动静压气体轴承的设计及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动静压气体轴承是一种新型结构的气体轴承,它综合了静压与动压气体轴承的优点,同时也避免了二者的不足,由于气体的静压作用而产生的无固体接触使得轴承在启停阶段的干摩擦得以避免,而轴承在高速旋转时产生的动压效应可以避免支承轴承所需的持续高压供气,这大大减小了功耗。
     本文以动静压气体轴承为研究对象,针对其流场内的建模、特性分析及结构参数优化等内容进行了深入研究,具体的研究内容包括:
     分析了不同网格划分及数值计算方法对气体轴承的适用性。以单孔静压止推气体轴承为研究对象,研究了边界层网格,并对不同网格疏密程度下的模型进行了数值仿真计算;同时使用层流模型及层流与紊流二者混合模型对静压气体轴承的流场进行了计算。计算结果与实验结果的对比分析表明,边界层网格能更好地对近壁面流场特性进行研究;分区网格划分方法可以达到很好的计算效率和精度;采用混合模型,不仅可以增大计算的精度,同时能更真实和直观体现层流和紊流的流场效果。
     采用三维流场计算方法研究了轴承结构及工作状态对动静压气体轴承特性的影响。建立动静压气体轴承的三维模型,采用边界层网格、分区划分和局部加密的方法进行网格划分;使用层流与湍流的混合模型进行三维计算。计算结果表明:三维建模的计算方法,可以有效地对气体轴承的流场进行计算,同时通过与设计实例的对比,验证了仿真结果的可靠性;在流场内,动压槽部分的流动方式为湍流,气膜间隙内的流动方式为层流;提升静压工作状态下的供气压力,能够提高轴承的承载能力和刚性,但会增大耗气量;螺旋槽能够在高速运转过程中带来明显的动压效应,但增大转速会增加系统的功耗,并带来不稳定因素。
     以上研究成果提供了动静压气体轴承的设计理论,可供设计、计算同类动静压轴承时参考。
Hydrostatic dynamic gas lubricated bearing is a new structured gas bearing, it synthesized the advantage of aerostatic and aerodynamic bearing. At the same time, It avoid those of the shortage, the non-solid-contract caused by static pressure effect avoid the dry friction, and the hydrodynamic effect brought by high speed can avoid the continued high pressure gas supply, which greatly reduced the power consumption.
     In this paper, the hydrostatic dynamic gas lubricated bearing was taken as a subject, and the modeling in flow field, the way of numerical analysis method, the reliability of simulation results and characteristics of the bearing were taken on in-depth research. The main research work includes:
     The applicability of different meshing and calculation methods on gas lubricated bearings is analysed. The thrust aerostatic bearings are chose as a subject, and the research was taken on boundary layer grid, different mesh densities and calculating models. Meanwhile, One test rig was built for measuring the pressure distribution in flow field. The result indicate:boundary layer grid can do well study on wall. Considering the calculation accuracy and efficiency, choose the division of grid partition method. When flow field have different flow mode, the hybrid model should be used, it can increase the accuracy of the calculation.
     The numerical calculation method was used to study the influence of structure and work state to hydrostatic dynamic gas lubricated thrust bearing. The three-dimension models of bearings are built, the boundary layer grid, division of grid partition method and hybrid model of laminar and turbulent are used in modelling. The calculation results show that:the three-dimensional calculation method can effectively calculate the flow field of bearing, and the reliability of the simulation result is verified through the contrast with design example. In flow field, part of spiral groove is turbulent flow, and the gas film part is laminar flow. Increasing the supply pressure of the static pressure work state, the load and stiffness of bearing is improved, but it also lead to the rising of gas consumption. Increasing the rotating speed of the dynamic pressure work state, the spiral groove can bring obvious hydrodynamic pressure effect, and the higher the speed is, the better hydrodynamic effect it have, but it will add system consumption and bring unstable factors.
     The research results provide the design theory of hydrostatic dynamic gas lubricated bearing. The data and charts in this dissertation can be referenced for designing and calculating the same kind of hydrostatic dynamic gas lubricated bearing.
引文
[1]李树森,张鹏顺,曲全利.气体润滑轴承技术的应用及发展趋势.润滑与密封,1999,02:9-10
    [2]党根茂.气体润滑技术.东南大学出版社,1990.
    [3]F. F. Ehrich, S. A. Jacobson. Development of High-Speed Gas Bearings for High-Power Density Microdecices [J]. Journal of Engineering for Gas turbines and Power, 2003,125(1):141-148.
    [4]于贺春,马文琦.气体轴承技术的研究与发展[C].第四届全国流体传动及控制学术会议,2006,533-536.
    [5]靳兆文.气体润滑技术及其研究进展[J].通用机械,2007,237(3):57-60.
    [6]R.J.W.鲍威尔.空气轴承主轴.中华人民共和国知识产权局,2007.08.08.
    [7]张恩龙,李锻能,马平.气体静压轴承技术及其在电主轴上的应用.机床与液压,2005,5:13-16.
    [8]陈世钰.高刚性气静压电主轴在高速加工中的应用.机电信息,2003,21:23-25.
    [9]郭增林,卜炎.一种新型结构的动静压混合径向滑动轴承.机械设计.1996,(8):11-13.
    [10]姚绍明.气体复合润滑技术.国防工业出版社,2008.
    [11]迟长青.气体动静压轴承的动力学及热力学.北京航空航天大学出版社,2008.
    [12]路甫样.中国制造科技的现状与发展[J].中国科学基金.2006(7):1-7
    [13]王先逵.制造技术的历史回顾与面临的机遇和挑战[J].中国制造业信息化,2003(11):12-18.
    [14]张军安,呼晓青,方宗德.气体动静压径向轴承试验台研制及实现.西安理工大学学报.2006,22(004):415-418.
    [15]岑少起,尉迟铁业,张少林等.圆锥浮环动静压轴承有限元解和试验研究.机械工程学报.1996,32(5):63-69.
    [16]王云飞,常谦.螺旋槽动静压油轴承.轴承,1995,(2):2-8.
    [17]王东伟,朱均.上瓦开周向槽椭圆轴承动态特性分析.机械科学与技术.1995,(2):13-16.
    [18]刘文志,蔡光其,宋贵亮等.用于超高速磨削主轴系统的液体动静压混合轴承的研制.研究开发.2001,39(437):19-21.
    [19]陈汝刚,侯予,袁秀玲等.气体轴承在高速透平机械中的应用[J].流体机械,2007,35(4):28-32.
    [20]王元勋,陈尔昌等.气体润滑轴承的研究与发展[J].湖北工学院学报,1994,9(3):155-159.
    [21]Yao SM. Incompressible and Analytical Study on a Basic Model of a Complex Journal Gas bearing. Tribology Transactions.2006,49(1):92-95.
    [22]Zhang Q, Shan XC, Guo G, et al. Performance Analysis of Air Bearing in a Micro System. Materials Science & Engineering.2006,423(1-2):225-229.
    [23]Tanaka S, Esashi M, Isomura K, et al. Hydroinertia Gas Bearing System to Achiece 470m/s Tip Speed of 10 mm-Diameter Impellers. Journal of Tribology.2007,129:655.
    [24]Feldman Y, Kligerman Y, Asme M, et al. The Validity of the Reynolds Equation in Modeling Hydrostatic Effects in Gas Lubricates Textured Parallel Surfaces. Journal of Tribology.2006,128:345.
    [25]Kim D, Lee S, Bryant M D, et al. Hydrodynamic Perfirmance of Gas Microbearings. Journal of Tribology.2004,126:711.
    [26]L. H. Yang, H. G. Li, L, Yu. Dynamic Stiffness and Damping Coefficients of Aerodynamic Tilting-Pad Journal Bearings[J]. Tribology Interational,2007,40(9):1399-1410.
    [27]A.Rimpel, D. Kim. Rotordynamic Performance of Flexure Pivot Tilting Pad Gas Bearings with Vibration Damper. Journal of Tribology,2009,131(2):021101-1-12.
    [28]S. G. K. W. Kim, Influence of Pad-Pivot Friction on Tilting Pad Journal Bearing. Tribology International,2008,41(8):694-703.
    [29]韩焕臣.气体轴承设计、制作和应用.1981
    [30]党根茂.气体润滑技术.南京:东南大学出版社,1990.
    [31]王云飞.气体润滑理论与气体轴承设计.北京:机械工业出版社,1999.
    [32]刘暾,刘育华,陈世杰.静压气体润滑.哈尔滨:哈尔滨工业大学出版社,1990.
    [33]于贺春.高速静压气体轴承-转子系统的特性研究[博士论文].大连:大连海事大学,2011.
    [34]王福军.计算流体力学分析CFD软件原理与应用[M].清华大学出版社.2004.9.
    [35]FLUENT Inc. FLUENT User's Guide. Fluent Inc.2003.
    [36]Fluent Inc. GAMBIT User Defined Function Manual. Fluent Inc.2003.
    [37]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实力与应用[M].北京理工大学出版社.2004.6.
    [38]江帆,黄鹏luent高级应用与实例分析[M].清华大学出版社.2008.7.
    [39]Hechun Yu, Wenqi Ma, Zuwen Wang, Lifang Xu. CFD Research on Aerostatic Bearing with Tangential Supply Holes, Advanced Materials Research Vols.97-101 (2010): 2021-2026
    [40]Chen Longxing, Ma Wenqi, Yu Hechun. Research on Flow Characteristics of aerostatic circular thrust bearing with a cone cavity. Advanced Materials Research, V308-310, P189-192,2011.
    [41]卜炎主编.实用轴承技术手册[M].机械工业出版社.2004:538-543.
    [42]郭天丽.动压气体轴承静、动态性能的理论研究[D].西安:西安交通大学,2008.
    [43]沃斯克列辛斯基.滑动轴承设计和计算[M].国防工业出版社.1986:56-56.
    [44]周恒,刘延柱.气体动压轴承的原理及计算.国防工业出版社,1981.
    [45]赵妍.应用FLUENT对管路细部流场的数值模拟.大连理工大学硕士学位论文,2004.
    [46]贾月梅.流体力学[M].国防工业出版社.2006.8.84.
    [47]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2002.
    [48]刘凡,孟宪东.空气静压轴承孔型节流器的CFD研究[J].设计与研究.2005.32(11):21-23.
    [49]刘墩,彭春野.小孔节流气体静压润滑的离散化和计算收敛.摩擦学学报.2001,21(002):139-142.
    [50]十合晋一.气体轴承—设计、制作与应用.北京:宇航出版社,1988.
    [51]杨军,郭力,卿红.动静压推力轴承动特性分析.润滑与密封.2001,(1):42-43.
    [52]L.X.Liu,C.J. Teo, A. H. Epstein, et al. Hydrostatic Gas Journal Bearings for Micro-Turbomat(?)nery[J]. Journal of Vibration and Acoustics,2005,127(3):157-164.
    [53]徐国庆.弹性波箔动压径向气体轴承的理论分析和实验设计[硕士学位论文].南京:南京航空航天大学.2008.
    [54]龙威,李军,包钢Fluent软件在空气轴承研究领域的应用[J].机床与液压,2006,6:151-153
    [55]于贺春,马文琦,王祖温,徐丽芳.基于FLUENT的径向静压气体轴承的静态特性研究[J].润滑与密封,2009,12(34):78-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700