用户名: 密码: 验证码:
酸性土壤柚木钙素营养研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柚木(Tectona grandis Linn f.)为世界著名的珍贵用材树种。因具独特的材质及较高的经济价值,已被许多国家或地区引种。我国引种柚木有170多年的历史,近十年来众多私营企业投资发展柚木无性系人工林,造林面积逐年增加。尽管我国热带和南亚热带地区的光、温、水、热条件和多种土壤类型适宜柚木的生长,但酸性至强酸性土壤面积过大。土壤酸化导致有效养分、特别是钙素养分的流失,严重制约了柚木的生长和发育。克服酸性土壤柚木钙素营养限制因子问题成为急需解决的关键科学问题。具体研究目标为:1)建立酸性土壤柚木矿质营养诊断指标和标准;2)确定钙对柚木的作用,叶片钙临界浓度及最适浓度范围;3)确定酸性土壤适宜的钙源,钙与氮、磷、钾、硼之间的相互关系及最佳施肥配比。
     研究从广东省种植的酸性土壤柚木人工林营养诊断入手,建立其营养诊断指标和标准。在此基础上,分别采用随机区组试验设计、裂区试验设计、311-A混合最优回归设计和正交试验设计,开展2个盆栽和4个大田试验。确定了柚木无性系苗期及幼林叶片Ca临界浓度及最适Ca浓度范围;确定了酸性赤红壤和紫色土两种土类适宜的钙源;明确了钙与硼、氮营养关系、苗期最佳Ca:B:N配比,以及大田最优Ca、B、N施用范围及N、P、K、Ca最佳配比范围;此外,通过培养基途径初步研究了Ca2+浓度与pH值对柚木组培苗生长及矿质营养吸收的影响。5-8年生柚木人工林营养诊断及7个试验研究结论归纳如下:
     1)逐步回归筛选出显著的影响柚木材积生长的5个叶片营养元素和4个土壤特性因子,即叶片N、Ca的浓度及叶片微量元素B、Zn和Fe的浓度,土壤速效磷含量、盐基饱和度高低及土壤有效锌和交换性铝的含量。柚木年材积生长量可以通过叶片中钙、氮浓度高低,或土壤速效磷含量、盐基饱和度高低进行估计。提高土壤全磷含量及盐基饱和度,不仅可抑制交换性铝的活性,且可提高土壤的pH值和叶片N、Ca的含量,而只有提高土壤Ca和Mg的含量,土壤盐基饱和度才能得到有效提高。
     2)柚木人工林矿质营养综合诊断(DRIS)分析表明,Ca与Mg、Fe、Al之间的平衡关系是影响柚木人工林生长的关键。DRIS诊断指标为Ca/Mg、Ca/Fe、Ca/Al,其最适值分别为3.52,46.78和67.52,平衡区域分别在3.23-3.80,26.54-67.01和41.41-93.63范围内。此范围之外,为养分微弱和严重不平衡区,应加以营养调整。
     3)柚木7559无性系苗木(6月龄)叶片的最适Ca浓度值范围:10.05-10.35g·kg-1,临界值在8.36-8.54g·Kg-1之间;酸性赤红壤上柚木7544无性系人工林(7月龄)叶片的最适浓度范围:水溶性钙0.354-0.659g·kg-1,全钙3.44-5.21g·kg-1,全磷2.4-3.44g·kg-1,全镁2.147-3.215g·kg-1,全锰49.60-73.59 mg·kg-1,全锌19.40-23.046mg·kg-1之间;水溶性钙、全钙、全磷、全镁、全锰和全锌的临界浓度分别为0.35g·kg-1,3.44g·kg-1,2.4g·kg-1、2.15g·kg-1,49.6mg·kg-1,19.4mg·kg-1;5-8年生柚木人工林叶片Ca临界浓度的估计值为7.267 g·kg-1,最适Ca浓度范围7.267-13.55g·kg-1。
     4)培养基的Ca2+浓度和pH值对组培幼苗的高生长和生物量积累有较大的影响。组培幼苗的高生长及生物量积累随Ca2+浓度的增高而增加。最适钙处理(9 mmol·L-1)的苗高和茎叶生物量,分别比对照提高了50.0%和65.2%。pH4.0、pH5.0、pH6.0和pH7.0中,最适为pH6.0。Ca2+浓度与pH值之间的交互作用尚不显著,但Ca2+浓度12 mmol·L-1与pH6.0处理的苗高和茎叶生物量最大。
     5)叶面喷施氯化钙和硝酸钙可显著的促进柚木苗高、地径生长,增加叶面积、根系总吸收面积、活跃吸收面积、根体积、侧根总数,提高叶片、茎、地上部分及总生物量的积累。处理6个月时,喷施3 mmol(Ca2+)·L-1和30 mmol (Ca2+)·L-1氯化钙的苗高分别比对照提高69.7%和72.1%,地径分别比对照提高32.8%和40.0%,总生物量分别比对照提高53.3%和61.3%。柚木苗期适宜的喷施钙源为氯化钙,且喷施高钙浓度(30 mmol (Ca2+)·L-1)比低钙浓度(3 mmol(Ca2+)·L-1)效果好。
     6)大田裂区试验结果表明,无论是在酸性赤红壤还是在酸性紫色土上,施钙处理6个月时,不同钙源处理的柚木树高和地径生长差异极显著,不同施钙量之间也存在显著的差异;赤红壤上,钙源×钙量之间对树高和地径的生长的交互作用不显著,但在紫色土上,则产生极显著的交互作用。赤红壤上,柚木树高和地径生长随生石灰施用量的增加而增加。生石灰处理下的树高生长,分别比硝酸钙和石膏处理提高11.9%和12.2%;地径生长,分别比硝酸钙和石膏处理提高6.2%和20.4%。生石灰是促进酸性赤红壤上柚木树高和地径生长的最佳钙源。紫色土上,柚木树高和地径的生长随硝酸钙施用量增加而增加。硝酸钙处理下的树高生长量分别比生石灰和石膏处理提高8.7%和22.5%,而生石灰处理又比石膏处理提高了12.7%;地径生长量分别比生石灰和石膏处理提高5.1%和10.7%。硝酸钙为酸性紫色土柚木生长的最佳钙源。
     7)Ca、B、N不同配比处理的苗期幼苗高、地径生长,叶、茎、根、地上部分及总苗生物量积累差异极显著;Ca是促进强酸性赤红壤柚木苗高、地径和叶、茎、根部器官生物量生长的主要营养因子和限制因子;强酸性赤红壤不施或少施石灰(CaO)而增施尿素对柚木生长不利。柚木苗期最佳Ca、B、N配比为Ca: B: N = 1.2 g·kg-1: 0.4 mg·kg-1: 0.3 g·kg-1。Ca、B、N配比大田试验表明,Ca、B和N营养对柚木的生长有显著作用。Ca是影响酸性赤红壤柚木树高与地径生长的主要营养因子。树高、地径生长量与Ca,B和N存在非线性关系,三元二次趋势面方程拟和达极显著水平。最优Ca,B和N有效用量分别为Ca 615-647.4 g·株-1,B 0-0.101 g·株-1和N 18.27-21.93 g·株-1,最优施肥量范围为,生石灰869.7-915.5 g·株-1,硼砂0-0.96 g·株-1和尿素39.7-47.7 g·株-1。
     8)花岗岩发育的赤红壤上Ca与N、P、K配施大田试验表明,4个营养因子对柚木树高和胸径生长影响大小顺序为Ca>P>K>N。Ca和P对柚木生长有显著的促进作用。Ca与N、P、K最佳配比施用量范围为Ca 867 g·株-1,N 0-75 g·株-1,P 150-225g·株-1和K 0-75 g·株-1,对应的肥料配比范围为尿素生石灰1000 g·株-1,0-163 g·株-1,钙镁磷肥1071-1607 g·株-1和氯化钾0-125 g·株-1;Ca与N、P、K的合理配施,有益于柚木对有效养分的吸收与利用,不施或少施石灰又少施磷对柚木生长极不利。7月龄柚木人工林叶片营养水平的高低,特别是钙浓度的高低与其截干后6月龄萌芽林的长势密切相关。7月龄柚木叶片钙浓度可作为柚木幼林生长诊断与预测的依据。
Teak (Tectona grandis Linn f.) is one of the most well known timber species in the world. The species has been widely introduced into counties or regions in the tropics due to its high timber qualities, highly economic value and market demand. It was introduced into China over 170 years. In recent decade, teak plantations have been attracted investment interests from and have been rapidly and largely established by private companies or individuals mostly using superior clones in the southern part of China. The climate conditions in south China are suitable for the growth and development of teak, in terms of light intensity, temperature, rainfall and moisture in the region, but site conditions are highly variable. Soils in south China are mostly and highly acidic. Soil acidification usually causes loss of available nutrients, particular calcium element, limiting the growth and development of teak. The present study aims to identify and overcome Ca limiting nutritional factor. The detailed aims are (1) to establish teak foliar diagnosis index and norms; (2) to assess if teak growth is limited by Ca, and to establish foliar Ca critical value; (3) to make out suitable Ca-fertilizer and the relationship between Nitrogen, Phosphorus, Potassium, Boron and Calcium nutrients and their optimal rates and ranges on acidic soils.
     Firstly, this study focused on the evaluation and diagnosis of tree nutritional status in teak plantations planted on acidic soils of Guangdong province. Secondly, two pot culture experiments and four field trials were conducted by employing Randomized Block Design, Split Plot Design, Optimal Hybird Regression Design (311-A) and Orthogonal Experimental Design respectively. Optimum Ca concentration range and critical value in leave of teak clone seedling and young plantations were singly established. The results contribute to the establishement of suitable Ca fertilizer application both in lateritic red soil and in purplish soil, optimal rates f Ca, B and N for seedlings, and the optimum range of Ca, B and N rates as well as N, P, K and Ca rates for teak plantations. One laboratory experiment was undertaken to test the growth and nutrient-uptake responses of teak seedlings in vitro to Ca concentrations and pH treatments of subculture medium.
     The results of nutrient diagnosis for 19 representative teak plantations of 5-8 years old and totaling 7 experiments or trials were summarized as follows.
     1)Stepwise multiple regression analysis indicated that N, Ca, Zn, B and Fe in leave, available P, base saturation percentage, Zn and Al in soil properties were the main factors affecting tree nutrition and growth. The mean annual volume increment of teak can be estimated by N and Ca concentration in leave, or by soil available P concentration and base saturation percentage based on established regression functions. To increase soil total P content and base saturation percentage can not only suppress exchangeable Al activities, but also can enhance soil pH value and concentration of N and Ca in leave. Only Ca and Mg contents in soil were enhanced, can the increase of soil base saturation percentage benefit to teak growth.
     2) Diagnosis and Recommendation Integrated System (DRIS) on teak plantations indicated that the nutrient balance of Ca with Mg, Fe and Al is the key to promote the growth of teak plantations. The optimum value of three diagnosis indices, Ca/Mg, Ca/Fe and Ca/Al, is 3.52,46.78 and 67.52,with balance range from 3.23 to 3.80,26.54 to 67.01 and 1.41 to 93.63 respectively.
     3) The optimum Ca concentration in leaves of clone 7559 seedlings (six month old) ranges from 10.05 to 10.35 g·kg-1,and critical value ranges from 8.36 to 8.54 g·kg-1. The optimum concentration of five nutrients in leaves of clone 7544 plantation (seven month old) on acidic lateritic red soil respectively range were 0.354-0.659 g·kg-1 for water-extractable Ca, 3.44-5.21 g·kg-1 for total Ca, 2.4-3.44g·kg-1 for P, 2.147-3.215g·kg-1 for Mg, 49.60-73.59 mg·kg-1 for Mn, and 19.40-23.046 mg·kg-1 for Zn, and the critical value is 0.35g·kg-1 for water-extractable Ca, 3.44g·kg-1 for Ca, 2.4 g·kg-1 for P, 2.15 g·kg-1 for Mg, 49.6 mg·kg-1 for Mn, and 19.4mg·kg-1 for Zn respectively. The critical value of Ca in leaves of 5-8 years old plantations is 7.267 g·kg-1,and optimum Ca concentration ranges from 7.267 to 13.55 g·kg-1.
     4) An experiment to test the growth and nutrient-uptake responses of teak seedlings in vitro to 0,3 , 6 , 9 and 12 mmol·L-1 of calcium concentrations and pH treatments of subculture medium. Results indicated that the height increments and dry weights of leaf and stem were positively related to the Ca2+ concentration. The height increments and dry weights of leaf and stem at optimum Ca2+concentration at 9 mmol·L-1 increased by 50.0% and 65.2%, compared with the control. The height growth was significantly affected by pH treatments, and the optimal pH value was 6.0; The interaction between Ca2+concentrations and pH values was not significant.
     5)Ca-spray (CaCl2 and Ca (NO3)2 ) on the leave of teak seedlings can significantly promote seedling growth, such as height and root collar diameter, enlarge leaf area and absorbing and active absorbing area of root system, increase the number of lateral roots and root volume, and creat biomass accumulation of leave, stem, and total dry biomass. In Comparison with the control (Water-spray), the growth increment in terms of height, root collar diameter and total dry biomass at the six month after discharging sprays of CaCl2 of 3 and 30 mmol (Ca2+)·L-1 increased by 69.7% and 72.1%, 32.8% and 40.0%, as well as 53.3% and 61.3% respectively. The effectiveness of discharging sprays of CaCl2 is better than that of Ca (NO3)2, and 30 mmol(Ca2+)·L-1 concentration is more effective than 3 mmol(Ca2+)·L-1 .
     6) The growth of trees at six months with three Ca-fertilizers treatments on both sites showed significant difference. On the acidic lateritic red soil, the height (H) and root collar diameter (RCD) growth was increased with increasing amount of CaO (lime), and CaO was the best Ca-source fertilizer. The height increment of CaO treatment was increased by 11.9% and 12.2% compared with that of Ca (NO3)2, and CaSO4, and the growth of root collar diameter was increased by 6.2% and 20.4% respectively. However, on the acidic purplish soil, the H and RCD growth was increased with increasing amount of Ca (NO3)2. Ca (NO3)2 was the best Ca-source fertilizer. The height increment at this treatment was increased by 8.7% and 22.5% compared with that of CaO and CaSO4, and the growth of root collar diameter was increased by 5.1% and 10.7% respectively.
     7) A pot culture experiment of was carried out to study the growth response of teak clone seedlings in acidic lateritic red soil to Ca (0-1.2g·kg-1), B (0-0.8mg·kg-1) and N (0-1.2g·kg-1). The results indicted that the growth of seedling height, root collar diameter, and dry mass of leave,shoot (without leaf) and root weights were greatly significant difference among 11 treatments. Ca (CaO), was identified to be the major nutrient element, and a limiting factor for seedling growth in acidic soil. The seedling growth was evidently supressed with the increasing addition of N ((NH2)2CO) while no or little lime was applied. The optimal nutrient rates were Ca 1.2 g·kg-1, B 0.4 mg·kg-1 and N 0.3 g·kg-1, equivalent to CaO of 1.68 g·kg-1 , H3BO3 of 2.3mg·kg-1 , and (NH2)2CO of 0.65g·kg-1. Moreover, the same field test trial on acidic lateritic red soil revealed that the growth of tree height and root collar diameter at six months was significantly affected by Ca, B and N. Calcium was also identified to be the major nutrient element and limiting factor.
     Response Surface Methodology (RSM) was fitted for modeling optimization of height and root collar diameter growth as a function of three variables. The optimal application rates ranged: Ca 615-647.4 g·plant-1,B 0-0.101g·plant-1 and N 18.27-21.93 g·plant-1, equals to optimal CaO 869.7-915.5 g·plant-1, Borax 0-0.96 g·plant-1 and (NH2)2CO 39.7-47.7 g·plant-1.
     8) A field fertilizztion trail of rates of N, P, K and Ca on acidic lateritic red soil showed that both Ca and P significantly promoted the growth of tree height and diameter at breast height, while N and K had no significant effects. The optimum range of N, P, K and Ca was N 0-75g·plant-1,P 150-225g·plant-1,K 0-75g·plant-1 and Ca 867g·plant-1,and corresponding ranges of fertilizers were (NH2)2CO 0-163g·plant-1, calcium-magnesium phosphate compound 1071-1607 g·plant-1, KCl 0-125 g·plant-1,lime 1000 g·plant-1. On this soil,the optimum rates of Ca, N, P and K can promote teak to effectively uptake necessary nutrient. Teak grew worst when without or inadequate lime and phosphate application. Ca concentration in leaves of 7 months old of teak plantation in this trial was closely related to the growth potential of its spouting plantation of 6 months old after cut. It can be used as an index or predictor to diagnose and predict the growing status of its sprouting plantation.
引文
[1] White, K.J. Teak: some aspects of research and development. Publication 1991/17. FAO Regional office for Asia and the Pacific (RAPA). Bangkok, 1991.
    [2] Troup, R.S. The silvicuture of Indian trees.Vol. II, Clarendon oress, Oxford, United Kingdom, 1921, 696-798.
    [3]刘鹏,杨家驹,卢鸿俊.东南亚热带木材[M] .北京:中国林业出版社, 1993.
    [4]周铁锋.中国热带主要经济树木栽培技术[M] .北京:中国林业出版社, 2001, 288-291.
    [5]马华明,梁坤南,周再知.我国柚木的研究与发展[J ].林业科学研究, 2003, 16(6) :768-773.
    [6]吴琼辉,古定球,曾庆圣.广东发展柚木人工林的探讨[J].广东林业科技, 2004, 20(4):60-62.
    [7] Behaghel, I. The state of teak (Tectona grandis) plantations worldwide [J ]. Bois et Forets des Tropiques, 1999, 262: 6-18.
    [8] FAO. Report on teak growing under exotic conditions. FAO/TSC-57/3, FAO Rome, 1957.
    [9] Myint, Kyu.Pe. Myanmar teak: quality and exports. In: Quality timber product of Teak from sustainable forest management. Proceedings of the international conference on quality timber product of Teak from sustainable forest management. Peechi, India, 2-5 December, 2003:250-256.
    [10] Dabral, B.G, Prem Nath, Ramswarrup. Some preliminary investigations on the rainfall interception by leaf litter. Indian Forester, 1963, 89(2):112-116.
    [11] Gyi, K. K, Tint, K. Management Status of Natural Teak Forests. In: Teak for the future. Proceedings of the second regional seminar on teak. 29 May-3 June 1995, Yangon, Myanmar, 1995, 27-48.
    [12] Kernmode, C.W.D. Teak-the silviculture of gregarious type. FAO Forestry and Forest Product Studies, 1957, 13:168-178.
    [13] Tewari, D.N. A monograph on teak International Book Distributor, Dehradum, India, 1977, 22-23.
    [14] Gyi, K. K. An investigation of factors relevant to development of teak plantation in South East Asia with Particular reference to Burma. M.Sc. Thesis, Australian National University, Canberra Australia, 1972.
    [15] Kaosa-ard, A. Physiological studies on sprouting of teak (Tectona grandis Linn.f.) planting stumps. ph.D. Thesis, Australian National University, Canberra Australiaa,1977.
    [16] Seth, S.K and Khan,W.M.A. Regeneration of teak forests. In: Proc. All India teak study tour and symposium. FRI. Dehra Dun, 1958, 107-120.
    [17] Kaosa-ard, A. Teak its natural distribution and related factors. NAT. His. Bull. Siam. Soc., 1981, 29:55-74.
    [18] FAO Regional Office for Asia and the Pacific(RAP), Bangkok. TEAK-some aspects of research and development. RAP publication: No.4/1999.
    [19] FAO Regional Office for Asia and the Pacific, Bangkok. teak from the future: Proceedings of the second regional seminar on teak. 29 May-3 June 1995, Yangon, Myanmar. RAP publication: 1998/5.
    [20] Kulkarni, D.H. Distribution of teak (Tectona grandis L.f.) on the north slope of the satpuras with special reference to geology. In: Proc 8th Silviculturists Conference, Dehra Dun, 1951, 254-263.
    [21] Puri, G.S. Advances in ecology of teak (Tectona grandis L.f.) In: Proc 8th Silviculturists Conference, Dehra Dun, 1951, 242-249.
    [22] Srisuksai, B. Nutrient losses from teak stump harvesting. Proceedings of the seminar on 50 Anniversary of Hyay-Tak Teak plantations, Bangkok, 5-8 August, 1992.
    [23] Tewari, D.N. A monograph on teak (Tectona grandis Linn.f.) International Book Distributor, Dehradum, India, 1992, 479.
    [24] Krishnapilla, B and Abdul Razak Mohd Ali. Site, technology and productivity of teak, the Malaysian experience. In: FORSPA publication No.24/2000. Teak Publication No.3, Proceedings of international seminar, 2000, 109-20.
    [25] Myint, Kyu. Pe. Myanmar teak: quality and exports. In: Quality timber product of Teak from sustainable forest management. Proceedings of the international conference on quality timber product of Teak from sustainable forest management. Peechi, India, 2-5 December, 2003, 250-256.
    [26] FAO. Global data on forest plantations resource. Forest Genetic Resources No.29. Food and Agriculture Organization of the United Nation. Roma, 2001.
    [27] Bhat, K.M. and J.K.Sharma. A report. In: Quality timber product of Teak from sustainable forest management. Proceedings of the international conference on quality timber product of Teak from sustainable forest management. Peechi, India, 2-5 December, 2003, 641-655.
    [28] Keogh, R.M. The care and management of teak plantation. University National, Heredia, Costa Rica, 1987.
    [29]邝炳朝.我国柚木栽培的回顾和展望.中国林业科学研究院热带林业研究所建所三十周年纪念文集[M]. 1992, 69-72.
    [30]潘志刚,游应天.中主要外来树种引种栽培[M].北京:北京科学技术出版社, 1994.
    [31]陈存及,陈伙法.阔叶树种栽培[M].北京:中国林业出版社, 2000.
    [32]王达明,杨绍增.云南柚木的引种和发展.热区造林树种研究论文集.昆明:云南科技出版社. 1996, 37-40.
    [33]梁坤南.柚木无性系促萌与采穗圃营建技术(硕士论文).中国林科学研究院热带林业研究所,2007
    [34] Apichart, Kaosa-ard, Chanpaisaeng, S. Teak breeding strategy in Thailand. Proceedings of the seminar on 50 Anniversary of Huay-Tak Teak plantation, Bangkok, 5-8, August, 1992.
    [35]张树芬,张荣贵.河口县立地条件对柚木生长影响的调查研究[J].林业调查规划. 2005, 30 (3): 11-113.
    [36] Burley, J, Kemp, R.H. Centralised planning and international co-operation in the introduction and improvement of tropical tree species. Commonwealth Forestry Review, 1973, 52(4):355-343.
    [37] Keiding, H. Kemp,R.H. Exploration, collection and investigation of gene resources: Tropical pines and teak. Third would consultation on forest tree breeding, Canberra, Australia, 21-26 March, 1977, V1:13-31. CSIRO, Australia.
    [38] Kaosa-ard, A. Teak international provenance trial I. Growth and stem quality. In Proceedings“50th Year of Huay Tak Teak Plantation:Teak Seminar”, 1993, 113-129.
    [39] Kaosa-ard, A. Teak international provenance trial I. Wood production and quality. In Proceedings“50th Year of Huay Tak Teak Plantation:Teak Seminar”, 1993a, 294-312.
    [40]北京林业大学主编.土壤学[M].北京:中国林业出版社, 1982.
    [41]李庆逵主编.中国红壤[M].北京:科学出版社, 1985.
    [42] Philip, J. Smethurst. Soil solution and other soil analyses as indicators of nutrient supply: a review. Forest Ecology and Management, 2000, 138:397-411.
    [43] Macy, P.F. The quantitative mineral nutrient requirements of plants. Plant Physiol., 1936, 11: 749-764.
    [44] Ulrich, A. and F.J. Hills. Principles and practices of plant analysis. In Soil testing and plant analysis. Part II. SSSA Spec. Publ. Seri. SSSA, Madison, WI., 1967, 11-24.
    [45] Lauehli .A & Bieleski,R.L.著(张礼忠,毛知耘译).植物的无机营养[M].北京:农业出版社,1992.
    [46] Beaufils, E. R. Diagnosis and Recommendation Integrated System (DRIS). Soil Science Bulletin. University of Natal, Pietermarizburg, 1973, 1: 32.
    [47] Haase, D.L, Rose, R.Vector analysis and its use for interpreting plant nutrient shifts in response to silvicultural treatments.For. Sci., 1995, 41(1):54-66
    [48] Imo, M, Timmer,V. R. Vector diagnosis of nutrient dynamics in mesquite seedlings. For. Sci. 1997, 43:1-6.
    [49]陆景陵.植物营养学[M].北京:中国农业大学出版社, 2003.
    [50] Thomas, J.R, Oerther, G. F.Estimating nitrogen content of sweet pepper leaves by reflectance measurements [J].Agronomy J., 1972,64:l1-13.
    [51] Jackson, R.D.,Jones, C.A,Uehara,G,Santo, L.T.Remote detection of nutrient and water deficiencies in sugarcane under variable cloudiness[J].Remote Sensing of Environment, 1980, 11:327-331.
    [52]薛利红,罗卫红,曹卫星,田永超.作物水分和氮素光谱诊断研究进展[J].遥感学报,2003,7(1): 73-80.
    [53] Timmer, V.R, Morrow, L.D. Predicting fertilizer growth response and nutrient status of Jack pine by foliar diagnosis. Earl L.Stone ed. Forest Soils and Treatment Impacts (1984). Proc. of 6th North American Forest Soils Conference, The University of Tennessee, Knoxville.
    [54]毛达如.植物营养研究方法[M].北京:农业大学出版社,1994.
    [55] Hockman, J. N, Burger, J. A., and Wm, D.Smith. A DRIS application to Fraser fir Christmas. Communication in Soil Science Plant Analysis, 1989, 20(3):305-318.
    [56] Rathfon,R.A. Diagnosis and Recommendation Integrated System (DRIS) nutrient norms for Fraser Fir Christmas trees. For. Sci., 1991, 37(4):998-1010.
    [57] Rehfuess, K.E. Relaions between the growth of Norway spruce(Picea abies) stands and chemical indices. Forstwiss, Centralbu, 1980, 99:146-154.
    [58] Mead,D.J., Pritchett,W.L. Variation of N, P, K, Ca, Mg, Mn, Zn and Al in slash pine foliage. Commun. Soil Sci. Plant Anal., 1974, 5:291-301.
    [59] Nambiar, E.K.S., Correlation between nitrogen supply and needle growth, and site productivity in Pinus radiate.Ann.Bot., 1981, 60:147-156.
    [60] Rafael, Zas,Rafael, Serrada. Foliar nutrient statue and nutritional relationships of young Pinus radiate plantations in northwest Spain Forest ecology and Management, 2003, 174:167-176.
    [61] Leech, R.H. and kim,Y.T. Foliar analysis and DRIS as guide to fertilizer amendments in polar plantation. For. Chron., 1981, 57:17-21.
    [62] Schonau, P.A.G, Hrber, M.A. Relationship between growth rate, fertilizing and foliar nutrient concentration for Eucalyptus grandis; preliminary investigations. Fertilizer Research. 1983,4:369-380.
    [63] Fallahi, E.and Righetti, T.L. Use of Diagnosis and Recommendation Integrated System (DRIS) in Apple. Hort.science, 1984, 19(3):116.
    [64] Parent, L.E. Derivation of DRIS norms for a high density apple orchard established in the Quebee Appelachian mountains. J. Amer. Sor. Hort. Sci., 1989, 114(6):915-919.
    [65] Goh, K.M. Preliminary nitrogen, phosphorus, potassium, calcium and magnesium DRIS norms and indices for apple orchards in Canterbury. New Zealand Common. Soil Sci. Plant Anal., 1992, 23(13):1371-1385.
    [66] Pay, Drechsel, Wolfgang, Zech. 1994. DRIS evaluation of teak (Tectona grandis L.f) mineral nutrition and effects of nutrition and site quality on teak growth in West Africa. Forest Ecology and Management, 1994, 70:121-133.
    [67] Kaul, O.N., Gupta, A.C., amd Negi, J.D.S. Diagnosis of mineral deficiencies in teak (Tectona grandisf) seedlings. India For., 1972, 98(3):173-177.
    [68] Sujatha, M.P. Diagnosis of micronutrient deficiencies in teak seedlings. KFRI, Research Report No.249, 2003. Kerala Forest Research Institute, India.
    [69] Nwoboshi, L.C. Studies on mineral nutrition of teak (Tectona grandis L.f). ph.D. Thesis, University of Ibadan, Nigeria, 1973, 386pp.
    [70] Nwoboshi, L.C. Macromutrient deficiencies symptoms in teak (Tectona grandis L.f). Bull,No.6, Department of Forest Reserarch Management, University of Ibadan, Nigeria, 1975, 12pp.
    [71]金继运,自由路.精准农业与土壤养分管理[M].北京:中国大地出版社.2001, 10-15.
    [72] Knipling, E.B.Physical and physiological basis for the reflectance of visible and near infrared radiation from vegetation[J].Remote Sensing of Environment, 1970, 1:155-159.
    [73]申广荣,王人潮.植被高光谱遥感的应用研究综述[J].海交通大学学报(农业科学版),2001,19(4):315-321.
    [74]王人潮,陈铭臻,蒋亨显.水稻遥感估产的农学机理研究.I.不同氮素水平的水稻光谱特征及其敏感波段的选择[J].浙江农业大学学报, 1993, 19(增刊):7-14.
    [75]周启发,王人潮.水稻氧素营养水平与光谱特征的关系[J].浙江农业大学学报, 1993, 19(增刊):40-46.
    [76]张宏名.农田作物光谱特征及其应用[J].光谱学与光谱分析, l994, 14(5):25-30.
    [77]浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社, 2000, 185-228.
    [78]王磊,白由路.基于光谱理论的作物营养诊断研究进展.植物营养与肥料学报,2006, 12(6): 902-91
    [79] Curran,P.J.Remote sensing of foliar chemistry [J]. Remote sensing of Environment, 1989,30:271-278.
    [80] Zagloski, F., Pinel,V. Forest canopy chemistry with high spectral resolution. Remote sensing [J]. 1996, 17(6) :1107-1128.
    [81] Curran, P.J.,Kupiec, J.A,Smith, G..M.Remote sensing the biochemical composition of a slash pine canopy [J].IEEE Transactions on Geo-science and Remote Sensing, 1997, 35(2):415-420.
    [82] Curran, Paul J., Dungan, Jennifer, L, Peterson, David L. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry - Testing the Kokaly and Clark methodologies. Remote Sensing of Environment, 2001, 76(3): 349-359.
    [83] Gong, P. Pu, R. Heald, G. Analysis ofin situ hyperspectual data for nutrient estimation of giant sequoia[J]. International J. of Remote Sensing, 2003, 24(7):1827-1850.
    [84]张万儒.国外森林土壤研究现状与趋向[J].世界林业研究, 1990, 3(2):23-29.
    [85]李贻铨.国外林地施肥的效益和技术[J].国外林业文摘, 1988, (2):1-5.
    [86] Baule, H, Fricker C. The fertilizer treatment of forest trees. 1970, BLV: Munich [M], Germany.
    [87] Turner, J. A review of forest fertilization programs in Australia, USDA Forest Service. General Technical Report, Pacific Northwest Forest and Range. Experiment Station., 1983.163.
    [88] Attiwill, P.M. Adsms Ma. Nutrition of Eucalyptus. CSIRO, Melbourne, Australia, 1996, 251-280.
    [89] Diss, L.E., Fernandez, J.Q.P.Barros, N.F. et.al. Availability of phosphorus in a Brazilian oxisol cultivated with Eucalyptus after nine years as influenced by phosphorus fertilizer source, rate and placement. Commun Soil Sci. Plant Anal., 2001, 32:837-847
    [90] Hallett, R.A., Hornbeck, J.W. Foliar and soil nutrient relationships in red oak and white pine forests. Can. J. For. Res., 1997, 27:1233-1244.
    [91] Paul, Bolstad. Height and Diameter Growth Response in loblolly pine stands following fertilization. Forest Science, 1987, 33(3):644-653.
    [92] Brown., Kevin R. Mineral nutrition and fertilization of deciduous broadleaved tree species in British Columbia. Res. Br., B.C.Min. For., Victoria, B.C.Work. Paper. 42/1999.
    [93]李贻铨.林木施肥与营养诊断[J].林业科学, 1991, 27(4):435-442.
    [94] Tyler, G.. Probable effects of soil acidification and nitrogen deposition on the floristic composition of oak (Quercus robur L.) forest. Flora (Jena), 1987, 179, 165-170.
    [95] Tyler, G. Acidification and chemical properties of Fagus svluafica L. forest soils. Stand. J. For.Res., 1987, 2: 263-271.
    [96] Falkengren-Grerup, U., Linnermark, N. and Tyler, G. Changes in acidity and cation pools of south Swedish soils between 1949 and 1985. Chemosphere, 1987, 16: 2239-2248.
    [97] Tomhnson, G.H. Effects of acid deposition on the forests of Europe and North America. CRC Press, Boca Raton, FL, 1990, 281 pp.
    [98] Lorenz, M., International co-operative programme on assessment and monitoring of air pollution effects on forests -ICP forests. Water Air and Soil Pollution, 1995, 85, 1221-1226.
    [99] Tamm, C.O., Popovic,B. Acidification experiments in pine forests. Report National Swedish Environmental Protection Board 3589, Stockholm, Sweden, 1989, 131 p.
    [100] Olsson, B.A., O.Kellner. Effects of soil acidification and liming on ground flora and establishment after clear-felling of Norway spruce in Sweden. Forest Ecology and Management, 158 (2002), 127-139.
    [101] Andersson,F., Persson,T. Liming as a measure to improve soil and tree condition in areas affected by air pollution. Report National Swedish Environmental Protection Board 3518. Stockholm, Sweden, 1988, 131 p.
    [102] Van, Miegrcet, H., Johnson, D. and Todd, D.E. Foliar response of red spruce saplings to fertilization with Ca and Mg in the Great Smoky Mountains National Park. Can. J. For. Res., 1992 23: 89-95.
    [103] Van, den, Burg, J. Results and experiences from fertilization in the Netherlands. Fert. Res., 1991, 27: 107-111.
    [104] Ende, H.P. and Huttl, H.W. Effects of magnesium fertilizer on the vitality and nutrition of a European beech (Fagus syluatica L.) stand in the southern Black Forest of West Germany. Water, Air Soil Pollut., 1991, 54: 561-566.
    [105] Martin, L., Bengt, N. Effects of lime and phosphate additions on nutrient status and growth of beech (Fagus sylvatica L.) seedlings. Forest Ecology and Management, 74 ( 1995), 133-148.
    [106] Thomas G. C., Russell S.Y., Richard, K., Thomas, O. Growth potential of twelve Acacia species on acid soils in Hawaii. Forest Ecology and Management, 80 (1996) 175-186.
    [107] Nand, Kishore. Preliminary studies on the effect of phosphatic fertilizers on teak plantation. Indian Forester, 1987, 113 (6):391-394.
    [108] Tsan, E.Y., T.H.Ong, Mazlan and L.H. Ang. A Preliminary study on growing teak in a dandy area in Malaysia: a fertilizing trial. In: Quality timber product of Teak from sustainable forest management. Proceedings of the international conference on quality timber product of Teak from sustainable forest management. Peechi, India, 2-5 December, 2003, 540-544.
    [109] Falloon, P.D,Smith, J.U and Smith, P. A Review of Decision Support System for Fertilizer Application and Manure Management [J]. Acta Agronoimca Hungarica, 1999, 47(2):227-236.
    [110]宋学之.母生幼林矿质营养诊断的研究[J].林业科学, 1980, 16 (3) 174.
    [111]刘显旋.漆树苗期矿质营养的初步研究[J].中南林学院学报, 1981, 1(1):98-102.
    [112]叶仲节,柴锡周.杉木营养诊断初步研究.森林与土壤[M].中国林学会、中国土壤学会森林土壤专业委员会主编.北京:科学出版社, 1981.
    [113]范少辉,俞新妥.杉木苗期氮素营养诊断的研究[J].福建林学院学报,1986, 6 (2):1-10.
    [114]范少辉,俞新妥.杉木苗期施氮的田间试验研究[J].福建林学院学报,1990, 10 (4) 335-343.
    [115]钟安良,俞新妥.杉木苗期氮磷钾营养及诊断研究[J].福建林学院学报,1988, 8 (1), 13-28.
    [116]范少辉,俞新妥,钟安良.杉木苗期栽培营养的研究[J].福建林学院学报,1995, 15(4):293-300.
    [117]卫茂荣,张新华,徐爱军等.应用诊断施肥综合法(DRIS)进行日本落叶松苗木营养诊断的研究[J].土壤通报, 1994, 25(5): 227-229.
    [118]吴国南.湿地松容器苗的营养效应及其诊断初探[J].南京林业大学学报, 1990, 14(2:)16-21.
    [119]林德喜,陈辉.锥栗人工林营养综合诊断(DRIS)研究[J].林业科学, 2001, 117-125.
    [120]张旭东,董林水,周金星,郑郁善.珍稀乡土树种福建柏苗期DRIS营养诊断[J].生态学报, 2005, (5): 1165-1170.
    [121]谢安强,陆小静,杨榕,荣俊冬,王友生,王新屯,陈礼光.柳杉苗木综合营养诊断研究II.田间DRIS指数法[J].福建林学院学报, 2006, 26(2): 111-116.
    [122]黄宇玉.诊断施肥综合法(DRIS)的原理与应用问题[J].土壤学进展, 1990, 18(1): 22-25.
    [123]陈喜军.落叶松中幼林营养诊断施肥技术[J].林业科技,1991, 16(2),21-22.
    [124]陈道东,李贻铨.林木叶片最适养分状态的模拟诊断[J].林业科学, 1991, 27(1):1-7.
    [125]王庆仁.几种林木常见症状与叶内营养元素水平的关系[J].陕西林业科技,1989, 4:57-60.
    [126]李淑仪,林书蓉,廖观荣等.雷林1号桉叶片营养诊断研究[J].林业科学研究, 1997, 10(1): 13-188.
    [127]李淑仪,林书蓉,廖观荣等.桉树营养状况与叶片营养诊断研究[J].林业科学, 1996, 32(6): 481-490.
    [128]黄益宗,冯宗炜,黎向东.应用“416 A”最优混合设计研究尾叶桉肥效与营养诊断[J].林业科学, 1999, (6):10~18.
    [129]华南热带作物研究院橡胶所营养诊断课题组,国营红华农场生产科.砖红壤区橡胶树营养诊断对指导施肥的效应[J].土壤通报,1980, (2): 44-46.
    [130]韦翔华.银杏磷素营养及其营养诊断方法的研究初报[J].广西农业大学学报, 1998, 17(3):247-253.
    [131]俞立达.柑桔营养诊断与施肥论文集[M].上海:上海科学出版社, 1993, 1-10.
    [132]张晓熹,陈建生,陈秀道.珠江三角洲龙眼立地土壤养分限制因子诊断[J].广东农业科学,1999, (3):33-37.
    [133]姜远茂,顾曼如,彭福田. DRIS、M-DRIS和DOP法在果树上的应用[J].山东农业大学学报. 1995, 26(4), 531-534.
    [134]刘慧,王为木,杨晓华等.我国苹果矿质营养研究现状[J].山东农业大学学报(自然科学版),2001, 32(2):245-250.
    [135]徐培智,陈建生,张发宝等.香蕉、荔枝、龙眼施镁效应研究[J].广东微量元素科学,1998,5(12) :48-52.
    [136]范少辉,俞新妥.杉木人工林栽培营养的研究[J].林业科学研究(杉木人工林栽培营养的研究专刊), 1996, 9: 1-9.
    [137]张建国,盛炜彤,罗红艳等.杉木营养平衡与苗木干物质的分配关系.林业科学, 2003, 39(3): 37-44.
    [138]李淑仪,钟继洪,莫晓勇,廖观荣等.桉树土壤与营养研究[M].广东科技出版社, 2007.
    [139]陈道东,张瑛,纪建书等.杉木幼林叶子养分诊断研究[J].林业科学研究(林木施肥与营养专刊), 1996, (9):58-66.
    [140]钟安良,熊文愈.杉木人工林林木养分的季节变化及养分间的相互关系[J].南京林业大学学报, 1993, 17(3):1-8.
    [141] Zhong. A.L., W.Y, Hsiung. Evaluation and diagnosis of tree nutritional status in Chinese-fir plantations,Jiangxi, China[J]. Forest Ecology and Management, 1993, 62:245-270.
    [142]黄益宗,冯宗炜等.尾叶桉叶片氮磷钾钙镁硼元素营养诊断指标[J].生态学报, 2002, (8): 1254-1259.
    [143]洪顺山,庄珍珍,胡炳堂等.湿地松幼林营养的DRIS诊断[J].林业科学研究, 1995, 8(4):360-366.
    [144]李贻铨,丁应祥,陈道东等.整地施肥对I-69杨后期生长与砂姜黑土性质的影响[J].林业科学研究,1996, 9:167-176.
    [145]李贻铨,徐清彦.杉木幼林前5年施肥效应研究[J].土壤通报, 1992, 22(1):28-32.
    [146]张建国,李贻铨,纪建书等.杉木幼林施肥的时效性研究[J].林业科学研究(林木施肥与营养专刊), 1996, 9:27-33.
    [147]周文龙,梁坤南.不同P肥对尾叶桉幼林生长效应的研究[J].林业科学研究(林木施肥与营养专刊), 1996, 9:157-160.
    [148]胡日利,吴立潮等.加勒比松幼林施肥效应研究[J].林业科学研究(林木施肥与营养专刊), 1996, 9:126-132.
    [149]左永忠.产量反应曲面在油松苗矿质肥料用量及配比研究中的应用[J].林业科学, 1983, l9(4):400-405.
    [150]邱尔发,郑郁善,洪伟.竹林施肥研究现状及探讨[J].江西农业大学学报,2001,23(3):551-555.
    [151]林全业.木施肥研究综述[J].山东农业大学学报1993, 24(4):479-482.
    [152]陈竣,李贻锉,杨承栋.中国林木施肥与营养诊断研究现状[J].世界林业研究, 1998(3):58-65.
    [153]关军峰, Max Saure.果树钙素营养与生理[M].北京:科学出版社, 2005.
    [154]陆景陵.植物营养学[M].北京:中国农业大学出版社, 2003.
    [155] Lawrence, B.G., David, M.B.,Shortle,W.C., A new mechanism for calcium loss in forest-flor soil [J]. Nature, 1995, 278, 162-165.
    [156] Bowen, H.J.M. Environmental Chemistry of the Elements [M]. Academic Press, London, 1979.
    [157] Ellsworth.D.S. and Liu, X., Photosynthesis and canopy nutrition of four sugar maple forests on acid soils in northern Vermont. Can.J.For.Res., 1994, 21-2118-2127.
    [158] Wilmot, T.R., Ellsworth,D.S., and Tyree, M.T. Relationships among crown condition, growth and stand nutrition in seven northern Vermont sugarbushers. Can. J. For. Res., 1995, 25:386-397.
    [159] Wilmot, T.R., Ellsworth, D.S. and Tyree, M.T. Base cation fertilization and liming effects on nutrition and growth of Vermont sugar maple stands. Forest Ecology and Management, 1996, 84:123-134.
    [160] Mader, D.L., and Thompson,B.W., Foliar and soil nutrients in relations to sugar malple decline. Soil Sci.Soc.Am.Proc., 1969, 33:794-800.
    [161] Klironomos, J.N., P. Moutoglis, B. Kendrick, and P. Widden. A comparison of spatial heterogeneity of vesicular-aruscular mycorrhizal fungi into maple forest soil. Canadian Journal of Botany, 1993, 71:1472-1480.
    [162] Horsley, S.B., R.P., Long, S.W. Bailey, R.A. Hallett, and T.J. Hall. Factor associated with the decline disease of sugar maple on the Allegheny planteau. Canadian Journal of Forest Research, 2000, 30: 1365-1378.
    [163] L.M.沃尔什, J.D.比坦主编,周鸣铮译.土壤测定与植物分析[M].北京:农业出版社, 1982, 98-99.
    [164] Minocha, R., W.C. Shortle, G..B.Lawrence, M.B.David and S.C. Minocha. Relationship among foliar chemistry, foliar polyamines, and soil chemistry in red spruce trees growing across the northeastern United States. Plant and Soil, 1997, 191:109-122.
    [165] Shortle, W.C., and K.T. Smith. Aluminum-induced calcium deficiency symdrome in declining red spruce. Science, 1988, 240:1017-1-18.
    [166] DeHyes, D.H., P.G., Schabery, G.J. Hawley, and G..R. Strimbeck. Acidy rain impacts on calcium nutrition and forest health. BioScience, 1999, 49:789-800.
    [167] Manion, P.D. Tree disease concepts [M]. Prentice Hall, Englewood Cliffs, New Jersey, USA, 1991.
    [168] Bernier, B. and M.Brazeau. Foliar nutrient status in relation sugar maple dieback in the Quebec Applachians.Canadian Journal of Forest Research, 1988, 18:754-761.
    [169] Wargo, P.M., R.Minocha, B.L.Wong, R.P. Long, S.B. Horsley, and T.J.Hall. Measuring changes in stress and vitality indicators in limed sugar maple on the Allegheny plateau in north-central Pennsylvania. Canadian Journal of Forest Research, 2002, 32:629-641.
    [170] Stephane, M.J., T.J. Fahey, T.G.. Siccama, et.al.. Response of sugar maple to calcium addition to northern hardwood forest. Ecology, 2006, 87:1267-1280.
    [171] Likens, G..E., C.T. Driscoll, D.C. Buso. et.al. The biogeochemistry of calcium at Hubbard Brook. Biogeochemistry, 1998, 41:89-173.
    [172] Horst, W.J., and H.Marschner. Mineral nutrition of higher plants [M]. Academic Press, Boston, Massachusetts, USA, 1990.
    [173] Bush, D.S. Calcium regulation in plant cells and its role in signaling[J]. Annu Rev Plant Physiol Plant Mol Biol, 1995, 46:95-122.
    [174]张耀宏.施硼对提高苹果品质的效果[J].农业新技术新方法译丛. 1992,42(1): 31-32.
    [175] Granelli, G. et.al. Harvest and post harvest apple quality influenced by boron application [J]. Acta. Horticulturae, 1989, 258:405-412.
    [176]王火焰,王运华,吴礼树.不同硼效率甘蓝型油菜品种的钙硼营养效应[J].中国油料作物学报, 1998 20(2):59-65.
    [177] Oyewole, O.I., Aduayi E A. Evaluation of the growth and quality of the“ifeplum”tomato as affected by boron and calcium fertilization [J]. Plant Nutrition, 1992, 15(2):199-209.
    [178] Tanaka, H. Boron absorbtion by crop plants as affected by other nutrients on the medium. Soil Sci. Plant Natr., 1967, 13-41.
    [179] Drake, M.Sieling DH, Scarseth GD. Calcium-Boron ratio as an important factor in controlling the boron starvation of plants [J].Amer Soc Agron., 1941, 33:454-462.
    [180]周卫,林葆.土壤中钙的化学行为与生物有效性研究进展.土壤肥料. 1996, 5:19-22.
    [181] Sujatha, M.P. Significance of micronutrient on the growth of teak seedlings. In: Quality timber product of Teak from sustainable forest management. Proceedings of the international conference on quality timber product of Teak from sustainable forest management. Peechi, India, 2-5 December, 2003:491-494.
    [182] Gopikumar, K. Varghese. Sand culture standees of teak (Tectona grandis) in relation to nutritional deficiency symptoms, growth and vigor. Journal of Tropical Forest Science, 2004, 16(1):46-61.
    [183] Kaul, O.N., Gupta, A.C., Negi, J.D.S. Diagnosis of mineral deficiencies in teak seedlings. India For., 1972, 98(3):173-177.
    [184] Sundralingan, P. Some preliminary studies on the fertilizer requirements of teak. Malaysian Forester. 1982, 45(3):361-366.
    [185] Kaupenjohann, M., Zech, W. Potassium requirements of fast-growing tropical tree plantations. Potassium in ecosystems: Biogeochemical fluxes of cations in agro and forest systems. Proceedings of the 23rd Colloquium of the International Potash Institute, Prague , Cazchoslovakia, 12-16 October 1992:325-343. Internatioanl Potash Institute, Basel, Swizerland.
    [186] Bhatnagar, H.P. Preliminary studies on the nutritional requirements of teak (Tectona grandis). Indian For. 1969, 95(7):488-495.
    [187]梁坤南,潘一峰,刘文明.柚木苗期多因素施肥试验.林业科学研究, 2005, 18(5):535-540.
    [188] Seth, S.K. and Yadav, J.S.P. Teak soils. In: Proceedings of All India Teak Study Tour and Symposium, Dehra Dun, 1959.
    [189] Zech, W. Relationship between growth, mineral nutrition and site factors of teak plantations in the rain forest zone of Liberia. F.E.M, 1991, 41:221-235.
    [190] Drechsel, P, Schmall.S, and Zech.W. Relationships between growth, mineral nutrition, and soil in young teak plantation in Benin and Liberia. Water, Air, and Soil pollution.54:651-656, 1990/91.
    [191] Hase, H. Nahrstoffrerven auf Banco-Standorten der Waldreserve Caparo/Venezuela unter besonder Beruck-sichtigung der Pllantagenwirschafe mit Teak (Tectona grandis). Gottinger Bodenkundiche Berichte, 1981, 66. Gottingen 152.
    [192] Bhatia, K.K. Foliar Calcium of Teak. Journal of Indian Botanical Society, 1955, 34(3):227-234.
    [193] Nwoboshi, L.Chelunor. Growth and nutrient requirements in a teak plantation age series in Nigeria, II. Nutrient accumulation and minimum annual requirements. For.Sci, 1984, 30:35-40.
    [194] Rajagopal, K, C.Buvaneswaran,V.Subramanian and M.george. Nutrient cycling in young teak plantation I-restitution of nutrients through litter and rain wash. Indian Forester, 2005, 223(4): 221-227.
    [195] Pay, Drechsel, Wolfgang, Zech. DRIS evaluation of Teak (Tectona grandis L.f.) mineral nutrition and effects of nutrition and site quality on teak growth in West Africa. Forest Ecology and Management, 1994, 70:121-133.
    [196] Nand Kishore. Preliminary studies on the effect of phosphatic fertilizers on teak plantation. Indian Forester, 1987, 113 (6):391-394.
    [197] Ram Prasad, Sah, A.K, Bhandari A.S. Fertilizer trial in ten and twenty years of old teak plantation in Madhya Pradesh. Journal of Tropical Forestry, 1986, 2(1):47-52.
    [198] Gawande, S.R. Stand density manipulation and fertilization studies on teak. MSc (Forestry) Thesis. Kerala Agricultural University, Thrissur, Kerala, 1991, 81p.
    [199] Bheemaiah, G., Subrahmayam, M.V.R., Ismail,S. Performance of teak under different irrigation and fertilizer management practices. Indian Forester, 1997, 123 (12):1171-1175.
    [200] Mohan Kumar, B. Sustainable teak plantation in the tropicals: The question of nutrient management. In: Quality timber product of Teak from sustainable forest management. Proceedings of the international conference on quality timber product of Teak from sustainable forest management. Peechi, India, 2-5 December, 2003, 179-187.
    [201]梁坤南,王尚明,杨国清,刘文明等.柚木种源/施肥试验初报.广东林业科技, 2002, 18(2):5-9.
    [202] Kaosa-ard, A. Teak Its natural distribution and related factors. Nat. His. Bull. Siam. Soc., 1981,29: 55-74.
    [203] Tewari, D.N. A Monograph on Teak (Tectona grandis Linn. f.), Int. Nat. Book Dist. Dehra Dun, 479p, 1992.
    [204]王义弘.森林生态学实验实习方法.哈尔滨:东北林业大学出版社, 1990.
    [205]邝炳朝.柚木材性的种源与家系选择[C] .‘柚木良种选育及配套技术’成果鉴定材料之II-8,广州, 1996.
    [206] Walworth, J.L. and M.E.Sumner. The Diagnosis and Recommendation Integrated System (DRIS). 1987, p.149-188. In B.A. Stewart (ed.) Advances in Soil Science, Vol. VI. Springer-Verlag, New York, NY.
    [207]肖强,叶文景,朱珠,陈瑶,郑海雷.利用数码相机和Photoshop软件非破坏性测定叶面积的简便方法.生态学杂志. 2005, 24(6):711-714.
    [208]肖强,叶文景,朱珠,陈瑶,郑海雷.利用数码相机和Qiputipq软件非破坏性测定叶面积的简便方法.生态学杂志. 2007, 35(7):822-825.
    [209] Bailian Li, S.E.Mcke and H.L.Allen. Genetic variation in nitrogen use efficiency of loblolly pine seedlings. Forest Science, 1991, 37(6):613-626.
    [210]华东师范大学生物系植物生理教研组主编.植物生理学试验指导[M].北京:高等教育出版社, 1980.
    [211]白厚义主编.回归设计及多元统计分析—21世纪高等学校教材.南宁:广西科学技术出版社, 2003.
    [212]茆诗松等.回归分析及其试验设计[M].上海:华东师范大学出版社, 1981.
    [213]杨义群主编.回归设计与多元分析在农业上的应用[M].陕西杨凌:天则出版社, 1990.
    [214]吴健等.农业栽培技术系统优化设计[M].山东济南:山东科技出版社, 1988.
    [215]潘一峰,刘文明.酸性土壤改良对不同种源的柚木生长的影响.热带亚热带土壤科学, 1997, 6(1): 9-14.
    [216] Bhatia, K.K.. Factors in the distribution of teak (Tectona grandis L.f.) in Madhya Pradesh. Journal of Indian Botanical Society, 1955, 34(4):459-490.
    [217] Bhatia, K.K. Factors in the distribution of teak (Tectona grandis L.f.) and a study of teak forests in Madhya Pradesh. Ph.D Dissertation. Sagar University, India, 1954.
    [218] Zech.W. and Drechesl. P. Foliar data, Ivory Coast. Unpublished report, University of Bayreuth. Mineral deficiencies in forest plantations.
    [219] Drechsel P., Zech W. Foliar nutrient levels of broad-leaved tropical trees: A tabular review. Plant and Soil, 1991, 131:29-46.
    [220] Zech.W. Mineral deficiencies in forest plantations of North-Luzon, Philippines. Trop.Ecol., 1990, 31:22–31.
    [221]鲁如坤等著.土壤-植物营养学原理和施肥.北京:化学工业出版社, 1998.
    [222]石锦芹,丁瑞兴,刘友兆,孙玉华.尿素和茶树落叶对土壤的酸化作用[J].茶叶科学, 1999, 1:7-12.
    [223] Katyal, J.C., Cater, M.F., Vlek, P.L.G. Nitrification activity in submerged soil and its relation to denitrification loss[J]. Biol.Fertil.Soils, 1988, 7:16-22.
    [224] Dancer, W.S., Peterson, L.A.Chesters, G.. Ammonifiction and nitrification of N as influenced by pH and pervious N treatments. Soil Sci. Amer. Proc., 1973, 37:67-69.
    [225] S.L.蒂斯代尔, W.L.纳尔逊.孙秀延,曹志洪等译.土壤肥力与施肥[M].北京:科学出版社, 1984.
    [226]李贻铨,陈道东,徐清彦等.湿地松中龄林施肥肥效研究.张万儒,刘寿坡主编.森林与土壤[M].北京:中国科学技术出版社, 1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700