用户名: 密码: 验证码:
点衍射干涉仪基准波前质量测评研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
点衍射干涉仪利用极小孔径衍射形成近乎理想的球面波作为测试基准波前。这种干涉仪具有极高的检测精度,可以为高精度光刻投影曝光系统的研制提供技术支持。在实际应用中获得高精度基准波前是点衍射干涉仪研制的关键环节之一。因此,对衍射基准波前质量的评估是一项重要的工作。目前,对衍射基准波前质量的测评方法主要有两种:一种是数值仿真分析方法;另一种是采用两个近似相同的衍射光束剪切干涉测量,间接评价出基准波前的质量。第一种方法能够为点衍射干涉仪的研制提供理论依据。第二种方法可以对基准波前进行实际评估。但是,第二种方法测试过程容易受到高频噪声的干扰。另外,由于这种方法建立在参与干涉的两个波前具有一致性基础上,实际中相干波前两者之间的偏差会对测评结果产生影响。因而,研究一种直接测评点衍射干涉仪基准波前的方法,为点衍射干涉仪小孔质量评价与系统集成提供技术支持是非常必要的。相位复原方法是一种直接测试方法,通过采集分析光学星点图像获得光学波前信息。这种方法可以用于点衍射干涉仪基准波前的测评中,以精确获得基准波前中的信息。
     本文主要围绕点衍射干涉仪基准波前衍射质量测评展开研究,包括相位提取算法研究、测试精度分析、系统误差标定算法研究、相关测试实验分析等。主要的研究内容如下:
     1.建立小孔衍射的数学模型,确立衍射光强与衍射波前之间的函数关系。根据相位复原机理测评点衍射干涉仪基准波前,首先需要确立衍射图像与衍射波前之间的数学关系。基于扩展奈波尔-泽尼克理论,分析并获得小孔衍射光强与衍射波前的函数关系,为衍射波前相位提取算法的研究建立可靠的数学模型。
     2.建立用于点衍射干涉仪基准波前测评的相位提取算法。根据衍射光强与衍射波前之间的数学关系,相位复原技术通过相位提取算法从衍射光强中获得波前信息。为满足高精度的测试要求,需要研究适用于小孔衍射波前测评的相位提取算法。设计并建立一种通过光学放大系统对称采集离焦星点图像的多焦面相位提取算法。另外,为了进一步抑制测试环境的干扰,简化测试过程,提出一种单焦面相位提取算法,可以通过单幅衍射图像获得波前信息。
     3.研究分析衍射波前测评过程中的误差源,对相位提取算法进行计算仿真分析。相位提取算法具有非常高的理论计算精度(优于0.0072nm RMS),但是在实际应用过程中,定位误差、光源功率和频率不稳定性、探测器噪声、采样率、背景杂光等因素都会对测试结果产生影响。通过对这些因素的仿真分析,获得多焦面和单焦面相位提取算法的测试精度分别能够达到0.026nmRMS和0.024nm RMS,可满足对衍射波前的测评要求。
     4.研究衍射波前测评过程中系统误差标定方法,并对其精度进行分析。所设计的衍射波前测试装置,通过光学放大系统将衍射图像成像到探测器进行采集,通过对采集图像进行分析,获得相关波前信息。但是,光学放大成像系统的波前像差也会被引入到测试结果中。为满足高精度的测试要求,研究了这种测试装置的系统误差标定方法。对标定方法精度进行分析。分析结果表明,标定方法理论精度能够达到2.02×10~(-4)nm RMS。
     5.衍射波前测评实验研究。设计并构建衍射波前的测评装置,进行测试分析。通过实验研究,验证了基于相位复原技术进行衍射波前测试方法的有效性。
     6.扩展应用:光学成像系统波前测试实验研究。上述相位提取算法由于具有很高的测试精度,无需搭建干涉测量光路。因此,对光刻投影曝光系统等高精度光学成像系统进行实时像质测评具有很好的应用前景。对高精度光学成像系统进行测试。将测试结果与菲索干涉仪的测试结果进行比对,二者差异为0.0074λ RMS (λ=632.8nm)。经过分析,星点图像的低采样率是测试过程中的主要误差源。通过提高星点图像的采样率,可以获得更高测试精度。
Point diffraction interferometer (PDI) uses the diffracted wavefront from anoptical fiber or a pinhole as the reference, which is a nearly ideal spherical wavefront.It has high accuracy and can provide testing services for EUV projection systems'development. In practical applications, to obtain a high accuracy criterion wavefrontis one of the key parts of developing a PDI. Therefore, it is important to evaluate thequality of diffracted criterion wavefront. At present, there are two methods: one isbased on numerical simulation; the other is the shearing interferometry by using twosimilar diffracted beams to evaluate the quality of the criterion wavefront indirectly.The first method can provide some theoretical data for the development of PDI. Thesecond one can evaluate the criterion wavefront practically. However, this methodsuffers from high frequency noise. Meanwhile, based on the identity between the twoshearing wavefront, the differences between the two shearing beams will affect theresult in the practical case. Therefore, a direct method of evaluating the diffractedcriterion wavefront needs to be studied. It can provide a technical support for both theassessment of aberrations in the diffracted criterion wavefront and the alignment ofPDI. Phase retrieval method is a direct testing method, the aberrations can be obtainedbased on the acquired star images. This method can be applied in the evaluation of thediffracted criterion wavefront in PDI, in order to obtain the aberrations in thediffracted wavefront.
     This paper mainly aims at evaluating the aberrations in the criterion wavefront ofPDI, including studying on the phase retrieval algorithm, accuracy analysis, study onthe system error calibration method, and some confirmatory experimental analysis ofthe relevant testing. The main contents are as follows:
     1. A mathematical model of the diffracted wavefront from a small aperture isstudied, and the functional relationship between the diffraction intensity and thediffracted wavefront is established. To evaluate the diffracted criterion wavefront inPDI using the phase retrieval technique, the mathematical relationship between thediffraction image and the diffracted wavefront is necessary. Based on the ExtendedNijboer-Zernike theory, the mathematical relationship between the diffractionintensity from a small aperture and the diffracted wavefront is analyzed and obtained.A mathematical model is established for the study on phase extraction algorithm forevaluating the diffracted criterion wavefront.
     2. Phase extraction algorithms for evaluating the criterion wavefront in PDI areestablished. According to the functional relationship between diffracted intensity andthe diffracted wavefront, the phase retrieval technique can be applied for the phaseextraction and evaluation of the diffracted wavefront. In order to satisfy therequirement of the high accuracy, proper phase extraction algorithms need to bedeveloped for evaluating the aberrations in the diffracted criterion wavefront. Amulti-defocus phase extraction algorithm through capturing symmetricalmulti-defocus diffraction images with an optical amplification system is designed andestablished. In addition, a single-defocus phase extraction algorithm, which canevaluate the aberrations based on one defocus diffraction intensity pattern, is proposed,in order to restrain disturbances in the testing environment and simplify the testingprocess.
     3. The error sources in the evaluation process of diffracted criterion wavefrontare studied, and the accuracy of the phase extraction algorithms is analyzed. Thedeveloped phase extraction algorithms have ultra-high accuracy in the ideal case. Butthese suffer from some factors in the actual testing process, such as: mechanicalpositioning errors, power instability of the light source, frequency instability inwavelength, noises in the detector, the sampling rate, veiling glare in background, andso on. Through analyzing these factors, the prediction accuracy can be estimated, andthe accuracy of multi-defocus and single-defocus phase extraction algorithms canreach the accuracy of0.026nm RMS and0.024nm RMS, respectively. It is possibleto satisfy testing requirements of the diffracted criterion wavefront.
     4. A calibration method is developed to correct the system errors in theevaluation process of the diffracted criterion wavefront, and the accuracy has beenanalyzed. The diffracted intensity patterns are imaged onto detectors through an optical amplification system. In order to reach such high accuracy, a calibrationmethod for correcting the systematic errors in the evaluation process of diffractedwavefront by using the phase retrieval technique is developed, and the accuracy ofthis method is analyzed. The result indicates that the theoretical accuracy can achieve2.02×10~(-4)nm RMS.
     5. The experimental study is implemented by testing the diffracted wavefront.The device for testing the diffracted wavefront from a fiber was designed and built.Through the experiment, the results verified this testing method which is based on thephase retrieval technique.
     6. The experimental study is implemented by testing the wavefront in an opticalimaging system. Due to the high testing accuracy of the phase extraction algorithms,testing the wavefront in the optical systems with high-precision (for example:lithographic projection exposure system) based on these algorithms has a brightprospect. Building a testing device, an optical system with high-precision was tested.The difference between the retrieval result and the interferometric result of a Fizeauinterferometer was0.0074λ RMS (λ=632.8nm). According to the result in asimulation analysis, the main error source in the testing process is the low samplingrate in capturing images. It is possible to obtain higher accuracy by means ofimproving the sampling rate.
引文
[1] K. A. Goldberg, E. Tejnil, J. Bokor. A3D numerical study of pinhole diffraction topredict the accuracy of EUV point diffraction interferometry[C]. Extreme UltravioletLithography, Optical Society of America, OSA Trends in Optics and Photonics,1996,133-137.
    [2] Gary E. Sommargren. Phase Shifting Diffraction Interferometry for MeasuringExtreme Ultraviolet Optics [C]. Optical Society of America Extreme UltravioletLithography4,1996,108-112.
    [3] Patrick P. Naulleau, Kenneth A. Goldberg, Sang Hun Lee, Chang-Hasnain C.Chang, Cynthia J. Bresloff, Phillip J. Batson, Jr David T. Attwood, Jeffrey Bokor.Characterization of the accuracy of EUV phase-shifting point diffractioninterferometry[C]. Emerging Lithographic Technologies II, Proceedings of SPIE,3331,1998,114-123.
    [4] Richard Gaughan. Visible Light Interferometer for EUVL System Alignment[C].Part of the SPIE Conference on Optical Manufacturing and Testing III, SPIE,3782,1999,390-398.
    [5] K. Otaki, K. Ota, I. Nishiyama, T. Yamamoto, Y. Fukuda, S. Okazaki.Development of the point diffraction interferometer for extreme ultravioletlithography: Design, fabrication, and evaluation[J]. Journal of Vacuum Science&Technology B: Microelectronics and Nanometer Structures,2002,20(6):2449-2458.
    [6] K. Otaki, T. Yamamoto, Y. Fukuda, K. Ota, I. Nishiyama, S. Okazaki. Accuracyevaluation of the point diffraction interferometer for extreme ultraviolet lithographyaspheric mirror[J]. J. Vac. Sci. Technol. B,2002,20:295-230.
    [7] Vladimir K. Kirillovsky, Nikolay B. Voznesensky, Michail M. Troukhine,Kyeong-Hee Lee. Interferometers with diffraction on dot aperture for testing of shapeerrors of precise surfaces[C]. Laser-Assisted Micro-and Nanotechnologies2003, Proc.of SPIE,5399,2004:77-87.
    [8] K. Otaki, Y. Zhu, M. Ishii, Nakayama, K. Murakami, T. Gemma. RigorousWavefront Analysis ofthe Visible-light Point Diffraction Interferometer for EUVL[C].Advances in Mirror Technology for X-Ray, EUV Lithography, Laser, and OtherApplications, Proceedings of SPIE5193,2004:182-190.
    [9] Yoshiyuki Sekine, Akiyoshi Suzuki, Masanobu Hasegawa, Chidane Ouchi,Shinichi Hara, Takayuki Hasegawa, Yoshiyuki Kuramoto, Seima Kato. Wave-fronterrors of reference spherical waves in high-numerical aperture point diffractioninterferometers[J]. J. Vac. Sci. Technol. B,2004,22(1):104-108.
    [10] Michael A. Johnson, Donald W. Phillion, Gary E. Sommargren, Todd A. Decker,John S. Taylor, Yoshio Gomei, Osamu Kakuchi, Seiji Takeuchi. Construction andtesting of wavefront reference sources for interferometry of ultra-precise imagingsystems[C]. Optical Manufacturing and Testing VI, Proc. of SPIE,5869,2005,58690P-1~10.
    [11] Seiji Takeuchi, Osamu Kakuchi, Kenji Yamazoe, Yoshio Gomei, Todd A. Decker,Michael A. Johnson, Donald W. Phillion, John S. Taylor. Visible light point-diffractioninterferometer for testing of EUVL optics [C]. Emerging Lithographic Technologies X,Proc. of SPIE,6151,2006,61510E-1~8.
    [12] Lingfeng Chen, Dingguo Sha. Evaluation of the sphericity measurementuncertainty for the fiber point diffraction interferometer [C]. Optical Design andTesting III, Proc. of SPIE,6834,2007,68342N-1~9.
    [13] Nikolay I.Chkhalo, Alexander Yu. Klimov, Denis G. Raskin, Vladimir V. Rogov,Nikolay N. Salashchenko, Mikhail N. Toropov. A new source of a reference sphericalwave for a point diffraction interferometer[C]. Micro-and Nanoelectronics2007, Proc.of SPIE,7025,2007,702506-1~4.
    [14] Matsuura Toshiaki, Okagaki Satoru, Nakamura Takaaki, Oshikane Yasushi, InoueHaruyuki, Nakano Motohiro, Kataoka Toshihiko. Measurement Accuracy inPhase-Shifting Point Diffraction Interferometer with Two Optical Fibers[J].OPTICAL REVIEW,2007,14(6):401-405.
    [15]刘景峰,李艳秋,刘克.移相式点衍射干涉仪的几个关键技术[J].仪器仪表学报,2007,28,(4):179-182.
    [16] N. I. Chkhalo, A. Yu Klimov, V. V. Rogov, N. N. Salashchenko, M. N. Toropov. Asource of a reference spherical wave based on a single mode optical fiber with anarrowed exit aperture[J]. Review of Scientific Instruments,2008,79,(3):033107.
    [17] Jun Han, Liang Nie, Xun Yu, Xu Jiang, Fang Wang. Rigorous accuracy analysisof the fiber point diffraction interferometer[C]. Ninth International Symposium onLaser Metrology, Proc. of SPIE7155,2008,71552Z-1~8.
    [18]马强,刘伟奇,李香波,康玉思,魏忠伦,冯睿,柳华.点衍射干涉仪中小孔衍射波面误差分析[J].光学学报,2008,28(12):2321-2324.
    [19] Fen Gao, Zhuang-de Jiang, Bing Li. Diffraction wavefront analysis of pointdiffraction interferometer for measurement of aspherical surface[C].5th InternationalSymposium on Advanced Optical Manufacturing and Testing Technologies: OpticalTest and Measurement Technology and Equipment, Proc. of SPIE,7656,2010,76565Y-1~8.
    [20] Toshiaki Matsuura, Kazuaki Udaka, Yasushi Oshikane, Haruyuki Inoue,Motohiro Nakano, Kazuto Yamauchi, Toshihiko Kataoka. Spherical concave mirrormeasurement by phase-shifting point diffraction interferometer with two opticalfbers[J]. Nuclear Instruments and Methods in Physics Research A,2010,616,233-236.
    [21]刘克,李艳秋.一种新的相移点衍射干涉仪系统误差标定方法[J].光学学报,2010,30(10):2923-2927.
    [22]马冬梅,陈土泉.点衍射基准波前位相的测评[J].光学精密工程,2010,18(11):2390-2397.
    [23]张海涛.基于光学设计软件的相移点衍射干涉仪建模[J].中国光学与应用光学,2010,3(6):616-621.
    [24] Ke Liu, Yanqiu Li, Hai Wang. Calibration method to characterize the accuracy ofphase-shifting point diffraction interferometer[J]. Review of Scientific Instruments,2011,82(3):033105.
    [25] Tingwen Xing, Jiajun Xu, Fuchao Xu. A3D numerical study of pinholediffraction in visible-light point diffraction interferometry[C]. Seventh InternationalSymposium on Precision Engineering Measurements and Instrumentation, Proc. SPIE,8321,2011,83211O.
    [26]陈琛,杨甬英,王道档,卓永模.基于时域有限差分方法的点衍射基准波前误差分析[J].中国激光,2011,38(9):0908003.
    [27]卢增雄,金春水,马冬梅,张海涛.微小孔偏差对远场波前质量影响分析[J].光学学报,2011,31(8):0812002-1~7.
    [28]邵晶,马冬梅.点衍射干涉仪基准波前测试技术研究[J].中国激光,2011,38,(5):0508003.
    [29]邵晶,马冬梅,聂真威.光学成像系统光学波前的高精度测试[J].光学精密工程,2011,19(11):2582-2588.
    [30]许嘉俊,邢廷文.可见光二维小孔矢量衍射分析[J].光学学报,2011,31,(12):1205003-1~6.
    [31] Wang Rulin, Zhang Lixia, Xing Tingwen. Analysis of the diffraction wave frompinhole in point diffraction interferometer[C].6th International Symposium onAdvanced Optical Manufacturing and Testing Technologies: Optical Test andMeasurement Technology and Equipment, Proc. of SPIE,8417,2012,841721.
    [32] D. E. Silin, I. E. Kozhevatov. A Single-Mode-Fiber Based Point DiffractionInterferometer[J]. Optics and Spectroscopy,2012,113,(2):216-221.
    [33] Lu Zengxiong, Jin Chunshui, Ma Dongmei, Zhang Haitao. Effect of the edgeroughness of the pinhole in point diffraction interferometer on light diffraction [C].6th International Symposium on Advanced Optical Manufacturing and TestingTechnologies: Design, Manufacturing, and Testing of Smart Structures, Micro-andNano-Optical Devices, and Systems, Proc. of SPIE,8418,2012,84180H-1~6.
    [34]陈深.基于FDTD方法的点衍射理论建模及分析研究[D].浙江大学,2012.
    [35]褚光.点衍射干涉仪中小孔尺寸对衍射光强分布影响的研究[D].南京理工大学,2012.
    [36]卢增雄,金春水,马冬梅.照明物镜像差对远场衍射基准波前质量影响的严格矢量分析[J].光学学报,2012,32,(8):0812001-1~7.
    [37]张宇,金春水,马冬梅,王丽萍.点衍射干涉仪波前参考源标定算法的研究[J].中国激光,2012,39(3):0308001.
    [38]周宇轩.镀膜小孔点衍射干涉仪的设计与调试[D].南京理工大学,2012.
    [39]邵晶,马冬梅.基于相位复原技术测试高数值孔径光学成像系统[J].应用光学,2013,34(1):1044-1048.
    [40] http://www.itrs.net
    [41]金春水.极紫外投影光刻中若干关键技术研究[D].中国科学院研究生院,2003.
    [42] Daniel Malacara. Optical Shop Testing[B]. Wiley-Interscience,2007.
    [43] http://www.zygo.com
    [44] R. N. Smartt, W. H. Steel. Theory and application of point diffractioninterferometers[J]. Japan J. Appl. Phys.,1975,14(1):351-356.
    [45] K. A. Goldberg, R. Beguiristain, J. Bokor, H. Medecki, K. Jackson, D. T.Attwood, G. E. Sommargren, J. P. Spallas, R. Hostetler. At wavelength testing ofoptics for EUV[C]. Electron-Beam, X-Ray, EUV, and Ion Beam SubmicrometerLithographies for Manufacturing V, Proc. Soc. Photo-Opt. Instrum. Eng.,2437,1995,347–354.
    [46] Osuk Y. Kwon. Multichannel phase-shifted interferometer[J]. OPTICSLETTERS,1995,9(2):59-61.
    [47] J. P. Spallas, R. E. Hostetler, G. E. Sommargren, D. R. Kania. Fabrication ofextreme-ultraviolet point-diffraction interferometer aperture arrays[J]. Applied Optics,1995,34(28):6393-6398.
    [48] H. Medecki, E. Tejnil, K. A. Goldberg, J. Bokor. Phase-shifting point diffractioninterferometer[J]. Optics Letters,1996,21(19):1526-1528.
    [49] Kenneth A. Goldberg, Edita Tejnil, Sang Hun Lee, Hector Medecki, Jr David T.Attwood, Keith H. Jackson, Jeffrey Bokor. Characterization of an EUV Schwarzschildobjective using phase-shifting point diffraction interferometry[C]. EmergingLithographic Technologies, SPIE3048,1997,264-270.
    [50] Kenneth A. Goldberg, Patrick Naulleau, Sang Lee, Cynthia Bresloff, CraigHenderson, David Attwood, Jeffrey Bokor. High-accuracy interferometry of extremeultraviolet lithographic optical systems[J]. J Vac Sci Technol B,1998,16(6):3435-3439.
    [51] Kenneth A. Goldberg, Patrick Naulleau, SangHun Lee, Chang Chang, CynthiaBresloff, Richard Gaughan, Henry N. Chapman, John Goldsmith, Jeffrey Bokor.Direct comparison of EUV and visible-light interferometries[C]. Part of the SPIEConference on Emerging Lithographic TechnolQgies III, SPIE,3676,1999,635-642.
    [52] Jeffrey L. Klingmann, Gary E. Sommargren. Sub-Nanometer Interferometry AndPrecision Turning For Large Optical Fabrication[C]. Ultra Lightweight SpaceOptics,1999, UCRL-JC-134052.
    [53] Katsura Otaki, Florian Bonneau, Yutaka Ichihara. Absolute measurement ofspherical surface by point diffraction interferometer[C]. OSJ/SPIE Conference onOptical Engineering for Sensing and Nanotechnology, SPIE3740,1999,602-605.
    [54] Patrick Naulleau, Kenneth A. Goldberg, Sang H. Lee, Chang Chang, DavidAttwood, and Jeffrey Bokor, Phillip J. Batson. The EUV Phase-Shifting PointDiffraction Interferometer[C]. Synchrotron Radiation Instrumentation: Eleventh USNational Conference,2000,66-72.
    [55] Kazuya Ota, Takahiro Yamamoto, Yusuke Fukuda, Katsura Otaki, IwaoNishiyama, Shinji Okazaki. Advanced Point Diffraction Interferometer for EUVAspherical Mirrors [C]. Emerging Lithographic Technologies V, Proceedings of SPIE,4343,2001,543-550.
    [56]刘国淦,张学军,王权陡,张忠玉,郭培基,张峰,齐涤菲.光纤点衍射干涉仪的技术研究[J].光学精密工程,2001,9(2):142-145.
    [57] KA Goldberg, P Naulleau, J Bokor, HN Chapman, A Barty. Testing extremeultraviolet optics with visible-light and extreme ultraviolet interferometry[J]. J. Vac.Sci. Technol. B,2002,20(6):2834--2839.
    [58] Kenneth A. Goldberg, Patrick Naulleau, Jeffrey Bokor, Henry N. Chapman.Honing the accuracy of extreme ultraviolet optical system testing: at-wavelength andvisible-light measurements of the ETS Set-2projection optic[C]. EmergingLithographic Technologies VI, Proc. SPIE,4688,2002,329.
    [59] Kazuya Ota, Takahiro Yamamoto, Yusuke Fukuda, Katsura Otaki, IwaoNishiyama, Shinji Okazaki. Aspherical Mirror Measurement using a PointDiffraction Interferometer [C]. Emerging Lithographic Technologies VI, Proceedingsof SPIE4688,2002,690-694.
    [60] Gary E. Sommargren, Donald W. Phillion, Michael A. Johnson, Nhan Q. Nguyen.100-picometer interferometry for EUVL[C]. Emerging Lithographic Technologies VI,Proceedings of SPIE4688,2002,316-328.
    [61] Kenneth A. Goldberg, Patrick Naulleau, Paul Denham, Senajith B. Rekawa,Keith Jackson, Erik H. Anderson, J. Alexander Liddle, Jeffrey Bokor. EUVInterferometry of the0.3NA MET Optic[C]. Emerging Lithographic TechnologiesVII, Proceedings of SPIE,5037,2003,64-73.
    [62]曹晓君,张学军,李艳红.光纤点衍射干涉仪调整方法与条纹分析[J].光机电信息,2003(3):28-30.
    [63] Kenneth A. Goldberg, Patrick Naulleau, Paul Denham, Senajith B. Rekawa,Keith Jackson, J. Alexander Liddle, Erik H. Anderson. EUV interferometric testingand alignment of the0.3NA MET optic[C]. Emerging Lithographic TechnologiesVIII, Proceedings of SPIE5374,2004,64-73.
    [64] Gary E. Sommargren, Santa Cruz, Eugene W. Campbell, Livermore. Applicationof the phase shifting diffration interferometer for measuring convex mirrors andnegative lenses[P]. US,2004.
    [65] Qian Gong, William Eichhorn. Alignment and testing of piston and aberrations ofa segmented mirror [C]. Optical Manufacturing and Testing VI, Proc. of SPIE5869,2005,586912.
    [66] Katsura Otaki, Katsumi Sugisaki, Masashi Okada, Zhu Yucong, Liu Zhiqiang,Jun Saito, Katsuhiko Murakami, Chidane Ouchi, Seima Kato, Masanobu Hasegawa,Takayuki Hasegawa, Akiyoshi Suzuki, Hideo Yokota, Masahito Niibe. AccuracyEvaluation of the X-ray Interferometer for Extreme Ultraviolet Lithography Optics[C].Proc8th Int Conf X-ray Microscopy, IPAP, Conf. Series7,2005,183-185.
    [67] Chen Lingfeng, Nie Liang, Zhou Taogeng, Sha Dingguo. Research on the fiberpoint diffraction interferometer for spherical figure measurement [C]. Sixth Intl Sympon Instrumentation and Control Technology: Signal Analysis, Measurement Theory,Photo-Electronic Technology, and Artificial Intelligence, Proc. of SPIE,6357,2006,63574J.
    [68] Robert M. Neal, James C. Wyant. Polarization phase-shifting point-diffractioninterferometer[J]. Applied Optics,2006,45(15):3463-3476.
    [69] Chidane Ouchi, Seima Kato, Masanobu Hasegawa, Takayuki Hasegawa, HideoYokota, Katsumi Sugisaki, Masashi Okada, Katsuhiko Murakami, Jun Saito, MasahitoNiibe, Mitsuo Takeda. EUV-wavefront metrology at EUVA[C]. Metrology, Inspection,and Process Control for Microlithography XX, Proc. of SPIE,6152,2006,61522O.
    [70] Shuo Wu, Tao geng Zhou, Jia ming Lin, Lin feng Chen, Liang Nie, Ding guo Sha.Fiber Point Diffraction Interferometer in Measurement of Spherical Lens [C].International Symposium on Photoelectronic Detection and Imaging2007, Proc. ofSPIE Vol.6624,2007,662415.
    [71] Nie Liang, Han Jun, Yu Xun, Liu Baoyuan, Jiang Xu, Wang Fang. Phase shiftinginterferograms processing for fiber point-diffraction interferometer [C]. NinthInternational Symposium on Laser Metrology, Proc. of SPIE7155,2008,71551G.
    [72] Ke Liu, Yanqiu Li. Design optimization of phase-shifting point diffractioninterferometer[C].2008International Conference on Optical Instruments andTechnology: Optical Systems and Optoelectronic Instruments, Proc. of SPIE,7156,2008,71561W.
    [73] Toshiaki Matsuura, Satoru Okagaki, Yasushi Oshikane, Haruyuki Inoue,Motohiro Nakano, Toshihiko Kataoka. Numerical reconstruction of wavefront inphase-shifting point diffraction interferometer by digital holography[J]. Surface andInterface Analysis,2008,40,1028-1032.
    [74]刘克,李艳秋.极紫外光刻投影物镜波像差在线检测技术[J].中国激光,2009,36(12):257-262.
    [75] WANG Daodang, YANG Yongying, CHEN Chen, ZHUO Yongmo. Polarizationpoint-diffraction interferometer for high-precision testing of spherical surface [C].5thInternational Symposium on Advanced Optical Manufacturing and TestingTechnologies: Optical Test and Measurement Technology and Equipment, Proc. ofSPIE7656,2010,76560F.
    [76] Hagyong Kihm, Yun-Woo Lee. Polarized point diffraction interferometer forfringe stabilization[C]. Interferometry XV: Techniques and Analysis, Proc. of SPIE,7790,2010,779013.
    [77] Liang Nie, Hu Mengmeng, Liu Baoyuan, Duan Cunli. Fiber point diffractioninterferometer for measuring spherical surface[J]. Proc SPIE,2010, ID666,77490B.
    [78]刘克,李艳秋.相移点衍射干涉仪的高精度对准[J].中国激光,2010,37(7):1845-1849.
    [79] Daodang Wang, Yongying Yang, Chen Chen, Yongmo Zhuo. Point diffractioninterferometer with adjustable fringe contrast for testing spherical surfaces[J]. AppliedOptics,2011,50(16):2342-2348.
    [80]王道档,杨甬英,陈琛,卓永模.点衍射球面检测中的斜反射波前像差校正[J].光学学报,2011,31(6):0612003.
    [81] Yongzhao Du, Guoying Feng, Hongru Li, J. Vargas, Shouhuan Zhou. Circularcommon-path point diffraction interferometer[J]. Optics Letters,2012,37(19):3927-3929.
    [82]张宇.极紫外光刻物镜系统波像差检测技术研究[D].中国科学院大学,2012.
    [83]张宇,金春水,马冬梅,王丽萍.可见光移相点衍射干涉仪的测试误差分析[J].红外与激光工程,2012,41(5):1351-1356.
    [84]张宇,金春水,马冬梅,王丽萍.可见光移相点衍射干涉仪的空气扰动误差分析[J].红外与激光工程,2012,41(7):1899-1904.
    [85]苏显渝,李继陶.信息光学[B].科学出版社,1999.
    [86] R. W. Gerchberg, W. O. Saxton. A Practical Algorithm for the Determination ofPhase from Image and Diffraction Plane Pictures[J]. OPTIK,1972,35,(2):237-246.
    [87] J. R. Fienup. Reconstruction of an object from the modulus of its Fouriertransform[J]. Optics Letters,1978,3(1):27-29.
    [88] J. R. Fienup. Phase retrieval algorithms: a comparison[J]. Appl. Opt.,1982,21,2758-2769.
    [89] J. R Fienup. Phase retrieval for the Hubble Space Telescope using iterativepropagation algorithms[J]. Applications of Digital Image Processing XIV(SPIE),1991,1567:327-332.
    [90] Richard G. Lyon, Peter E. Miller, Anthony Grusczak. HBT Phase Retrieval: AParameter Estimation[C]. Application of Digital Image Processing XIV, SPIE1567,1991:317-326.
    [91] J. R. Fienup, J. C. Marron, T. J. Schulz, J. H. Seldin. Hubble Space Telescopecharacterized by using phase-retrieval algorithms[J]. Appl. Opt.,1993,32(10):1747-1767.
    [92] Bruce H. Dean, David L. Aronstein, J. Scott Smith, Ron Shiri. Phase RetrievalAlgorithm for JWST Flight and Testbed Telescope[C]. Space Telescopes andInstrumentation I: Optical, Infrared, and Millimeter, SPIE6265,2006,626511.
    [93] R. A. Gonsalves. Phase retrieval and diversity in adaptive optics[J]. Opt. Eng.,1982,21:829-832.
    [94] Jean J. Dolne, Paul Menicucci, David Miccolis, Ken Widen, Harold Seiden,Frederick Vachss, Harold Schall. Advanced image processing and wavefront sensingwith real-time phase diversity[J]. Applied Optics,2009,48(1).
    [95]李强,沈忙作.基于相位差法的波前检测技术[J].光电工程,2006,33(11):114-119.
    [96]吴宇列,胡晓军,戴一帆,李圣怡.基于相位恢复技术的大型光学镜面面形在位检测技术[J].机械工程学报,2007.
    [97]曹芳,吴桢,朱永田.基于相位差法的光学综合孔径望远镜失调检测技术[J].天文研究与技术,2008,5(3):288-292.
    [98]毛珩,王潇,赵达尊.复杂光瞳波前相位恢复算法与实验验证[J].光学学报,2009,29(3):575-581.
    [99] Bernard Roelof Andries Nijboer. The Differaction Theory of Abberrations[D].1942.
    [100] Augustus J. E. M. Janssen. Extended Nijboer–Zernike approach for thecomputation of optical point-spread functions[J]. J. Opt. Soc. Am. A,2002,19:849-857.
    [101] Joseph Braat, Peter Dirksen, Augustus J. E. M. Janssen. Assessment of anextended Nijboer–Zernike approach for the computation of optical point-spreadfunctions[J]. J. Opt. Soc. Am. A,2002,19:858-870.
    [102] Peter Dirksen, Joseph Braat, Augustus J.E.M. Janssen, Casper Juffermans.Aberration retrieval using the extended Nijboer-Zernike approach[J]. Journal ofMicrolithography, Microfab-rication, and Microsystems,2003,2(1):61-68.
    [103] Peter Dirksen, Joseph J.M. Braat, Augustus J.E.M. Janssen, Ad Leeuwestein,Tomoyuki Matsuyama, Tomoya Noda. Aerial image based lens metrology for wafersteppers[C]. Optical Microlithography XIX, Proc. of SPIE,6154,2006,61540X.
    [104] S. van Haver, J.J.M. Braat, P. Dirksen, A.J.E.M. Janssen. High-NA abberationretrieval with the Extended Nijboer-Zernike vector diffraction theory[J]. JOES,2006,06004, www.nijboerzernike.nl.
    [105] B. Richards, E. Wolf. Electromagnetic diffraction in optical systems II.Structure of the image feld in an aplanatic system[J]. Proc R Soc London Ser A,1959,253:358-379.
    [106] E. Wolf. Electromagnetic diffraction in optical systems I. An integralrepresentation of the image field[J]. Proc. R. Soc. London Ser A,1959,253:349-357.
    [107] J. R. Fienup. Phase-retrieval algorithms for a complicated optical system[J].Applied Optics,1993,32,10.
    [108] Shih-Yau Lu and Russell A. Chipman. Homogeneous and inhomogeneousJones matrices [J]. J. Opt. Soc. Am. A,1994,11:766-773.
    [109] Donis G. Flagello, Hans van der Laan, Jan van Schoot, Igor Bouchoms, BerndGeh. Understanding Systematic and Random CD variations using PredictiveModelling Techniques[J]. SPIE3679,1999:162-175.
    [110] P. Dirksen, C. Juffermans, A. Engelen, P. De Bisschop, H. Muellerke. Impact ofhigh order aberrations on the performance of the aberration monitor[C]. OpticalMicrolithography XIII, SPIE4000,2000:9-17.
    [111] Nigel R. Farrar, Adlai L. Smithb, Dan Busathc, Dennis Taitano. In-situmeasurement of lens aberrations [C]. Optical Microlithography XIII, SPIE4000,2000,18-29.
    [112] Bruce W. Smith, Ralph Schlief. Understanding lens aberration and influences tolithographic imaging [J]. SPIE4000,2000:294-306.
    [113] Sjoerd Stallinga. Axial birefringence in high-numerical-aperture optical systemsand the light distribution close to focus[J]. J. Opt. Soc. Am. A,2001,18:2846-2859.
    [114] Joseph Braat, Peter Dirksen, Augustus J.E.M. Janssen, Arthur van de Nes.Extended Nijboer-Zernike representation of the field in the focal region of anaberrated high-aperture system[J]. OSA POSTER,2002, www.nijboerzernike.nl.
    [115] Peter Dirksen, Joseph Braat, Peter De Bisschop, Augustus Janssen, CasperJuffermans, Alvina Williams. Characterization of a projection lens using the extendedNijboer-Zernike approach[C]. Optical Microlithography XV, SPIE,4691,2002,0277-0786X.
    [116] Peter Dirksen, Joseph Braat, E Augustud J, M, Janssen, Casper Juffermans, AdLeeuwestein. Experimental Determination of lens Aberrations from the intensityPoint-Spread Function in Focal Region[J]. SPIE5040,2003.
    [117] Peter Dirksen Joseph Braat, Augustus J.E.M. Janssen, Arthur S. van de Nes.Extended Nijboer-Zernike Description Of The High-Aperture Focalfield Created By ABeam With Angular Momentum[C].2003, www.nijboerzernike.nl.
    [118] Joseph J. M. Braat, Peter Dirksen, Augustus J. E. M. Janssen, Arthur S. van deNes. Extended Nijboer–Zernike representation of the vector feld in the focal region ofan aberrated high-aperture optical system[J]. J. Opt. Soc. Am. A,2003,20,2281-2292.
    [119] Tomoyuki Matsuyama, Issey Tanaka, Toshihiko Ozawa, Kazushi Nomura,Takashi Koyama. Improving lens performance through the most recent lensmanufacturing process[J]. SPIE5040,2003.
    [120] A. J. E. M. Janssen, J. J. M. Braat, P. Dirksen. On the computation of theNijboer–Zernike aberration integrals at arbitrary defocus[J]. journal of modern optics,2004,51(5):687–703.
    [121] Joseph Braat, Peter Dirksen, Augustus J.E.M. Janssen. ExtendedNijboer-Zernike analysis for vectorial diffraction calculations and aberration retrieval.www.nijboerzernike.nl.
    [122] Joseph Braat, Peter Dirksen, Augustus J.E.M. Janssen, Arthur S. van de Nes.Quality assessment of focusing optics by aberration retrieval using the extendednijboer-zernike iffraction theory[C]. FOM,2004, www.nijboerzernike.nl.
    [123] Joseph Braat, Peter Dirksen, Augustus J.E.M. Janssen, Arthur S. van de Nes.Complex pupil function reconstruction at high NA using the extendedNijboer-Zernike diffraction theory[C]. OSA,2004, www.nijboerzernike.nl.
    [124] Joseph J.M. Braat, Peter Dirksen, Augustus J.E.M. Janssen, Arthur S. van deNes. Complex pupil function reconstruction at high numerical aperture using theextended Nijboer-Zernike diffraction theory[C]. Annual Meeting Optical Society ofAmerica,2004, www.nijboerzernike.nl.
    [125] Perter Dirksen, Joesph Braat, Augustus J.E.M. Janssen. Determination of resistparameters using the extended Nijboer-Zernike theory [J]. SPIE5377,2004.
    [126] B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, J. W. Sedat. Phase-retrievedpupil functions in wide-feld fuorescence microscopy[J]. Journal of Microscopy,,2004,216:32-48.
    [127] Sjoerd Stallinga. Light distribution close to focus in biaxially birefringentmedia[J]. J. Opt. Soc. Am. A,2004,21,1785-1798.
    [128] Sjoerd Stallinga. Strehl ratio for focusing into biaxially birefringent media[J]. J.Opt. Soc. Am. A,2004,21:2406-2413.
    [129] C. Van Der Avoort, J. J. M. Braat, P. Dirksen, A. J. E. M. Janssen. Aberrationretrieval from the intensity point-spread function in the focal region using theextended Nijboer–Zernike approach[J]. Journal of Modern Optics,2005,52,1695–1728.
    [130] Joseph J.M. Braat, Peter Dirksen, Augustus J.E.M. Janssen. Through-FocusPoint-Spread Function Evaluation for Lens Metrology using the ExtendedNijboer-Zernike Theory [C].2005, www.nijboerzernike.nl.
    [131] J.J.M. Braat, P. Dirksen, A.J.E.M. Janssen, S. van Haver. Through-focuspoint-spread function evaluation for lens metrology using the ExtendedNijboer-Zernike theory[C]. Fringe2005conference,13,2005.
    [132] Joseph J.M. Braat, Peter Dirksen, Augustus J.E.M. Janssen, Arthur S. van deNes. Polarisation-Aberration Retrieval For High-NA Systems Using The ExtendedNijboer-Zernike Diffraction Theory[C].2005, www.nijboerzernike.nl.
    [133] Peter Dirksen, Joseph J.M. Braat, Augustus J.E.M. Janssen, Ad Leeuwestein.Aberration retrieval for high-NA optical systems using the extended Nijboer-Zerniketheory [J]. SPIE5754,2005,12.
    [134] Peter Dirksen Joseph J. M. Braat, Augustus J. E. M. Janssen,Sven van Haverand Arthur S. van de Nes. Extended Nijboer–Zernike approach to aberration andbirefringence retrieval in a high-numerical-aperture optical system[J]. J Opt Soc AmA,2005,22:2635-2650.
    [135] James T. Mooney, H. Philip Stahl. Sub-pixel spatial resolution interferometrywith interlaced stitching [C]. Optical Manufacturing and Testing VI, SPIE,5869,2005,1-7.
    [136] Arthur Siewert Van De Nes. Rigorous Electromagnetic Field Calculations forAdvanced Optical Systems[D]. Delft University of Technology,2005.
    [137] Peter Dirksen, Joseph Braat. Estimating resist parameters in optical lithographyusing the extended Nijboer-Zernike theory[J]. J Microlith, Microfab, Microsyst,2006,5, www.nijboerzernike.nl.
    [138] Augustus J. E. M. Janssen, Peter Dirksen. Concise formula for the Zernikecoeffcients of scaled pupils[J]. J. Microlith. Microfab. Microsyst.,2006,5.
    [139] S. van Haver. Extended Nijboer-Zernike diffraction and aberration retrievaltheory for high-numerical-aperture optical imaging systems[D]. Delft University ofTechnology,2006.
    [140] S. van Haver, J.J.M. Braat, P. Dirksen, A.J.E.M. Janssen. High-NA lenscharacterization by through-focus intensity measurement[C]. EOS Annual Meeting,2006, www.nijboerzernike.nl.
    [141] S. van Haver, J.J.M. Braat. Imaging based on the Extended Nijboer-Zernike(ENZ) formalism[C]. EOS-meeting,2007, www.nijboerzernike.nl.
    [142] S. van Haver, J.J.M. Braat, P. Dirksen, A.J.E.M. Janssen. High-NA aberrationretrieval with the Extended Nijboer-Zernike vector diffraction theory: Erratum[J].2007, www.nijboerzernike.nl.
    [143] S. van Haver, A.J.E.M. Janssen, P. Dirksen, J.J.M. Braat. ExtendedNijboer-Zernike (ENZ) based evaluation of amplitude and phase aberrationson scaledand annular pupils[C]. EOS Advanced Imaging Techniques2007,2007, www.nijboerzernike.nl.
    [144] S. van Haver, O.T.A. Janssen, A.M. Nugrowati, J.J.M. Braat, S.F. Pereira. Novelapproach to mask imaging based on the Extended Nijboer-Zernike (ENZ) diffractiontheory[C]. MNE07,2007, www.nijboerzernike.nl.
    [145] Joseph J.M.Braat, Sven van Haver, Augustus J. E. M. Janssen, Peter Dirksen.Energy and momentum flux in a high-numerical-aperture beam using the extendedNijober-Zernike diffraction formalism[J]. JOES,2007:07032.
    [146] Augustus J. E. M. Janssen, Peter Dirksen. Computing Zernike polynomials ofarbitrary degree using the discrete Fourior transform[J]. JOES,2007:07012.
    [147] Augustus J.E.M. Janssen, Sven van Haver, Joseph J.M. Braat, Peter Dirksen.Strehl ratio and optimum focus of high-numerical-aperture beams[J]. JOES (Journalof the European Optical Society),2007:07008.
    [148] I. Kuznetsova, T. Meier, S. T. Cundiff, P. Thomas. Determination ofhomogeneous and inhomogeneous broadening in semiconductor nanostructures bytwo-dimensional Fourier-transform optical spectroscopy[J]. PHYSICAL REVIEW B,2007,76:153301.
    [149] R. M. Aarts, J. J. M. Braat, P. Dirksen, S. van Haver, C. van Heesch, A. J. E. M.Janssen. Analytic expressions and approximations for the on-axis, aberration-freeRayleigh and Debye integral in the case of focusing fields on a circular aperture[J].JOES,2008:08039.
    [150] Joseph J.M. Braat, Sven van Haver, Augustus J.E.M. Janssen, Peter Dirksen.Assessment of optical systems by means of point-spread functions[J]. Progress inOptics,2008,51:349-468.
    [151] Sven van Haver, Joseph J. M. Braat, Silvania F. Pereira, Augustus J. E. M.Janssen. Evaluation of scaled and annular pupils within the framework of theExtended Nijboer-Zernike (ENZ) formalism[C]. Frontiers in Optics2008laser scienceXXIV,2008.
    [152] S. van Haver, Olaf T.A. Janssen, Joseph J.M. Braat, H. Paul Urbach, Silvania F.Pereira. General imaging of advanced3D mask objects based on the fully-vectorialExtended Nijboer-Zernike (ENZ) theory[C]. SPIE Advanced Lithography2008,Optical Microlithography XXI,2008, www.nijboerzernike.nl.
    [153] S. van Haver, O.T.A. Janssen, A.J.E.M. Janssen, J.J.M. Braat, S.F. Pereira, P.Evanschitzky. Characterization of a novel mask imaging algorithm based on theExtended Nijboer-Zernike (ENZ) formalism[C]. MNE08,2008, www. nijboerzernike.nl.
    [154] S. van Haver, O.T.A. Janssen, A.M. Nugrowati, J.J.M. Braat, S.F. Pereira.Combining various optical simulation tools to enable complex optical systemsimulations [C].2008, www.nijboerzernike.nl.
    [155] A.J.E.M. Janssen, S. van Haver, P. Dirksen, J.J.M. Braat. Zernike representationand Strehl ratio of optical systems with variable numerical aperture[J]. Journal ofModern Optics,2008,55(7):1127-1157.
    [156] Olaf T.A. Janssen, Sven van Haver, Augustus J.E.M. Janssen, Joseph J.M. Braat,H.Paul Urbach, Silvania F. Pereira. Extended Nijboer-Zernike (ENZ) based maskimaging:Efficient coupling of electromagnetic feld solvers and the ENZ imagingalgorithm[J]. SPIE,2008, Vol.6924.
    [157] Aura Mimosa NUGROWATI. Vectorial Diffraction of Extreme Ultraviolet Lightand Ultrashort Light Pulses[D]. Delft University of Technology,2008.
    [158] O.T.A. Janssen S. van Haver, A.J.E.M. Janssen, J.J.M. Braat, S.F. Pereira.Image simulations of extended objects using an algorithm based on the ExtendedNijboer-Zernike (ENZ) formalism[J]. EOS AM2008,2008, TOM4-1177,
    [159] J. J. M. Braat, S. van Haver, A. J. E. M. Janssen, S. F. Pereira. Image formationin a multilayer using the extended Nijboer-Zernike theory[J]. Journal of the EuropeanOptical Society,2009,4:09048.
    [160] J.J.M. Braat, S. van Haver, S.F. Pereira. Microlens Microlens quality assessmentusing the quality assessment using the Extended Nijboer Extended Nijboer-Zernikediffraction theory [J]. EOS-Optical Microsystems2009,2009, www. nijboerzernike.nl.
    [161] S. van Haver, J.J.M. Braat, A.J.E.M. Janssen, S.F. Pereira. ExtendedNijboer-Zernike (ENZ) based imaging into an image region containing a layeredconfiguration[C]. EOS Advanced Imaging Techniques,2009, www.nijboerzernike.nl.
    [162] Sven van Haver, Silvania F. Pereira, H. Paul Urbach. Accurate and efficientsimulation of resist images generated by advanced lithographic systems using theExtended Nijboer-Zernike (ENZ) diffraction theory[C]. Micro Nano Conference09,2009, www.nijboerzernike.nl.
    [163] J. J. M. Braat S. van Haver, A. J. E. M. Janssen,O. T. A. Janssen,and S. F.Pereira. Vectorial aerial-image computations of three-dimensional objects based onthe extended Nijboer–Zernike theory[J]. J. Opt. Soc. Am. A,2009,26:1221-1234.
    [164] Sven Van Haver. The Extended Nijboer-Zernike Diffraction Theory And ItsApplications[D]. Delft University of Technology,2010.
    [165] Sven van Haver, Joseph J.M. Braat, Silvania F. Pereira. Enabling EfficientMultilayer Optimization Based on the Extended Nijboer-Zernike (ENZ) ImagingAlgorithm [C].2010, www.nijboerzernike.nl.
    [166] Peter Dirksen Joseph J.M.Braat, Augustus J.E.M.Janssen. Detailed descriptionof the ENZ approach, www.nijboerzernike.nl.
    [167] A.J.E.M. Janssen. New analytic results for the Zernike circle polynomials froma basic result in the Nijboer-Zernike diffraction theory[J]. Journal of the EuropeanOptical Society-Rapid Publications,2011,6:11028.
    [168] M. Born, E. Wolf. Principles of Optics:Electromagnetic Theory of Propagation,Interference and Diffraction of Light[B]. Cambridge University Press,1999.
    [169] Joseph W. Goodman. Introduction to Fourier Optics[B]. Robert abd CompanyPublisher,2005.
    [170] J. Y. Wang, D. E. Silva. Wave-front interpretation with Zernike polynomials[J].Applied Optics,1980,19(9):1510-1518.
    [171] A. Gavrielides. Vector polynomials orthogonal to the gradient of Zernikepolynomials[J]. Optics Letters,1982,7(11):526-528.
    [172] George N. Lawrence, Weng W. Chow. Wave-front tomography by Zernikepolynomial decomposition[J]. Optics Letters,1984,9(7):267-269.
    [173] Virendra N. Mahajan. Zernike annular polynomials for imaging systemswith annular pupils[J]. J. Opt. Soc. Am. A,1984,1(6):685.
    [174]莫卫东. Zernike多项式拟合干涉面方法研究[J].高速摄影与光子学,1994,20(4):389-395.
    [175] Christopher Progler, Alfred Wong. Zernike Coefficients: Are they reallyenough[C]. Optical Microlithography XIII, Proc. of SPIE4000,2000:40-52.
    [176] Bo Qi, Hongbin Chen, Nengli Dong. Wavefront ftting of interferograms withZernike polynomials[J]. Opt. Eng.,2002,41(7):1565-1569.
    [177] Phillip R. Riera, Geoffry S. Pankretz, Daniel M. Topa. Efficient computationwith special functions like the circle polynomials of Zernike[C]. Optical Design andAnalysis Software II, Proc. of SPIE4769,2002:130-144.
    [178]单宝忠,王淑岩,牛憨笨,刘颂豪. Zernike多项式拟合方法及应用[J].光学精密工程,2002,10,(3):318-321.
    [179] Virendra N. Mahajan. Zernike polynomials and aberration balancing[C].Current Developments in Lens Design and Optical Engineering IV, Proceedings ofSPIE,5173,2003:1-17.
    [180] Phillip R. Riera, Wavefront Sciences. Computation of the circle polynomials ofZernike[C]. Advanced Wavefront Control: Methods, Devices,and Applications,,Proceedings of SPIE,5162,2003,120-128.
    [181] Xi Hou, Fan Wu, Li Yang, Qiang Chen. Comparison of annular wavefrontinterpretation with Zernike circle polynomials and annular polynomials[J]. AppliedOptics,2006,45,(35):8893-8901.
    [182] Virendra N. Mahajan, Guang-ming Dai. Orthonormal polynomials forhexagonal pupils[J]. Optics Letters,2006,31(16):2462-2464.
    [183] Guang-ming Dai, Virendra N. Mahajan. Zernike annular polynomials andatmospheric turbulence[J]. J. Opt. Soc. Am. A,2007,24(1):139-155.
    [184]亓波,陈洪斌,刘顺发. Zernike多项式波面拟合的回归分析方法[J].光学精密工程,2007,15,(3):396-400.
    [185]刘克,李艳秋,刘景峰.带有分割遮拦环形干涉图的波面拟合[J].红外与激光工程,2008,37,778-784.
    [186]刘志祥.大口径光学系统波前分析技术研究[D].中国科学院研究生院,2008.
    [187] C. J. Evans, William P. Kuhn. Method and appartus for tilt corrested lateralshear in lateral shear plus rotional shear absolute flat test[P]. USA, US7446883B2.2008.
    [188] Stephan Reichelt, Christof Pruss, Hans J. Tiziani. Absolute testing of asphericsurfaces[J].2003.
    [189] Chris J. Evans, Robert N. Kestner. Test optics error removal[J]. Applied Optics,1996,35:1015-1021.
    [190] G. Harbers, P. J. Kunst, G. W. R. Leibbrandt. Analysis of lateral shearinginterferograms by use of Zernike polynomials[J]. Applied Optics,1996,35(31):6162-6172.
    [191] R. Schreiner, J. Schwider, N. Lindlein, K. Mantel. Absolute testing of thereference surface of a Fizeau interferometer through even/odd decompositions[J].Applied Optics,2008,47,6134-6141.
    [192] Weihong Song, Fan Wu, Xi Hou. Method to test rotationally asymmetric surfacedeviation with high accuracy[J]. Applied Optics,2012,51(22):5567-5572.
    [193] Chiayu Ai, James C. Wyant. Absolute testing of flats by using even and oddfunctions[J]. Applied Optics,1993,32(25):4698-4705.
    [194] Christof Pruss Stephan Reichelt, and Hans J. Tiziani. Absolute interferometrictest of aspheres by use of twin computer-generated holograms[J]. Applied Optics,2003,42(22):4468-4479.
    [195] Jan Herrmann. Least-squares wave front errors of minimum norm[J]. J. Opt.Soc. Am.,1980,30,28-35.
    [196] H. Handschuh, J. Froschke, M. Julich, M. Mayer, M. Weiser, G. Seitz. Extremeultraviolet lithography at Carl Zeiss: Manufacturing and metrology of asphericsurfaces with angstrom accuracy[J]. J Vac Sci Technol B,1999,17(6):2975-2977.
    [197] T. Yamamoto K. Otaki, Y. Fukuda, K. Ota, I. Nishiyama, and S. Okazaki.Accuracy evaluation of the point diffraction interferometer for extreme ultravioletlithography aspheric mirror[J]. J Vac Sci Technol B,2002,20(1):295-300.
    [198] Chiayu Ai, James C. Wyant. Absolute testing of flats decomposed to even andodd functions[J]. lnterferometry: Surface Characterization and Testing SPIE,1992,1776.
    [199] Chris J. Evans. Comment on the paper "Interferometric testing of opticalsurfaces: absolute measurements of fatness"[J]. Opt. Eng.,1998,37(6):1882-1883.
    [200] Parameswaran Hariharan. Interferometric testing of optical surfaces: absolutemeasurements of fatness[J]. Opt. Eng.,1997,36(39):2478–2481.
    [201] Joshua Wiersma. Absolute Sphere Testing: A Tutorial [J]. OPTI–515R,2011,
    [202] Donald W. Phillion, Gary E. Sommargren, Michael A. Johnson, Todd A. Decker,John S. Taylor, Yoshio Gomei, Osamu Kakuchi, Seiji Takeuchi, Bernd Dorband,Gunther Seitz. Calibration of symmetric and non-symmetric errors for interferometryof ultra-precise imaging systems[C]. Optical Manufacturing and Testing VI, Proc. ofSPIE,5869,2005,58690R.
    [203] Yuichi Takigawa, Shigeru Nakayama, Takahiro Yamamoto, Takashi Gemma.Absolute accuracy evaluation of aspherical null testing for EUVL mirrors [C]. OpticalManufacturing and Testing VI, Proc. of SPIE5869,2005.
    [204] Katherine Creath, James C. Wyant. Absolute Measurement of SphericalSurfaces[C]. Optical Testing and Metrology ill: Recent Advances in IndustrialOpticalinspection, SPIE1332,1990:2-7.
    [205] Rolf Freimann, Bernd Dorband, Frank Holler. Absolute measurement ofnon-comatic aspheric surface errors[J]. Optics Communications,1999,161:106-114.
    [206] Yun-Woo Lee Hyug-Gyo Rhee, Seung-Woo Kim Azimuthal position errorcorrection algorithm for absolute test of large optical surfaces [J]. OPTICS EXPRESS,2006,14(20):9169-9177.
    [207] E.E.Bloemhof. Absolute surface metrology by differencing spatially shiftedmaps from a phase-shifting interferometer[J]. Optics Letters,2010,35(14):2346-2348.
    [208] Dongqi Su, Erlong Miao, Yongxin Sui, Huaijiang Yang. Absolute surface figuretesting by shift-rotation method using Zernike polynomials[J]. Optics Letters,2012,37(15):3198-3200.
    [209] Patrick P. Naulleau, Kenneth A. Goldberg, Senajith B. Rekawa, et al..Ultra-high accuracy optical testing: creating diffraction-limited short-wavelengthoptical systems[J]. Proc SPIE5900–16, K A Goldberg, et al., San Diego, California,2005.
    [210] T.Gemma, S.Nakayama, Y.Takigawa, H.Ichikawa, T.Yamamoto, Y.Fukuda,T.Onuki, T.Umeda. Null testing at1nm accuracy for sub-mm asphericity[C].Technical Digest paper of Optical Fabrication&Testing OSA,2002,112-114.
    [211]王东升.高精度球面面形绝对检测方法研究[D].2011.
    [212] J. C. Wyant. White Light Extended Source Shearing Interferometer[J]. AppliedOptics,1974,13,(1):200-202.
    [213] J. F. Ebersole, J. C. Wyant. Collimated Light Acoustooptic Lateral ShearingInterferometer[J]. Applied Optics,1974,13,(5):1004-1005.
    [214] J. C. Wyant. Use of an ac heterodyne lateral shear interferometer with real-timewavefront correction systems[J]. Applied Optics,1975,14,(11):2622-2626.
    [215] J. C. Wyant. OTF measurements with a white light source: an interferometrictechnique[J]. Applied Optics,1975,14,(7):1613-1615.
    [216] J. C. Wyant, F. D. Smith. Interferometer for measuring power distribution ofophthalmic lenses[J]. Applied Optics1975,14,(7):1607-1612.
    [217] M. P. Rimmer, J. C. Wyant. Evaluation of Large Aberrations Using aLateral-Shear Interferometer Having Variable Shear[J]. APPLIED OPTICS,1975,14,142-150.
    [218] Jan Herrmann. Least-squares wave front errors of minimum norm[J]. J. Opt.Soc. Am.,1980,70,28-35.
    [219] Seiichi Okuda, Takashi Nomura, Kazuhide Kamiya, Hiroshi Miyashiro, KazuoYoshikawa, Hatsuzo Tashiro. High-precision analysis of a lateral shearinginterferogram by use of the integration method and polynomials[J]. Applied Optics,2000,39(28):5179-5186.
    [220] Clemens Elster, Ingolf Weingartner. Solution to the shearing problem[J].Applied Optics,1999,38(23):5024-5031.
    [221] You Wang, Hirofumi Kan. Infuences of CCD nonlinear response onmeasurement of propagation factor M2of a laser beam[J]. J. Opt.2011,13,015708.
    [222] Alejandro Ferrero, Joaquin Campos, Alicia Pons. Low-uncertainty absoluteradiometric calibration of a CCD[J]. Metrologia,2006,43, S17-S21.
    [223]程万胜,赵杰,蔡鹤皋. CCD像素响应非均匀的校正方法[J].光学精密工程,2008,16,(2):314-318.
    [224]徐秋云,郑小兵,李健军,张伟.外部导入激光的积分球辐射源的研制[J].光学精密工程,2009,17,(4):738-744.
    [225]程书博,张惠鸽,王哲斌,易有根,张琛,刘浩,郑志坚.科学级光学CCD非线性特性测试[J].光学学报,2012,32,(4):0404001.
    [226] Chris J. Evans. Uncertainty evaluation for measurements of peak-to-valleysurface form errors[J]. Manufacturing Technology,2008,57,509-512.
    [227]胡晓军.大型光学镜面相位恢复在位检测技术研究[D].国防科学技术大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700