的半数抑制率(IC50)和耐药指数(RI)明显增加;10μg/ml顺铂处理NS398干预的YES-2/DDP细胞后,细胞内顺铂浓度减少,72小时凋亡率也明显减少(均相对于YES-2/DDP细胞,P<0.05)。
     3、与YES-2/DDP细胞相比,2μM的PPAR-β特异性抑制剂GSK0660干预YES-2/DDP后,COX-2表达和PGE2含量无明显变化,但MRP-1蛋白表达明显降低,细胞内罗丹明浓度增高,同时顺铂的半数抑制率(IC50)和耐药指数(RI)明显减少;10μg/ml顺铂分别处理NS398干预的YES-2/DDP细胞后,细胞内顺铂浓度增高,72小时凋亡率也明显增加(均相对于YES-2/DDP细胞,P<0.05)。
     与YES-2/DDP细胞相比,转染5μg的PPAR-β表达质粒干预YES-2/DDP后,COX-2表达和PGE2含量无明显变化,但MRP-1蛋白表达明显增加,细胞内罗丹明浓度减少,同时顺铂的半数抑制率(IC50)和耐药指数(RI)明显增加;10μg/ml顺铂处理NS398干预的YES-2/DDP细胞后,细胞内顺铂浓度减少,72小时凋亡率也明显减少(均相对于YES-2/DDP细胞,P<0.05)。
     结论:
     1、COX-2蛋白表达和PGE2生成介导MRP1的表达,促进细胞内顺铂的外排,减少抗肿瘤药物对人食管癌细胞的毒性作用。
     2、PPAR-β蛋白表达和激活也介导MRPl的表达,促进细胞内顺铂的外排,减少抗肿瘤药物对人食管癌细胞的毒性作用。
     3、人食管癌细胞的耐药形成可能是通过促进COX-2/PGE2系统,上调PPAR-β蛋白表达和活性,进一步介导MDR1的表达,促进抗肿瘤药物的外排,减少肿瘤细胞内抗肿瘤药物的浓度,从而减少细胞对药物的毒性作用,产生多药耐药。
     第三部分粉防己碱对YES-2/DDP耐药细胞株的干预作用及机制
     目的:
     研究粉防已碱对人食管癌YES-2/DDP耐药细胞株MRP-1的影响,并进一步探讨其可能的机制及生物学效应,为人食管癌多药耐药的干预寻找有效的治疗药物。
     方法:
     以人食管癌耐药细胞株YES-2/DDP为多药耐药细胞模型,实验分为四组,用不同剂量的粉防已碱干预耐药细胞株YES-2/DDP,分别为对照组(无粉防已碱干预)、10μM粉防已碱干预组、3.0gM粉防已碱干预组、100μM粉防已碱干预组。在粉防已碱干预72小时后,免疫印迹法检测COX-2、PAR-β和MRP的表达,酶联免疫法检测PGE2含量,荧光素酶法检测PPRE的活性,流式细胞仪检测细胞内罗丹明浓度。进一步用10μg/ml浓度的顺铂继续处理上述各组细胞,分别在1小时后高效液相仪测细胞内顺铂浓度,48小时后用CCK-8检测各组对顺铂的半数抑制率(IC50)和耐药指数(RI)。
     结果:
     1、与YES-2/DDP对照组细胞相比,粉防已碱呈剂量信赖性地抑制COX-2的表达,PGE2的生成,PPAR-β蛋白表达和PPRE的激活。同时也抑制MRP的表达和细胞内罗丹明的蓄积。
     2、用10μg/ml浓度的顺铂处理不同干预组细胞后,粉防已碱呈剂量依赖性地增加细胞内顺铂浓度,同时顺铂的半数抑制率(IC50)和耐药指数(RI)明显减少。
     结论:
     粉防己碱可逆转YES-2/DDP耐药细胞株中耐药性的产生,其机制有可能与其抑制COX-2的表达后,依次下调细胞中PGE2、PPAR-β与MRP的表达水平,从而减少药物外排有关。
Part I. Establishment of human esophageal cancer cells mult id rug resistant cell line YES-2/DDP and its biological characteristics
     Objective To establish human esophageal cancer cells multidrug resistant cell line YES-2/DDP and to analyze its biological characteristics.
     Methods In this study, increasing concentrations and intermittent of cisplatin was applied to establish YES-2/DDP resistant strains. The half of inhibition concentrations (IC50) and resistance indexs (RI) of different anticancer drugs were detected by CCK-8in wild-type and drug resistance human esophageal cancer cells. Further the cell adherence rate, growth curve, doubling time differences, and double-layer soft-agar colony formation rate were observed in the YES-2/WT and YES-2/DDP cells. Cell cycle, rhodamine efflux, apoptosis were detected by flow cytometry, respectively. The MDR-1, MRP-1and LRP protein expression were detected by Western blotting.
     Results During the nine months, human esophageal cancer YES-2/DDP resistance cells line was induced and its resistance index to cisplatin was16.4, and YES-2/DDP cells for other types of anticancer drugs are different degrees of resistance, Freezing and withdraw of drug had not affect to the RI of YES-2/DDP. Compared to YES-2/WT Cell line, YES-2/DDP showed a slow growth curve, increased cell population doubling time and cell colony formation, decreased the cell cycle in G1and S phase and increased the proportion of G2phase. Western blot result showed that in the resistant cell line YES-2/DDP, MRP1protein expression was significantly increased, while the expression of MDR1and LRP was no significant changed. The concentration of rhodamine was markedly decreased in the YES-2/DDP cells compared with YES-2/WT cells. Flow cytometry and fluorescence microscopy analysis showed that72h after treatment with cisplatin (10μg/ml), the number of cell apoptosis was significantly in YES-2/DDP cells compared with YES-2/WT cells.
     Conclusion We successfully established a human esophageal cancer multidrug resistance cell line YES-2/DDP. The resistance may be related to increased MRP1expression, resulting in reducing intake and increasing efflux of anti-cancer drugs, which inhibit the effect of anticancer drugs on tumor cell apoptosis.
     Part Ⅱ Study on the mechanisms of multidrug resistance in human esophageal cancer cells
     Objective To explore the relationship of COX-2, PPAR-β and MRP-1in the YES-2/DDP cells and reveal the molecular mechanism of multidrug resistance in human esophageal cancer cells.
     Methods
     1. The expression of COX-2, PPAR-β protein in the YES-2/WT and YES-2/DDP cells were determined by western blotting, and further the production of PGE2and PPRE report gene activity were assayed by enzyme-linked immunosorbent assay and luciferase assay, respectively.
     2. YES-2/DDP cells were administrated with NS398(25μM), or PGE2(μM) for72h, respectively, the expression of MRP-1and PPAR-β, PPRE luciferase reporter gene activity, the concentration of cellular rhodamine, the IC50and RI of cisplatin at48h were determined, respectively. Further the concentration of intracellular cisplatin at1h and the rate of cell apoptosis at72h after treatment with10μg/ml cisplatin were assayed.
     3. YES-2/DDP cells were administrated with GSK0660(2μM) or transfer5μg of PPAR-(3expression plasmid for72hours, respectively, the expression of MRP-1and COX-2, PGE2production, the concentration of cellular rhodamine, the IC50and RI of cisplatin at48h were determined, respectively. Further the concentration of intracellular cisplatin at1h and the rate of cell apoptosis at72h after treatment with10μg/ml cisplatin were assayed.
     Results
     1. Compared with YES-2/WT cells, COX-2protein expression and PGE2production were significantly increased in the YES-2/DDP cells, further PPAR-β expression and PPRE activity were also increased.
     2. Compared with YES-2/DDP cells, in the25μM NS398-treated YES-2/DDP cells, the expressions of MRP-1and PPAR-β protein, the PPRE activity, IC50and RI of cisplatin were significantly reduced, while the concentrations of intracellular Rhodamine were significantly increased. Further the concentration of intracellular cisplatin at1h and the rate of cell apoptosis at72h after treatment with10μg/ml cisplatin were significantly increased. Compared with the YES-2/DDP cells, in the1μM PGE2-treated YES-2/DDP cells, the expressions of MRP-1and PPAR-β protein, the PPRE activity, IC50and RI of cisplatin were significantly increased, while the concentrations of intracellular Rhodamine were significantly reduced. Further the concentration of intracellular cisplatin at1h and the rate of cell apoptosis at72h after treatment with10μg/ml cisplatin were significantly reduced.
     3. Compared with YES-2/DDP cells, in the2μM GSK0660-treated YES-2/DDP cells, the expression of COX-2protein and PGE2production had no changes, but the MRP-1protein expression, IC50and RI of cisplatin at48h were markedly reduced; the concentrations of intracellular Rhodamine were significantly increased. Further the concentration of intracellular cisplatin at1h and the rate of cell apoptosis at72h after treatment with10μg/ml cisplatin were significantly increased.
     4. Compared with the YES-2/DDP cells, in the5μg of PPAR-β expression plasmid-transfected YES-2/DDP cells, the expression of COX-2protein and PGE2production had no changes, but the MRP-1protein expression, IC50and RI of cisplatin at48h were markedly increased; the concentrations of intracellular Rhodamine were significantly reduced. Further the concentration of intracellular cisplatin at lh and the rate of cell apoptosis at72h after treatment with10μg/ml cisplatin were significantly reduced.
     Conclusion
     1.The COX-2protein expression and PGE2production might mediate the expression of MRP1protein, which reduced the concentration of intracellular cisplatin, resulting in reducing the toxicity and apoptosis of the antitumor drugs in human esophageal cancer cells.
     2. The PPAR-β protein expression and activation might mediate expression of MRP1protein, which reduced the concentration of intracellular cisplatin, resulting in reducing the toxicity and apoptosis of the antitumor drugs in human esophageal cancer cells.
     3. In conclusion, the mechanism of multidrug resistance in human esophageal cancer cells YES-2/DDP may be through the promotion of COX-2/PGE2system, increasing of PPAR-β protein expression and activity, which mediated MDR1expression, and promoted the efflux of antitumor drugs, lead to reducing the concentrations of anti-tumor drugs, thereby reducing the cellular toxicity of these drug, resulting in multidrug resistance.
     Part Ⅲ.Effect and mechanism of tetrandrine on the YES-2/DDP resistant cells
     Objective
     To research the effect of tetrandrine on human esophageal cancer resistant cell lines YES-2/DDP, and further explore its possible mechanism.
     Methods
     Human esophageal cancer cells were divided into four groups:the control group (no intervention tetrandrine),10μ.M tetrandrine in the intervention group,30μM tetrandrine in the intervention group,100μM tetrandrine in the intervention group. At72hours after tetrandrine administration, the COX-2, PPAR-β and MRP expression were determined by western blotting, PGE2levels were assayed by enzyme-linked immunosorbent assay, PPRE luciferase enzyme activity was detected, intracellular Rhodamine concentration was analyzed by flow cytometry, the IC50and RI of cisplatin at48h were detected by CCK-8. Further the concentrations of intracellular cisplatin were measured by HPLC at1h after treatment with10μg/ml cisplatin.
     Results
     1. Compared with YES-2/DDP control cells, tetrandrine dose-dependently inhibited the expression of COX-2protein and the production of PGE2, PPAR-β expression and activation. Further we also showed that tetrandrine inhibited the expression of MRP-1protein and accumulation of cellular rhodamine in a dose-dependent maner.
     2. When cells were treated with10μg/ml cisplatin in different intervention groups, tetrandrine concentration-dependently increased the concentration of intracellular cisplatin, decreased the IC50and RI of cisplatin.
     Conclusion
     Tetrandrine could effectively reverse the resistance of YES-2/DDP resistant cells line; the mechanism may be related to inhibition of COX-2expression and production of PGE2, PPAR-β expression and activity, and the expression of MRP-1.
引文
[1]Siersema PD. Esophageal cancer[J]. Gastroenterol Clin North Am.2008, 37(4):943-64
    [2]Brown LM. The role of race/ethnicity in the epidemiology of esophageal cancer[J]. J Assoc Acad Minor Phys.2000;11(2-3):32-7
    [3]Bouvier AM, Binquet C, Gagnaire A, Jouve JL, Faivre J, Bedenne L. Management and prognosis of esophageal cancers:has progress been made? [J]. Eur J Cancer. 2006,42(2):228-33.
    [4]Holmes RS, Vaughan TL. Epidemiology and pathogenesis of esophageal cancer[J]. Semin Radiat Oncol.2007,17(1):2-9.
    [5]Brown LM, Devesa SS. Epidemiologic trends in esophageal and gastric cancer in the United States[J]. Surg Oncol Clin N Am.2002,11(2):235-56.
    [6]Tomaszek S, Cassivi SD. Esophagectomy for the treatment of esophageal cancer[J]. Gastroenterol Clin North Am.2009,38(1):169-81
    [7]Geh JI. The use of chemoradiotherapy in oesophageal cancer[J]. Eur J Cancer.2002, 38(2):300-13.
    [8]Mariette C, Piessen G, Triboulet JP. Therapeutic strategies in oesophageal carcinoma:role of surgery and other modal ities[J]. Lancet Oncol. 2007,8(6):545-53.
    [9]Forshaw MJ, Gossage JA, Mason RC. Neoadjuvant chemotherapy for oesophageal cancer:the need for accurate response prediction and evaluation[J]. Surgeon. 2005,3(6):373-82
    [10]van Meerten E, van der Gaast A. Systemic treatment for oesophageal cancer[J]. Eur J Cancer.2005,41(5):664-72.
    [11]McCabe ML, Dlamini Z. The molecular mechanisms of oesophageal cancer[J]. Int Immunopharmacol.2005,5(7-8):1113-30.
    [12]Tak VM, Naunheim KS. Current status of multimodality therapy for esophageal carcinoma[J]. J Surg Res.2004,117(1):22-9.
    [13]Valverde CM, Macarulla T, Casado E, Ramos FJ, Martinelli E, Tabernero J. Novel targets in gastric and esophageal cance[J]r. Crit Rev Oncol Hematol.2006, 59(2):128-38.
    [14]Krishna R, Mayer LD. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs[J]. Eur J Pharm Sci.2000,11(4):265-83.
    [15]孔帅,李乐平,靖昌庆.消化道恶性肿瘤多药耐药机制的研究进展[J].中国现代普通外科进展,2009,12(8):706-709
    [16]Yang LY, Trujillo JM. Biological characterization of multidrug-resistant human colon carcinoma sublines induced/selected by two methods[J]. Cancer Res.1990, 50(11):3218-25.
    [17]李敏,王志举,李文涛,董子明.人食管癌顺铂耐药细胞系Ec9706/DDP的建立及其生物学特征[J].世界华人消化杂志.2006,14(34):3257-3260
    [18]Zhao W, Bao P, Qi H, You H. Resveratrol down-regulates survivin and induces apoptosis in human multidrug-resistant SPC-A-1/DDP cells[J]. Oncol Rep.2010, 23(l):279-86.
    [19]Ohyama M, Ikeda H, Yamaguchi K, Okabe M, Morimoto Y, Kawamoto K, et al. Complete response in a case of advanced unresectable esophageal cancer treated by chemoradiation therapy and S-1+DDP chemotherapy[J]. Gan To Kagaku Ryoho.2010,37(2):299-302.
    [20]方宁,农晓琳.肿瘤多药耐药机制研究现状.实用肿瘤学杂志[J].2008,22(6): 553-556
    [21]Li Y, Yuan H, Yang K, Xu W, Tang W, Li X. The structure and functions of P-glycoprotein[J]. Curr Med Chem.2010,17(8):786-800.
    [22]Bosch I, Croop J. P-glycoprotein multidrug resistance and cancer[J]. Biochim Biophys Acta.1996,1288(2):F37-54.
    [23]Chang XB. Molecular mechanism of ATP-dependent solute transport by multidrug resistance-associated protein 1[J]. Methods Mol Biol.2010,596:223-49.
    [24]Loe DW, Deeley RG, Cole SP. Biology of the multidrug resistance-associated protein, MRP[J]. Eur J Cancer.1996,32A(6):945-57.
    [25]Scheffer GL, Schroeijers AB, Izquierdo MA, Wiemer EA, Scheper RJ. Lung resistance-related protein/major vault protein and vaults in multidrug-resistant cancer[J]. Curr Opin Oncol.2000,12(6):550-6.
    [26]王碧云,那夕明,周丽春.肺耐药蛋白在人食管癌组织中的表达及临床意义[J].浙江临床医学.2007,9(12):1062-1063
    [1]张蕊,裴秋玲.人类MRP1和MRP2基因多态性与功能的研究进展[J].毒理学杂志.2008,22(5):395-398
    [2]俞丽芬,吴云林.消化道肿瘤与多药耐药基因的临床相关性研究进展[J].世界华人消化杂志.1998,6(10):915-916
    [3]Zhan M, Liu X, Li J:[Clinical significance of multidrug resistance-associated protein(MRP) gene expression in non-small cell lung cancer[J]. Zhonghua Zhong Liu Za Zhi 1999,21 (2):112-113.
    [4]Fukushima Y, Oshika Y, Tokunaga T, Hatanaka H, Tomisawa M, Kawai K, Ozeki Y, Tsuchida T, Kijima H, Yamazaki H et al: Multidrug resistance-associated protein (MRP) expression is correlated with expression of aberrant p53 protein in colorectal cancer[J]. Eur J Cancer 1999,35(6):935-938.
    [5]Loe DW, Deeley RG, Cole SP. Biology of the multidrug resistance-associated protein, MRP[J]. Eur J Cancer 1996,32A(6):945-957.
    [6]Franks ME, Macpherson GR, Lepper ER, Figg WD, Sparreboom A:New directions in cancer research 2003:technological advances in biology, drug resistance, and molecular pharmacology [J]. Drug Resist Updat 2003,6(6):301-312.
    [7]Miller DW, Fontain M, Kolar C, Lawson T:The expression of multidrug resistance-associated protein (MRP) in pancreatic adenocarcinoma cell lines[J]. Cancer Lett 1996,107(2):301-306.
    [8]周庚寅张晓芳.肿瘤多药耐药机制及其逆转[J].临床与实验病理学杂志.2009,25(4):348-351
    [9]Vezmar M, Georges E:Reversal of MRP-mediated doxorubicin resistance with quinoline-based drugs[J]. Biochem Pharmacol 2000,59(10):1245-1252.
    [10]Matsumoto Y, Miyake K, Kunishio K, Tamiya T, Seigo N:Reduction of expression of the multidrug resistance protein (MRP)1 in glioma cells by antisense phosphorothioate oligonucleotides[J]. J Med Invest 2004,51(3-4):194-201
    [11]陈兵海,杨建军.P-gP及MRP介导的膀胱癌多药耐药及其逆转研究进展[J].现代医学.2007,35(1):67-71
    [12]Nooter K, Kok T, Bosman FT, van Wingerden KE, Stoter G:Expression of the multidrug resistance protein (MRP) in squamous cell carcinoma of the oesophagus and response to pre-operative chemotherapy[J]. Eur J Cancer 1998,34(1):81-86
    [13]董鑫,李珊珊,郝志芳.食管癌中肺耐药蛋白和多药耐药相关蛋白的表达[J].新乡医学院学报.2007,24(2):119-122
    [14]李建辉,侯东祥,郭党学等.MRP和LRP的表达与食管鳞癌临床病理特征的关系[J].西安交通大学学报:医学版.2005,26(4):377-380
    [15]Rocca B, FitzGerald GA:Cyclooxygenases and prostaglandins:shaping up the immune response[J]. Int Immunopharmacol 2002,2(5):603-630.
    [16]Dannenberg AJ, Altorki NK, Boyle JO, Dang C, Howe LR, Weksler BB, Subbaramaiah K:Cyclo-oxygenase 2:a pharmacological target for the prevention of cancer[J]. Lancet Oncol 2001,2(9):544-551.
    [17]Meric JB, Rottey S, Olaussen K, Soria JC, Khayat D, Rixe O, Spano JP: Cyclooxygenase-2 as a target for anticancer drug development[J]. Crit Rev Oncol Hematol 2006,59(1):51-64.
    [18]Dorai T, Aggarwal BB:Role of chemopreventive agents in cancer therapy[J]. Cancer Lett 2004,215(2):129-140.
    [19]Kundu JK, Surh YJ:Inflammation:gearing the journey to cancer[J]. Mutat Res 2008,659(1-2):15-30.
    [20]Zha S, Yegnasubramanian V, Nelson WG, Isaacs WB, De Marzo AM: Cyclooxygenases in cancer:progress and perspective[J]. Cancer Lett 2004, 215(1):1-20.
    [21]Nardone G, Rocco A, Vaira D, Staibano S, Budillon A, Tatangelo F, Sciulli MG, Perna F, Salvatore G, Di Benedetto M et al. Expression of COX-2, mPGE-synthasel, MDR-1 (P-gp), and Bcl-xL:a molecular pathway of H pylori-related gastric carcinogenesis[J]. JPathol 2004,202(3):305-312.
    [22]Arunasree KM, Roy KR, Anilkumar K, Aparna A, Reddy GV, Reddanna P: Imatinib-resistant K562 cells are more sensitive to celecoxib, a selective COX-2 inhibitor:role of COX-2 and MDR-1 [J]. Leuk Res 2008,32(6):855-864.
    [23]Jiang B, Liang P, Zhang B, Song J, Huang X, Xiao X:Role of PPAR-beta in hydrogen peroxide-induced apoptosis in human umbilical vein endothelial cells[J]. Atherosclerosis 2009,204(2):353-358.
    [24]Girroir EE, Hollingshead HE, Billin AN, Willson TM, Robertson GP, Sharma AK, et al. Peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) ligands inhibit growth of UACC9O3 and MCF7 human cancer cell lines[J]. Toxicology.2008,243(1-2):236-43.
    [25]Foreman JE, Sharma AK, Amin S, Gonzalez FJ, Peters JM. Ligand activation of peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) inhibits cell growth in a mouse mammary gland cancer cell line[J]. Cancer Lett.2010, 288(2):219-25.
    [26]Kristinsson JO, van Westerveld P, te Morsche RH, Roelofs HM, Wobbes T, Witteman BJ, et al. Cyclooxygenase-2 polymorphisms and the risk of esophageal adeno-or squamous cell carcinoma[J]. World J Gastroenterol.2009 Jul 28;15(28):3493-7.
    [27]Upadhyay R, Jain M, Kumar S, Ghoshal UC, Mittal B. Functional polymorphisms of cyclooxygenase-2 (COX-2) gene and risk for esophageal squmaous cell carcinoma[J]. Mutat Res.2009 Apr 26;663(1-2):52-9.
    [28]向昌荣,翁志华,余鹏飞.COX-2和Survivin蛋白在食管鳞癌中的表达和临床意义[J].中华临床医师杂志.2009,3(6):35-38
    [29]Takatori H, Natsugoe S, Okumura H, Matsumoto M, Uchikado Y, Setoyama T, Sasaki K, Tamotsu K, Owaki T, Ishigami S et al:Cyclooxygenase-2 expression is related to prognosis in patients with esophageal squamous cell carcinoma[J]. Eur J Surg Oncol 2008,34(4):397-402.
    [30]Heeren P, Plukker J, van Dullemen H, Nap R, Hollema H:Prognostic role of cyclooxygenase-2 expression in esophageal carcinoma[J]. Cancer Lett 2005, 225(2):283-289.
    [31]产松苗,欧希龙,孙为豪等.食管癌组织环氧化酶-2的表达与血管生成的关系[J].世界华人消化杂志.2006,14(14):1388-1393
    [32]Hull MA:Cyclooxygenase-2:how good is it as a target for cancer chemoprevention? [J]. Eur.J Cancer 2005,41(13):1854-1863.
    [33]Zha S, Yegnasubramanian V, Nelson WG, Isaacs WB, De Marzo AM. Cyclooxygenases in cancer:progress and perspective[J]. Cancer Lett.2004, 215(1):1-20.
    [34]Mohan S, Epstein JB:Carcinogenesis and cyclooxygenase:the potential role of COX-2 inhibition in upper aerodigestive tract cancer[J]. Oral Oncol 2003, 39(6):537-546.
    [35]Zatelli MC, Luchin A, Tagliati F, Leoni S, Piccin D, Bondanelli M, Rossi R, degli Uberti EC:Cyclooxygenase-2 inhibitors prevent the development of chemoresistance phenotype in a breast cancer cell line by inhibiting glycoprotein p-170 expression[J]. EndocrRelat Cancer.2001,14(4):1029-1038.
    [36]刘小旭,康华峰,王西京,等.塞来昔布联合TP方案治疗蒽环类耐药乳腺癌转移瘤[J].2008,16(4):582-585
    [37]Steele VE, Hawk ET, Viner JL, Lubet RA:Mechanisms and applications of non-steroidal anti-inflammatory drugs in the chemoprevention of cancer[J]. Mutat Res 2003,523-524:137-144.
    [38]Miller B, Patel VA, Sorokin A. Cyclooxygenase-2 rescues rat mesangial cells from apoptosis induced by adriamycin via upregulation of multidrug resistance protein 1 (P-glycoprotein) [J]. J Am Soc Nephrol.2006,17(4):977-85.
    [39]Chang CY, Huang ZN, Yu HH, Chang LH, Li SL, Chen YP, et al. The adjuvant effects of Antrodia Camphorata extracts combined with anti-tumor agents on multidrug resistant human hepatoma cells[J]. J Ethnopharmacol. 2008,118(3):387-95.
    [40]Saikawa Y, Sugiura T, Toriumi F, Kubota T, Suganuma K, Isshiki S, et al. Cyclooxygenase-2 gene induction causes DDP resistance in colon cancer cell line, HCT-15[J]. Anticancer Res.2004,24(5A):2723-8.
    [41]Touhey S, O'Connor R, Plunkett S, Maguire A, Clynes M. Structure-activity relationship of indomethacin analogues for MRP-1, COX-1 and COX-2 inhibition. identification of novel chemotherapeutic drug resistance modulators[J]. Eur J Cancer.2002,38(12):1661-70.
    [42]Takeyama K, Kodera Y, Suzawa M, Kato S. Peroxisome proliferator-activated receptor (PPAR)-structure, function, tissue distribution, gene expression[J]. Nippon Rinsho 2000,58(2):357-363.
    [43]Kota BP, Huang TH, Roufogalis BD. An overview on biological mechanisms of PPARs[J]. Pharmacol Res.2005,51(2):85-94.
    [44]Green S. PPAR:a mediator of peroxisome proliferator action[J]. Mutat Res. 1995,333(1-2):101-9.
    [45]Nakagama H. PPARgamma and cancer[J]. Nippon Rinsho.2010,68(2):323-9.
    [46]Wu CW, Yu J, Sung JJ. Peroxisome proliferator-activated receptor delta and gastric cancer[J]. Oncol Rep.2009,22(3):451-7.
    [47]Aung CS, Faddy HM, Lister EJ, Monteith GR, Roberts-Thomson SJ. Isoform specific changes in PPAR alpha and beta in colon and breast cancer with differentiation[J]. Biochem Biophys Res Commun.2006,340(2):656-60.
    [48]Peters JM, Gonzalez FJ. Sorting out the functional role(s) of peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) in cell proliferation and cancer[J]. Biochim Biophys Acta.2009,1796(2):230-41.
    [49]Suchanek KM, May FJ, Lee WJ, Holman NA, Roberts-Thomson SJ. Peroxisome proliferator-activated receptor beta expression in human breast epithelial cell lines of tumorigenic and non-tumorigenic origin[J]. Int J Biochem Cell Biol.2002, 34(9):1051-8.
    [50]Fukumoto K, Yano Y, Virgona N, Hagiwara H, Sato H, Senba H, et al. Peroxisome proliferator-activated receptor delta as a molecular target to regulate lung cancer cell growth[J]. FEBS Lett.2005 Jul 4;579(17):3829-36.
    [51]Hirai T, Fukui Y, Motojima K. PPARalpha agonists positively and negatively regulate the expression of several nutrient/drug transporters in mouse small intestine[J]. Biol Pharm Bull.2007,30(11):2185-90.
    [52]Wang Q, Chen XP, Hai S, Li GP, Guan J, Zhang BX, et al. [TNF-alpha induced reversal of multidrug resistance in human hepatocellular carcinoma cells[J]. Zhonghua Wai Ke Za Zhi.2007,45(9):602-4.
    [53]Szatmari I, Vamosi G, Brazda P, Balint BL, Benko S, Szeles L, et al. Peroxisome proliferator-activated receptor gamma-regulated ABCG2 expression confers cytoprotection to human dendritic cells[J]. J Biol Chem.2006,281(33):23812-23.
    [54]Varnat F, Heggeler BB, Grisel P, Boucard N, Corthesy-Theulaz I, Wahli W, et al. PPARbeta/delta regulates paneth cell differentiation via controlling the hedgehog signaling pathway[J]. Gastroenterology.2006,131(2):538-53.
    [55]Konieczna A, Lichnovka R, Erdosova B, Ehrmann J. The Role of PPARs in MDR-a lesson from embryonic development[J]. Neoplasma.2009;56(4):279-83.
    [56]Harris SG, Padilla J, Koumas L, Ray D, Phipps RP. Prostaglandins as modulators of immunity[J]. Trends Immunol.2002,23(3):144-50.
    [57]Motilva V, Alarcon de la Lastra C, Bruseghini L, Manuel Herrerias J, Sanchez-Fidalgo S. COX expression and PGE(2) and PGD(2) production in experimental acute and chronic gastric lesions[J]. Int Immunopharmacol.2005, 5(2):369-79.
    [58]Rocca B, FitzGerald GA. Cyclooxygenases and prostaglandins:shaping up the immune response. Int Immunopharmacol[J].2002,2(5):603-630.
    [59]Tuynman JB, Peppelenbosch MP, Richel DJ. COX-2 inhibition as a tool to treat and prevent colorectal cancer[J]. Crit Rev Oncol Hematol.2004,52(2):81-101.
    [60]Yu J, Leung WK, Chen J, Ebert MP, Malfertheiner P, Sung JJ. Expression of peroxisome proliferator-activated receptor delta in human gastric cancer and its response to specific COX-2 inhibitor[J]. Cancer Lett.2005,223(1):11-7.
    [61]Lim H, Gupta RA, Ma WG, Paria BC, Moller DE, Morrow JD, DuBois RN, Trzaskos JM, Dey SK:Cyclo-oxygenase-2-derived prostacyclin mediates embryo implantation in the mouse via PPARdelta[J]. Genes Dev 1999,13(12):1561-1574.
    [1]Yao WX, Jiang MX:Effects of tetrandrine on cardiovascular electrophysiologic properties[J]. Acta Pharmacol Sin 2002,23(12):1069-1074.
    [2]Rao MR:Effects of tetrandrine on cardiac and vascular remodeling[J]. Acta Pharmacol Sin 2002,23(12):1075-1085.
    [3]Lai JH:Immunomodulatory effects and mechanisms of plant alkaloid tetrandrine in autoimmune diseases[J]. Acta Pharmacol Sin 2002,23(12):1093-1101.
    [4]Xie QM, Tang HF, Chen JQ, Bian RL:Pharmacological actions of tetrandrine in inflammatory pulmonary diseases[J]. Acta Pharmacol Sin 2002,23(12):1107-1113.
    [5]Chen YJ:Potential role of tetrandrine in cancer therapy[J]. Acta Pharmacol Sin 2002,23(12):1102-1106.
    [6]Chen BA, Wang W, Lin GW:Progression on studies of treatment of tumor with tetrandrine[J]. Zhongguo Zhong Xi Yi Jie He Za Zhi 2001,21(8):636-638.
    [7]Wang G, Lemos JR, Iadecola C:Herbal alkaloid tetrandrine:fron an ion channel blocker to inhibitor of tumor proliferation[J]. Trends Pharmacol Sci 2004, 25(3):120-123.
    [8]Lee JH, Kang GH, Kim KC, Kim KM, Park DI, Choi BT, Kang HS, Lee YT, Choi YH:Tetrandrine-induced cell cycle arrest and apoptosis in A549 human lung carcinoma cells[J]. Int J Oncol 2002,21(6):1239-1244.
    [9]Lee JH, Kang GH, Kim KC, Kim KM, Park DI, Choi BT, Kang HS, Lee YT, Choi YH:Tetrandrine-induced cell cycle arrest and apoptosis in A549 human lung carcinoma cells[J]. Int J Oncol 2002,21(6):1239-1244.
    [10]Kuo PL, Lin CC:Tetrandrine-induced cell cycle arrest and apoptosis in Hep G2 cells[J]. Life Sci 2003,73(2):243-252.
    [11]Oh SH, Lee BH:Induction of apoptosis in human hepatoblastoma cells by tetrandrine via caspase-dependent Bid cleavage and cytochrome c release[J]. Biochem Pharmacol 2003,66(5):725-731.
    [12]Jin Q, Kang C, Soh Y, Sohn NW, Lee J, Cho YH, Baik HH, Kang I:Tetrandrine cytotoxicity and its dual effect on oxidative stress-induced apoptosis through modulating cellular redox states in Neuro 2a mouse neuroblastoma cells[J]. Life Sci 2002,71(17):2053-2066.
    [13]Wu JM, Chen Y, Chen JC, Lin TY, Tseng SH:Tetrandrine induces apoptosis and growth suppression of colon cancer cells in mice[J]. Cancer Lett,287(2):187-195.
    [14]Wang RZ, Pan QQ:The effect of tetrandrine on the growth of ECa 109 cell line in vitro[J]. Zhonghua Zhong Liu Za Zhi 1981,3(2):86-88.
    [15]He QY, Meng FH, Zhang HQ:Reduction of doxorubicin resistance by tetrandrine and dauricine in harringtonine-resistant human leukemia (HL60) cells[J]. Zhongguo Yao Li Xue Bao 1996,17(2):179-181.
    [16]Tian H, Pan QC:A comparative study on effect of two bisbenzylisoquinolines, tetrandrine and berbamine, on reversal of multidrug resistance[J]. Yao Xue Xue Baol997,32(4):245-250.
    [17]Sun AX, Ye ZG, Li CY, Xue BY, Li LF, Cao XF, Yang Q, Dai BQ:Synergistic anticancer effects of tetrandrine combined with doxorubicin or vincristine in vitro[J]. Zhongguo Yao Li Xue Bao 1999,20(1):69-73.
    [18]Choi SU, Park SH, Kim KH, Choi EJ, Kim S, Park WK, Zhang YH, Kim HS, Jung NP, Lee CO:The bisbenzylisoquinoline alkaloids, tetrandine and fangchinoline, enhance the cytotoxicity of multidrug resistance-related drugs via modulation of P-glycoprotein[J]. Anticancer Drugs 1998,9(3):255-261.
    [19]许文林,钱军,费霞.粉防已甲素逆转血液系统肿瘤细胞多药耐药的临床观察[J].中华血液学杂志.1999,20(7):383
    [20]Xu WL, Shen HL, Ao ZF, Chen BA, Xia W, Gao F, Zhang YN:Combination of tetrandrine as a potential-reversing agent with daunorubicin, etoposide and cytarabine for the treatment of refractory and relapsed acute myelogenous leukemia[J]. Leuk Res 2006,30(4):407-413.
    [21]王金华,叶祖光,孙爱续,等.粉防己碱逆转人乳腺癌MCF-7多药耐药细胞的抗凋亡作用[J].中国中药杂志.2002,27(1):46
    [22]李贵海,刘明霞,孙付军.粉防己碱对获得性多药耐药小鼠S180肿瘤细胞P170,LRP, TOPOⅡ表达的调控[J].中国中药杂志,2005,30(16):1280-1282
    [23]徐萌,周蓓.粉防己甲素逆转肺癌化疗耐药和凋亡抗性的实验研究[J].新中医.2006,38(6):90
    [24]Zha S, Yegnasubramanian V, Nelson WG, Isaacs WB, De Marzo AM: Cyclooxygenases in cancer:progress and perspective[J]. Cancer Lett 2004, 215(1):1-20.
    [25]Pang L, Hoult JR:Cytotoxicity to macrophages of tetrandrine, an antisilicosis alkaloid, accompanied by an overproduction of prostaglandins[J]. Biochem Pharmacol 1997,53(6):773-782.
    [26]Teh BS, Seow WK, Li SY, Thong YH:Inhibition of prostaglandin and Ieukotriene generation by the plant alkaloids tetrandrine and berbamine[J]. Int J Immunopharmacol 1990,12(3):321-326.
    [27]肖继皋,吴树扬.粉防己甲素对家兔实验性前色素膜炎的抑制作用[J].南京医科大学学报,1994,14(2):142
    [28]李新芳,吕盒胜,张乐之,等.粉防己碱对炎症白细胞游出及前列腺素与白三烯合成的影响[J].解放军药学学报,1999,15(6):1
    [29]Wu SJ, Ng LT:Tetrandrine inhibits proinflammatory cytokines, iNOS and COX-2 expression in human monocytic cells[J]. Biol Pharm Bull 2007,30(1):59-62.
    [30]罗福玲.粉防己碱抗内毒素致炎症反应作用及机制研究[D].重庆医科大学.2007年
    [31]张萌.粉防己碱血管舒张及心肌保护药理作用的研究[D].中国协和医科大学.2008年
    [1]Siersema PD. Esophageal cancer. Gastroenterol Clin North Am[J].2008, 37(4):943-64
    [2]Brown LM. The role of race/ethnicity in the epidemiology of esophageal cancer[J]. J Assoc Acad Minor Phys.2000; 11(2-3):32-7
    [3]Bouvier AM, Binquet C, Gagnaire A, Jouve JL, Faivre J, Bedenne L. Management and prognosis of esophageal cancers:has progress been made? [J]. Eur J Cancer. 2006,42(2):228-33.
    [4]Holmes RS, Vaughan TL. Epidemiology and pathogenesis of esophageal cancer[J]. Semin Radiat Oncol.2007,17(1):2-9.
    [5]Krishna R, Mayer LD. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs[J]. Eur J Pharm Sci.2000,11(4):265-83.
    [6]Nooter K, Kok T, Bosman FT, van Wingerden KE, Stoter G:Expression of the multidrug resistance protein (MRP) in squamous cell carcinoma of the oesophagus and response to pre-operative chemotherapy [J]. Eur J Cancer 1998,34(1):81-86
    [7]孔帅,李乐平,靖昌庆.消化道恶性肿瘤多药耐药机制的研究进展[J].中国现代普通外科进展,2009,12(8):706-709
    [8]董鑫,李珊珊,郝志芳,等.食管鳞癌中多药耐药相关蛋白表达与其病理特征的关系[J].肿瘤基础与临床.2007,20(4):282-289.
    [9]Loe DW, Deeley RG, Cole SP. Biology of the multidrug resistance-associated protein, MRP[J]. Eur J Cancer 1996,32A(6):945-957.
    [10]Franks ME, Macpherson GR, Lepper ER, Figg WD, Sparreboom A:New directions in cancer research 2003:technological advances in biology, drug resistance, and molecular pharmacology [J]. Drug Resist Updat 2003,6(6):301-312.
    [11]Miller DW, Fontain M, Kolar C, Lawson T:The expression of multidrug resistance-associated protein (MRP) in pancreatic adenocarcinoma cell lines[J]. Cancer Lett 1996,107(2):301-306.
    [12]周庚寅张晓芳.肿瘤多药耐药机制及其逆转[J].临床与实验病理学杂志.2009,25(4):348-351
    [13]王延明,王爱明,王艳军,等.多药耐药基因和多药耐药相关蛋白基因在食管,贲门癌中的表达[J].中国胸心血管外科临床杂志.2000,7(1):38-40
    [14]Arunasree KM, Roy KR, Anilkumar K, Aparna A, Reddy GV, Reddanna P: Imatinib-resistant K562 cells are more sensitive to celecoxib, a selective COX-2 inhibitor:role of COX-2 and MDR-1. Leuk Res 2008,32(6):855-864.
    [15]Upadhyay R, Jain M, Kumar S, Ghoshal UC, Mittal B. Functional polymorphisms of cyclooxygenase-2 (COX-2) gene and risk for esophageal squmaous cell carcinoma[J]. Mutat Res.2009 Apr 26;663(1-2):52-9.
    [16]陈兵海,杨建军.P-gP及MRP介导的膀胱癌多药耐药及其逆转研究进展[J].现代医学.2007,35(1):67-71
    [17]Burd D, Filippov DV,Hermannes R.et al.Petidomimetic glutathione analogues as novel gamma GT stable GST inhibitors [J].Bioorg Med Chem,2002,10(1) 195-205.
    [18]董鑫,李珊珊,郝志芳.食管癌中肺耐药蛋白和多药耐药相关蛋白的表达[J].新乡医学院学报.2007,24(2):119-122
    [19]李建辉,侯东祥,郭党学等.MRP和LRP的表达与食管鳞癌临床病理特征的关系[J].西安交通大学学报:医学版.2005,26(4):377-380
    [20]Nicola Antonio Colabufo, Vincenzo Pagliarulo, Francesco Berardi, et al. Bicalutamide failure in prostate cancer treatment:Involvement of Multi Drug Resistance proteins[J]. European Journal of Pharmacology,2009,601:38-42.
    [21]Gunilla Englund,Annica Jacobson,Fredrik Rorsman,et al. Efflux Transporters in Ulcerative Colitis:Decreased Expression of BCRP (ABCG2) and Pgp (ABCB1) [J]. Inflammatory bowel diseases.2007,13(7):291-297.
    [22]Fuchs D,Heinold A,Opelz,G,et al. Salinomycin induces apoptosis and overcomes apoptosis resistance in human cancer cells[J]. Biochemical and Biophysical Research Communications.2009,390(3):743-749.
    [23]张曙光,刘芝华,张林.凋亡抑制基因XIAP在肿瘤治疗中的研究进展[J].世界华人消化杂志.2006,12(26):2626-2631.
    [24]向昌荣,翁志华,余鹏飞.COX-2和Survivin蛋白在食管鳞癌中的表达和临床意义[J].中华临床医师杂志.2009,3(6):35-38
    [25]Turner, JG, Engel, R, Derderian, JA, et al. Human topoisomerase Ⅱ alpha nuclear export is mediated by two CRM-1-dependent nuclear export signals[J]. Journal of Cell Science.2004,117(4):3061-3071.
    [26]Bentires Alj M.Barbu V,Fillet M,et al. NF-kappaB transcription factor induces drug resistance through MDR1 expression in cancer cells[J].2003,22(1):90-97.
    [27]Takatori H, Natsugoe S, Okumura H, Matsumoto M, Uchikado Y, Setoyama T, Sasaki K, Tamotsu K, Owaki T, Ishigami S et al:Cyclooxygenase-2 expression is related to prognosis in patients with esophageal squamous cell carcinoma[J]. Eur J Surg Oncol 2008,34(4):397-402.
    [28]Xu WL, Shen HL, Ao ZF, Chen BA, Xia W, Gao F, Zhang YN:Combination of tetrandrine as a potential-reversing agent with daunorubicin, etoposide and cytarabine for the treatment of refractory and relapsed acute myelogenous leukemia[J]. Leuk Res 2006,30(4):407-413.
    [29]徐萌,周蓓.粉防己甲素逆转肺癌化疗耐药和凋亡抗性的实验研究[J].新中医.2006,38(6):90
    [30]Wang G, Lemos JR, Iadecola C:Herbal alkaloid tetrandrine:fron an ion channel blocker to inhibitor of tumor proliferation[J]. Trends Pharmacol Sci 2004, 25(3):120-123.
    [31]Kuo PL, Lin CC:Tetrandrine-induced cell cycle arrest and apoptosis in Hep G2 cells[J]. Life Sci 2003,73(2):243-252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700