用户名: 密码: 验证码:
青藏高原草地变化及其对气候的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏高原是我国最大的草地畜牧业生产基地和重要的生态屏障。受自然环境和社会条件的严重制约,草地资源是当地人民赖以生存和经济发展的物质基础。作为气候变化敏感区和生态脆弱区,显著的气候变化已经并将继续影响高原植被的生长,因此研究高原植被变化过程及其与气候变化的关系显得尤为重要。
     本研究对1981-2010年青藏高原气候变化特征、草地植被变化动态和草地植被对气候变化的响应进行了系统的研究。研究结果表明:
     1)1981-2010年青藏高原年平均气温每10年增加0.7℃,而降水量每10年增加12.4mm。青藏高原气温和降水年内分配不均,降水主要集中在5-9月。高原年平均气温仅为-0.92℃,空间差异明显,总体由南向北逐渐降低。年平均降水量为404mm,由东南向西北逐渐减少。高原气候整体上呈增暖趋势,降雨量微弱增加,但区域差异性明显,高海拔地区的增温幅度大于低海拔地区,降水偏少的地区降水量增加显著。
     2)1981-2010年青藏高原草地生长季最大NDVI空间分布差异显著,存在明显的经向地带性,由西向东呈阶梯式上升趋势。山地草甸、热性草丛和沼泽生长季最大NDVI多年平均值较高,植被状况较好。青藏高原草地植被恶化区域面积略大于恢复面积,大部分草地30年间基本保持稳定不变。沼泽草地发生变化的区域面积最大,且以恶化趋势为主。生长季不同时期草地植被NDVI变化趋势的空间分布和面积比例均存在差异。
     3)青藏高原草地生物量和盖度总体上有略微下降的趋势。不同草地类型之间变化趋势存在差异,温性草甸草原、高寒草甸草原、暖性草丛生物量和盖度有增加趋势,山地草甸、暖性灌草丛生物量和盖度有明显下降的趋势,其他草地类型无明显年际变化趋势。青藏高原草地生物量和盖度从5月份开始逐渐增加,到7、8月达到峰值。整个生长季中,沼泽草地生物量变化幅度最大。
     4)自1986年以来,青藏高原部分地区草地出现了不同程度的退化现象,且以轻度和中度退化为主。退化草地面积比例由1986-1990年的44.43%增加到2001-2010年的49.05%。近25年以来退化草地面积增加不多,但是重度退化草地的比例明显增加,说明近年来青藏高原地区草地退化程度日趋严重。虽然青藏高原草地总体上退化程度在不断加剧,但是从空间分布上来讲,局部地区的草地也有恢复趋势。
     5)在不同的季节,青藏高原草地植被对气温和降水的变化表现出不同的响应特征。冬季和春季NDVI与单月和多月平均气温的相关性高于夏季和秋季;夏季和秋季NDVI与单月和多月降水量的相关性普遍高于冬季和秋季。四季NDVI对降水变化的响应周期较气温长。高原西部地区春季NDVI受气温和降水的共同调控,而夏季NDVI主要受降水的调控,东部地区春季和夏季NDVI主要受气温调控;在高原东北部地区,降水对秋季NDVI的影响强于气温,其余地区气温的影响强于降水;高原北部和西南边缘地区,气温和降水对冬季NDVI有同样重要的作用,其他大部分地区主要受控于气温。四季NDVI对气温和降水变化响应的滞后期空间分布规律较弱。
The Tibetan Plateau is the largest production base of grassland animal husbandry and an important ecological barrier in china. Severely constrained by the natural environment and social conditions, grassland resources are the material basis of survival and economic development for local people. As climate change sensitive and ecologically fragile areas, significant climate change of Tibetan Plateau has been and will continue to affect the plateau vegetation growth. Accordingly, the study of the plateau vegetation change process and its relationship with climate change is particularly important.
     In this study, the characteristics of climate change, dynamics of grassland vegetation and response of grassland vegetation to climate change were analyzed systematically on Tibetan Plateau from1981to2010. The results show that:
     1) The annual average temperature and annual precipitation of the Tibetan Plateau increased by0.7℃and12.4mm every10years during1981to2010, respectively. The distribution of temperature and precipitation were uneven within the year on Tibetan Plateau, precipitation mainly concentrated in the period from May to September. The annual average temperature of Tibetan Plateau was only-0.92℃, and the spatial distribution of temperature was significant difference, decreasing gradually from south to north. The average annual precipitation was404mm, and decreasing from southeast to northwest. The overall trend of Tibetan Plateau climate was warmmer and more humid, but presenting significant regional differences. The increased range of temperature was greater in higher altitude area than that of in lower altitude area, and precipitation increased significantly in areas with little precipitation.
     2) The spatial distribution of maximum NDVI of grassland in growing seasons was significant difference on Tibetan Plateau from1981to2010. The spatial distribution of NDVI had remarkable longitude zonal ity that presented a stairs type to continuously rise from west to east. The long time average value of growing season maximum NDVI for mountain meadow, hot herbosa and marsh were higher. Deterioration area of grassland was slightly larger than that of the recovery area, and most area of grassland remained stable on whole Tibetan Plateau during past30years. The deterioration area of marsh was largest in the all grassland types. The spatial distribution and area ratio of variation trend of grassland vegetation NDVI were significant differences in different periods of growing season.
     3) The biomass and coverage of grassland on Tibetan Plateau with a slight downward trend. The variation trends were diverse among the different grassland types, biomass and coverage of temperate meadow steppe, alpine meadow steppe and warm temperate herbosahad had an interannual increasing trend, while mountain meadow and warm temperate brush herbosa had a significant decreasing trend. There had no significant interannual variation trends in other grassland types. The grassland biomass and coverage increased gradually from May, and biomass peak appeared in July or August. Throughout the whole growing season, the biomass variation range of marsh was the greatest.
     4) Since1986, parts of the Tibetan Plateau grassland appeared varying degrees of degradation, the mainly degradation degrees were slight and moderate levels. The area ratio of degraded grassland was increased from44.43%during1986-1990to49.05%during2001-2010. The area of degraded grassland increased slightly over the past25years, but the proportion of severely degraded grassland was significant increased on Tibetan Plateau, it is indicated that the degradation degree of Tibetan Plateau grassland was increasingly serious. The overall degradation degree of grassland has been increasing, but the grassland also had a recovery trend in part of regions.
     5) The response of vegetation to temperature and precipitation changes showed different characteristics in different seasons. The correlation relationships between NDVI and temperature in winter and spring were better than that in summer and autumn, when correlation between NDVI and precipitation in summer and autumn were better than that in winter and spring. The response time of NDVI to precipitation was longer than that of to temperature for all seasons. The spring NDVI was mainly influenced by temperature and precipitation in the western part of Tibetan Plateau while summer NDVI was mainly affected by precipitation, the spring and summer NDVI were mainly affected by temperature in the eastern part of Plateau. In the northeast of the plateau, the major impact facotor of autumn NDVI was precipitation, in the rest area the major impact factor was temperature; winter NDVI was mainly affected by temperature and precipitation in the northern part and southwestern edge of the plateau, while it was mainly influenced by temperature in much of the rest area of the Tibetan Plateau. The response lag of seasonal NDVI to temperature and precipitation had no obvious spatial distribution regulation.
引文
[1]Aerts, R., Cornelissen, J. H. C., Dorrepaal, E. Plant performance in a warmer world:general responses of plants from cold, northern biomes and the importance of winter and spring events[J]. Plants and Climate Change,2006,41:65-78.
    [2]Anderson, G. L., Hanson, J. D., Hass, R. H. Evaluating Landsat thematic mapper derived vegetation indices for estimating aboveground biomass on semiarid rangelands[J]. Remote Sensing of Environment,1993,45:165-175.
    [3]Anyamba, A., Tucker, C. Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981-2003[J]. Journal of Arid Environments,2005,63:596-614.
    [4]Bates, D., Lindstmm, M., Wahba, G. Gcvpack-routines for generalized cross validation[J]. Communications in Statistics B-Simulation and Computation,1987,16:263-297.
    [5]Bogaert, J., Zhou, L., Tucker, C. J., et al. Evidence for a persistent and extensive greening trend in Eurasia inferred from satellite vegetation index data[J]. Journal of Geophysical Research,2002,107:4119-4135.
    [6]Cao, M. K., Woodward, F. I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change[J]. Nature,1998,393:249-252.
    [7]Cao, M., Prince, S. D., Small, J., et al. Remotely sensed interannual variations and trends in terrestrial net primary productivity 1981-2000[J]. Ecosystems,2004,7:233-242.
    [8]Chen, K. S., Wu, T. D., Tsang, L., et al. The emission of rough surfaces calculated by the integral equation method with a comparison to a three dimensional moment method simulations[J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41(1):90-101.
    [9]Collado, A. D., Chuvieco, E., Camarasa, A. Satellite remote sensing anatysis to monitor desertification Proeesses in the crop-rangeland boundary of Argentina[J]. Journal of Arid Environment,2002,52(1):121-133.
    [10]Du, M., Shigeto, K., Seiichiro, Y., et al. Mutual influence between human activities and climate change in the Tibetan Plateau during recent years[J]. Global and Planetary Change, 2004,41:241-249.
    [11]Fensholt, R., Langanke, T., Rasmussen, K., et al. Greenness in semi-arid areas across the globe 1981-2007—an Earth Observing Satellite based analysis of trends and drivers[J]. Remote Sensing of Environment,2012,121:144-158.
    [12]Friedl, M. A., Michaelsen, J., Davis, F. W., et al. Estimating grassland biomass and leaf area index using ground and satellite data[J]. International Journal of Remote Sensing,1994, 15(7):1401-1420.
    [13]Gao, Q. Z., Wan, Y. F., Xu, H. M., et al. Alpine grassland degradation index and its response to recent climate variability in Northern Tibet, China[J]. Quaternary International,2010, 226:143-150.
    [14]Guerschman, J. P., Hill, M. J., Renzullo, L. J., et al. Estimating fractional cover of photosynthetic vegetation, non-photosynthetic vegetation and bare soil in the Australian tropical savanna region upscaling the EO-1 Hyperion and MODIS sensor[J]. Remote Sensing of Environment,2009,113:928-945.
    [15]Harris, R. B. Rangeland degradation on the Qinghai-Tibetan plateau:A review of the evidence of its magnitude and causes[J].Journal of Arid Environments,2010,74(1):1-12.
    [16]Hijmans, R. J., Cameron, S. E., Parra, J. L., et al. Very high resolution interpolated climate surfaces for global land areas[J]. International Journal of Climatology,2005,25:1965-1978.
    [17]Humchinson, M. F. ANUSPLIN version 4.36 user guide[M]. Canberra:The Australian National University, Centre for Resource and Environmental Studies,2006:7-8.
    [18]Hutchinson, M. F. The application of thin plate splines to continent-wide data assimilation. In:Data Assimilation Systems.BMRC Research Report NO.27[M]. Melbourne:Bureau of Meteorology,1991:104-113.
    [19]IPCC. Climate change 2007:Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[C]. Geneva, Switzerland,2007.
    [20]Ji, L., Peters, A. J. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices[J]. Remote Sensing of Environment,2003,87(1):85-98.
    [21]Lioubimtseva, E., Cole, R., Adams, J. M., et al. Impacts of climate and land-cover changes in arid lands of Central Asia[J]. Journal of Arid Environments,2005,62:285-308.
    [22]MeDaniel, K. C, Haas, R. H. Assessing mesquite grass vegetation condition from Landsat[J]. Photogrammetric Engineering and Remote Sensing,1982,48:441-450.
    [23]Merrill, E. H., Bramber-Brodahl, M. K., Marrs, R. W., et al. Estimation of green herbaceous Phytomass from Landsat MSS data in Yellow stone National Park[J]. Journal of Range Management,1993,46(2):151-157.
    [24]Nemani, R. R., Keeling, C. D., Hashimoto, H., et al. Climate dirven increases in global terrestrial net primary production from 1982 to 1999[J]. Science,2003,300:1560-1563.
    [25]Olden, J. D., Jackson, D. A. Torturing data for the sake of generality:how valid are our regression models?[J]. Ecoscience,2000,7(4):501-510.
    [26]Paruelo, J. M., Epstein, H. E., Lauenroth, W. K., et al. ANPP estimates from NDVI. for the central grassland region of the United States[J]. Ecology,1997,78(3):953-958.
    [27]Paudel, K. P., Andersen, P. Assessing rangeland degradation using multi-temporal satellite images and grazing pressure surface model in Upper Mustang, Trans Himalaya, Nepal [J]. Remote Sensing of Environment,2010,114:1945-1855.
    [28]Pei, Z. Y., Ouyang, H., Zhou, C. P., et al. Carbon balance in an alpine steppe in the Qinghai—Tibet Plateau[J]. Journal of Integrative Plant Biology,2009,51(5):521-526.
    [29]Pettorelli, N., Vik, J. O., Mysterud, A., et al. Using the satellite-derived NDVI to assess ecological responses to environmental change[J]. Trends in Ecology and Evolution,2005, 20(9):503-510.
    [30]Price, D. T., McKenney, D. W., Papadopol, P., et al. High resolution future scenario climate data for North America[C]. Vancouver:American Meteorological Society Annual Meetings, 2004.
    [31]Purevdorj, T., Tateishi, R., Ishiyama, T., et al. Relationships between percent vegetation cover and vegetation indices[J]. International Journal of Remote Sensing,1998,19(18):3519-3535.
    [32]Roerink, G. J., Menenti, M., Soepboer, W., et al. Assessment of climate impact on vegetation dynamics by using remote sensing[J]. Physics and Chemistry ofthe Earth,2003, 28(1-3):103-109.
    [33]Schmidt, H., Kamieli, A. Remote sensing of the seasonal variability of vegetation in a semi-arid environment[J]. Journa of Arid Environments,2000,45(1):43-59.
    [34]Schucknecht, A., Erasmi, S., Niemeyer, I., et al. Assessing vegetation variability and trends in north-eastern Brazil using AVHRR and MOD1S NDVI time series[J]. European Journal of Remote Sensing,2013,46:40-59.
    [35]Scurlock, J. O. M., Hall, D. O. The global carbon sink:A grassland perspective[J]. Global Change Biology,1998,4:229-233.
    [36]Shoshany, M., Kutiel. P., Lavee, H. Monitoring temporal vegetation cover changes in Mediterranean and arid ecosystems using a remote sensing technique:case study of the Judean Mountain and the Judean Desert[J]. Journal of Arid Environments,1996,33(1):9-21.
    [37]Song, Y., Ma, M., Veroustraete, F. Comparison and conversion of AVHRR GIMMS and SPOT VEGETATION NDVI data in China [J]. International Journal of Remote Sensing, 2010,31:2377-2392.
    [38]Stow, D., Daeschner, S., Hope, A., et al. Variability of the seasonally integrated normalized difference vegetation index across the north slope of Alaska in the 1990s[J].International Journal of Remote Sensing,2003,24(5):1111-1117.
    [39]Taylor, B. F., Dini, P. W., Kidson, J. W. Determinations of seasonal and interannual variation in New Zealand pasture growth from NOAA-7 data[J]. Remote Sensing of Environment, 1985,18:177-192.
    [40]Todd, S. W., Hoffer, R. M., Milchunas, D. G. Biomass estimation on grazed and ungrazed rangeland using spectral indices[J]. International Journal of Remote Sensing,1998, 19(3):427-438.
    [41]Tucker, C. J., Slayback, D. A., Pinzon, J. E., et al. Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999[J]. International Journal of Biometeorology,2001,45:184-190.
    [42]Turner, D. P., Ritts, W. D., Cohen, W. B., et al. Site-level evaluation of satellite based global terrestrial gross primary production and net primary production monitoring[J]. Global Change Biology,2005, 11(4):666-684.
    [43]Wang, J., Rich, P. M., Price, K. P. Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA[J]. International Journal of Remote Sensing, 2003,24(11):2345-2364.
    [44]Wang, X. H., Piao, S. L., Ciais, P., et al. Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006[J]. Proceedings of the National Academy of Sciences,2011,108(4):1240-1245.
    [45]Wessels, K. J., Prince, S. D., Carroll, M., et al. Relevance of rangeland degradation in semiarid northeastern south Africa to the nonequilibrium theory[J]. Ecological Society of America,2007,17(3):815-827.
    [46]Wittich, H. Area averaged vegetative cover fraction estimated from satellite data[J]. International Journal of Biometeorology,1995,38(3):209-215.
    [47]Yu, H. Y., Luedeling, E., Xu, J. C. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences,2010, 107(51):22151-22156.
    [48]Zar, J. H. Biostatistical Analysis[M].4th edition. New Jersey:Prentice Hall,1999:360-364.
    [49]Zavaleta, E. S., Shaw, M. R., Chiariello, N. R., et al. Additive effects of simulated climate changes, elevated CO2, and nitrogen deposition on grassland diversity [J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100:7650-7654.
    [50]Zhou, D. W., Fan, G. Z., Huang, R. H., et al. Interannual variability of the normalized difference vegetation index on the Tibetan Plateau and its relationship with climate change[J]. Advances in Atmospheric Sciences,2007,24(3):474-484.
    [51]毕晓丽,王辉,葛剑平.植被归一化指数(NDVI)及气候因子相关起伏型时间序列变化分析[J].应用生态学报,2005,16(2):284-288.
    [52]蔡英,李栋梁,汤懋苍,等.青藏高原近50年来气温的年代际变化[J].高原气象,2003,22(5):464-470.
    [53]陈云浩,李晓兵,史培军.基于遥感的植被覆盖变化景观分析:以北京海淀区为例[J].生态学报,2002,22(10):1581-1586.
    [54]崔林丽,史军.中国华东及其周边地区NDVI对气温和降水的季节响应[J].资源科学,2012,34(1):81-90.
    [55]崔庆虎,蒋志刚,刘季科,等.青藏高原草地退化原因述评[J].草业科学,2007,24(5):20-26.
    [56]戴声佩,张勃,王海军,等.中国西北地区植被覆盖变化驱动因子分析[J].干旱区地理,20 1 0,33(4):636-642.
    [57]丁明军,张镱礼,刘林山,等.1982-2009年青藏高原草地覆盖度时空变化特征[J].自然资源学报,2010a,25(12):2114-2122.
    [58]丁明军,张镱锂,刘林山,等.青藏高原植被覆盖对水热条件年内变化的响应及其空间特征[J].地理科学进展,2010b,29(3):507-512.
    [59]段克勤,姚檀栋,王宁练,等.青藏高原南北降水变化差异研究[J].冰川冻土,2008,30(5):726-732.
    [60]樊锦沼,张传道,吕玉华.应用气象卫星资料估算草场产草量方法的研究[J].干旱区资源与环境,1990,4(3):76-83.
    [61]樊启顺,沙占江,曹广超,等.气候变化对青藏高原生态环境的影响评价[J].盐湖研究,2005,13(1):12-18
    [62]范广洲,华维,黄先伦,等.青藏高原植被变化对区域气候影响研究进展[J].高原山地气象研究,2008,28(1):72-80.
    [63]冯松,汤懋苍,王冬梅.青藏高原是我国气候变化启动区的新证据[J].科学通报,1998,43(4):633-636.
    [64]冯松.青藏高原十到千年尺度气候变化的综合分析及原因探讨[D].兰州:中国科学院兰州高原大气物理研究所,1999:11-23.
    [65]干友民,成平,周纯兵,等.若尔盖亚高山草甸地上生物量与植被指数关系研究[J].自然资源学报,2009,24(11):1963-1972.
    [66]高娃,刑旗,刘德福.草原“三化”遥感监测技术方法和指标的研究[J].草原与草坪,2007(4):40-44.
    [67]郭泺,杜世宏,薛达远,等.长江源区土地覆盖变化与草地退化格局的时空分异[J].2012,23(5):1219-1225.
    [68]康悦,李振朝,田辉,等.黄河源区植被变化趋势及其对气候变化的响应过程研究[J].气候与环境研究,2011,16(4):505-512.
    [69]兰玉蓉.青藏高原高寒草甸草地退化现状及治理对策[J].青海草业,2004,13(1):27-30.
    [70]王谋,李勇,白宪洲,等.全球变暖对青藏高原腹地草地资源的影响[J].自然资源学报,2004,19(3):331-336.
    [71]李聪,肖继东,曹占洲,等.应用MODIS数据估算草地生物量[J].干旱区研究,2007,24(3):386-391.
    [72]李登科,郭铌,何慧娟.陕北长城沿线风沙区植被指数变化及其与气候的关系[J].生态学报,2007,27(11):4620-4629.
    [73]李林,陈晓光,王振宇,等.青藏高原区域气候变化及其差异性研究[J].气候变化研究进展,2010,6(3):181-186.
    [74]李林,朱西德,王振宇,等.青藏高原气候变化趋于暖湿化的若干事实//第26届中国气象学会年会.北京:中国气象学会,2009.
    [75]李生辰,徐亮,郭英香,等.近34a青藏高原年气温变化[J].中国沙漠,2006,26(1):27-34.
    [76]李霞,李晓兵,陈云浩,等.中国北方草原植被对气象因子的时滞响应[J].植物生态学报,2007,31(6):1054-1062.
    [77]李晓兵,史培军.中国典型植被类型NDVI动态变化与气温、降水变化的敏感性分析[J].植物生态学报,2000,24(3):379-382.
    [78]李晓兵,王瑛,李克让NDVI对降水季节性和年际变化的敏感性[J].地理学报,2000,(5):82-89.
    [79]李秀花,师庆东,郭娟,等.中国西北干旱区1981-2001年NDVI对气候变化的响应[J].干旱区资源与环境,2009,23(2):12-16.
    [80]李英年,王启基,周兴民,等.高寒草甸植物群落的环境特征分析[J].干旱区研究,1998,15(1):54-58.
    [81]李英年,赵亮,赵新全,等.5年模拟增温后矮嵩草草甸群落结构及生产量的变化[J].草地学报,2004,12(3):236-239.
    [82]梁四海,陈江,金晓媚,等.近21年青藏高原植被覆盖变化规律[J].地球科学进展,2007,22(1):33-40.
    [83]梁天刚,崔霞,冯琦胜,等.2001-2008年甘南牧区草地地上生物量与载畜量遥感动态监测[J].草业学报,2009,18(6):12-22.
    [84]刘桂芳,卢鹤立.1961-2005年来青藏高原主要气候因子的基本特征[J].地理研究,2010,29(12):2281-2288.
    [85]刘同海,吴新宏,董永平.基于TM影响的草原沙漠化植被高度分析研究[J].干旱区资源与环境,2010,24(2):141-144.
    [86]刘正佳,于兴修,王丝丝,等.薄盘光滑样条插值中三种协变量方法的降水量插值精度比较[J].地理科学进展,2012,31(1):56-62.
    [87]刘志红,Li Lingtao, McVicar T R,等.专用气候数据空间插值软件ANUSPLIN及其应用[J].气象,2008,34(2):92-100.
    [88]龙瑞军.青藏高原草地生态系统之服务功能[J].科技导报,2007,25(9):26-28.
    [89]吕少宁,李栋梁,文军,等.全球变暖背景下青藏高原气温周期变化与突变分析[J].高原气象,2006,29(6):1378-1385.
    [90]马保东,陈绍杰,吴立新,等.基于SPOT-VGT NDVI的矿区植被遥感监测方法[J].地 理与地埋信处科学,2009,25(1):84-87.
    [91]马文红,方精云,杨元合.中国北方草地生物量动态及其与气候因子的关系[J].中国科学,2010,40(7):632-641.
    [92]毛飞,张艳红,候英雨,等.藏北那曲地区草地退化动态评价[J].应用生态学报,2008,19(2):278-284.
    [93]牛宝茹,刘俊蓉,王政伟.干旱区植被覆盖度提取模型的建立[J].地球信息科学,2005,7(1):84-8.
    [94]朴世龙,方精云,贺金生,等.中国草地植被生物量及其空间分布格局[J].植物生态学报,2004,28(4):491-498.
    [95]任国玉,初子莹,周雅清,等.中国气温变化研究最新进展[J].气候与环境研究,2005,10(4):701-716.
    [96]色音巴图,贾峰.中国北方草地生物量时空分异的定位监测研究[J].中国草地,2003,25(5):9-14.
    [97]陈云浩,李晓兵,史培军.基于遥感的植被覆盖变化景观分析:以北京海淀区为例[J].生态学报,2002,22(10):1581-1586.
    [98]邵伟,蔡晓布.西藏高原草地退化及其成因[J].中国水土保持科学,2008,6(1):112-116.
    [99]宋春桥,游松财,柯灵红,等.藏北高原地表覆盖时空动态及其对气候变化的响应[J].应用生态学报,2011,22(8):2091-2097.
    [100]宋辞,裴韬,周成虎.1960年以来青藏高原气温变化研究进展[J].地理科学进展,2012,31(11):1503-1509.
    [101]宋怡,马明国.基于SPOT VEGETATION数据的中国西北植被覆盖变化[J].中国沙漠,2007,27(1):89-93.
    [102]孙红雨,王长耀,牛钲,等.中国地表植被覆盖变化及其与气候因子关系-基于NOAA时间序列数据分析[J].遥感学报,1998,2(3):204-209.
    [103]孙鸿烈,郑度.青藏高原的形成演化与发展[M].广东:广东科技出版社,1998.
    [104]孙鸿烈.青藏高原的形成演化[M].上海:上海科学技术出版社,1996.
    [105]孙明,杨洋,沈渭寿,等.基于TM数据的雅鲁藏布江源区草地植被盖度估测[J].国土资源遥感,2012,(3):71-77.
    [106]谭春萍,杨建平,米睿.1971-2007年青藏高原南部气候变化特征分析[J].冰川冻土,2010,32(6):1111-1120.
    [107]汤懋苍,白重瑗,冯松,等.本世纪青藏高原气候的3次突变与天文因素的相关[J].高原气象,1998,17(3):250-257.
    [108]王根绪,胡宏昌,王一博,等.青藏高原多年冻土区典型高寒草地生物量对气候变化的响应[J].冰川冻土,2007,29(5):671-679.
    [109]王桂钢,周可法,孙莉,等.天山山区草地变化与气候要素的时滞效应分析[J].干旱区地理,2011,34(2):317-324.
    [110]王静,郭铌,王振国,等.甘南草地地上部生物量遥感监测模型[J].干旱气象,2010,28(2):128-133.
    [111]王谋,李勇,白宪洲,等.全球变暖对青藏高原腹地草地资源的影响[J].自然资源学报,2004,19(3):331-336.
    [112]王庆,廖静娟.基于Landsat TM和ENVISAT ASAR数据的鄱阳湖湿地植被生物量的反演[J].地球信息科学学报,2010,12(2):282-291.
    [113]王一博,王根绪,沈永平,等.青藏高原高寒区草地生态环境系统退化研究[J].冰川冻土,2005,27(5):633-640.
    [114]王英,曹明奎,陶波,等.全球气候变化背景下中国降水量空降格局的变化特征[J].地理研究,2006,25(6):1031-1040.
    [115]韦志刚,黄荣辉,董文杰.青藏高原气温和降水的年际和年代际变化[J].大气科学,2003,27(2):157-170.
    [116]魏克家,施玉辉.青海省草地生态平衡问题的探讨[J].四川草地,2000,(3):9-12.
    [117]武高林,杜国祯.青藏高原退化高寒草地生态系统恢复和可持续发展探讨[J].自然杂志,2007,29(3):160-164.
    [118]辛晓平,张保辉,李刚,等.1982-2003年中国草地生物量时空格局变化研究[J].自然资源学报,2009,24(9):1582-1592.
    [119]徐斌,杨秀春,陶伟国,等.中国草原产草量遥感监测[J].生态学报,2007,27(2):405-413.
    [120]徐维新,刘晓东.春末夏初青藏高原植被对全球变暖响应的区域特征[J].高原气象,2009,28(4):723-730.
    [121]徐希孺,金丽芳,赁常恭,等.利用NOAA-CCT估算内蒙古草场产草量的原理和方法[J].地理学报,1985,40(4):333-346.
    [122]徐兴奎,林朝晖,薛峰,等.气象因子与地表植被生长相关性分析[J].生态学报,2003,23(2):221-230.
    [123]阎福礼,李震,邵芸.基于NOAA/AVHRR数据的西部植被覆盖变化监测[J].兰州大学学报(自然科学版),2003,39(2):90-94.
    [124]杨峰,李建龙,钱育蓉,等.天山北坡典型退化草地植被覆盖度监测模型构建与评价[J].自然资源学报,2012,27(8):1340-1348.
    [125]杨元合,朴世龙.青藏高原草地植被覆盖变化及其与气候因子的关系[J].植物生态学报,2006,30(1):1-8.
    [126]尹云鹤,吴绍洪,赵东升,等.1981-2010年气候变化对青藏高原实际蒸散的影响[J].地理学报,2012,67(11):1471-1481.
    [127]于伯华,吕昌河,吕婷婷,等.青藏高原植被覆盖变化的地域分异特征[J].地理科学进展,2009,28(3):391-397.
    [128]张戈丽,欧阳华,张宪洲,等.基于生态地理分区的青藏高原植被覆被变化及其对气候变化的响应[J].地理研究,2010,29(3):2004-2014.
    [129]张戈丽,徐兴良,周才平,等.近30年来呼伦贝尔地区草地植被变化对气候变化的响应[J].201 1,66(1):47-58.
    [130]张学霞,葛全胜,郑景云.北京地区气候变化和植被的关系-基于遥感数据和物候资料的分析[J].植物生态学报,2004,28(4):499-506.
    [131]张艳楠,牛建明,张庆,等.植被指数在典型草原生物量遥感估测应用中的问题探讨[J].草业学报,2012,21(1):229-238.
    [132]张镱锂,李炳元,郑度.论青藏高原范围与面积[J].地理研究,2002,21(1):1-8.
    [133]赵东升,吴绍洪,郑度,等.青藏高原生态气候因子的空间格局[J].应用生态学报,2009,20(5):1153-1159.
    [134]中华人民共和国国家质量监督检验检疫总局.GB19377-2003天然草地退化、沙化、盐泽化的分级指标[S].北京:中国标准出版社,2003.
    [135]周宇庭,付刚,沈振西,等.藏北典型高寒草甸地上生物量的遥感估算模型[J].草业 学报,2013,22(1):120-129.
    [136]卓嘎,李欣,罗布,等.西藏地区近期植被变化的遥感分析[J].高原气象,2010,29(3):563-571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700