用户名: 密码: 验证码:
连续秸秆还田与耕作方式轮换对土壤理化性状及水稻养分吸收和产量影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是农业大国,每年的农业生产都产生数以亿吨计的秸秆,但是由于人们生活水平的提高使秸秆这一资源大量闲置,又由于现阶段利用秸秆的技术与途径有限,致使焚烧秸秆现象十分严重,造成了天然资源的巨大浪费与环境污染。
     本试验于2007年6月至2008年11月在江苏省沿江农科所水稻试验田进行,采用大田试验研究了稻麦两熟制不同耕作方式与连续秸秆还田对直播稻田土壤结构和养分含量连续变化、水稻生长及产量的影响,采用盆栽模拟试验研究不同耕作方式下不同秸秆还田深度对水稻养分吸收以及土层养分含量的影响,为实现作物可持续高产、高效、安全生产提供科学依据;为实现农业的可持续发展、农村生态环境保护和农业清洁化生产提供理论参考。试验得到的主要结果如下:
     1秸秆还田与不同耕作方式对土壤理化性状的影响
     秸秆还田能够显著增加土壤有机质含量,对土壤有机质含量影响随土层深度的增加而减小;土壤耕作方式能够显著影响土壤有机质垂直分布,在所有处理中,隔年旋耕+秸秆还田(NRS)、隔年浅翻耕+秸秆还田(NLS)增加土壤有机质含量效果最明显。秸秆还田可以显著增加土壤全氮含量,显著增加0-7cm土层土壤速效磷含量;不同耕作方式对土壤的全氮含量也有显著影响,但对土壤速效磷含量影响不显著。综合比较得出,连续两年旋耕+秸秆还田(RSⅡ)对增加土壤全土层全氮含量影响效果最显著。
     秸秆还田能够显著降低土壤容重,提高土壤总孔隙度,增加土壤毛管孔隙度,显著提高土壤非毛管孔隙度;土壤耕作方式对土壤容重、土壤总孔隙度、土壤毛管孔隙度也有影响,并能显著提高土壤非毛管孔隙度。本次试验得出,隔年翻耕+秸秆还田比连续翻耕+秸秆还田更有效减小土壤容重;隔年浅翻耕+秸秆还田对增加土壤总孔隙度效果最好,隔年旋耕+秸秆还田以及隔年浅翻耕+秸秆还田处理对土壤毛管孔隙度的影响较明显,无论是隔年还是连续深翻耕都能显著提高秸秆分布层土壤非毛管孔隙度,但是秸秆不还田的深翻耕效果不理想。
     2不同深度秸秆还田对水稻养分吸收的影响
     秸秆掩埋使水稻对氮、磷的吸收显著高于无秸秆掩埋处理,其中,秸秆掩埋于0-20cm全土层处理使水稻各器官对氮素的吸收量达到所有处理中最大,但是水稻对磷素的吸收在秸秆掩埋处理组中没有显著差异,各器官对氮素吸收量随秸秆掩埋深度的增加而增加,秸秆全土层掩埋更能提高水稻对氮素的吸收量。有无秸秆掩埋对水稻穗、叶片以及茎鞘部位磷吸收影响显著,而秸秆掩埋不同深度对水稻各器官磷的吸收影响没有表现。
     秸秆掩埋处理,各土层中全氮、速效磷以及有机质含量没有像无秸秆掩埋那样出现养分含量随土壤深度增加而增大的下渗规律,而出现5-10cm中间层或0-5cm上层养分含量高于下层的现象,说明秸秆掩埋对养分分布有影响,它对养分有吸附和截流作用。
     3秸秆还田与耕作方式对稻麦轮作土壤理化性状连续变化的影响
     秸秆还田与耕作方式轮换时间越长,土壤容重越小,土壤有机质、全氮以及速效磷含量也逐年增加。无论哪个指标,秸秆还田处理效果均优于秸秆不还田处理。连续两年深耕+秸秆还田处理(DSⅡ)和一年免耕一年深耕+秸秆还田处理(NDS)对土壤容重的降低最有效;一年免耕一年浅翻耕+秸秆还田处理(NLS)能有效增加土壤有机质含量,其次是一年免耕一年旋耕+秸秆还田处理(NRS);一年免耕一年翻耕和旋耕(NRS、NLS、NDS)以及连续两年旋耕处理(RSⅡ)增加土壤全土层全氮含量效果明显;对于土壤速效磷含量,虽然秸秆还田处理全土层速效磷含量增加较明显,但是不同耕作方式对全土层速效磷含量影响不显著。
     4秸秆还田与耕作方式对水稻生长特性和产量形成的影响
     本试验是在秸秆两年还田处理后得出的结果,结果显示,秸秆还田会对水稻穗粒数、千粒重以及产量产生一定影响。对于穗粒数,秸秆还田处理比无秸秆还田处理平均减少12.14%;除了隔年深翻耕+秸秆还田NDS、隔年浅翻耕+秸秆还田NLS处理与对用不还田处理ND和NL理论产量差异不显著以外,秸秆还田使水稻理论产量显著小于没有秸秆还田处理;秸秆还田使水稻实际产量平均降低7.68%,连续旋耕处理对水稻减产影响较大,而隔年翻耕即一年免耕一年旋耕或者浅翻耕可以使水稻产量维持在较高水平。
China is a large agricultural country, with annual agricultural production of nearly 100 million tons of straw. Owing to the improvement of living standards as well as limited technology at this stage, a large number of straw are discarded and the phenomenon of straw burning become serious, which has resulted in a tremendous waste of natural resources and environmental pollution.
     The research was made in Nantong Institute of Agricultural Science in Jiangsu Province, from June 2007 to November 2008. Changes of soil structure and nutrient content as well as rice growth and yield affected by rice-wheat cropping system and different farming methods with consistent straw returned were researched in farmland experiments. Potted rice were applied to observe the influence of different depth of straw returned in nutrient absorption of rice and soil nutrient content. Experiments were made in order to achieve sustainable, efficient, safe and high-yield crops plus sustainable agricultural development, ensuring rural eco-environmental protection and cleaner agriculture. The main conclusions are as follows:
     1 the influence of straw returned with different tillage methods on soil physical and chemical properties
     Straw returning significantly increased content of soil organic matter, as soil depth increasing, the influence on organic matter decreased. Soil tillage can significantly affect the vertical distribution of soil organic matter. Among all treatments, NRS and NLS are the most obvious in increasing the content of soil organic matter. Straw returning significantly increased content of total nitrogen, as well as available phosphorus in 0-7cm layer of soil. Different tillage significantly influence the content of total nitrogen, but for available phosphorus, case is different. Comparison showed that two years rotary+straw returning RSⅡcan significantly increased content of total nitrogen in every layer of soil.
     Straw returned results in a significant reduction in soil bulk density, increasing the total porosity of soil, soil capillary porosity and soil non-capillary porosity; soil tillage practices can also influence soil bulk density, soil total porosity, capillary porosity as well as soil non-capillary porosity. The test indicated that Tillage+Straw returning in every other year is more effective to reduce soil bulk density than continual Tillage+Straw returning; Shallow tillage+Straw in every other year can most effectively increase total porosity of soil, while Rotary+Straw and Shallow tillage+Straw returning in every other year can increase the soil capillary porosity more obvious. No matter deep tillage in every other year or continually, both are obvious to improve the soil non-capillary porosity where straw distributed, but the result of deep tillage with no straw returning is not ideal.
     2 the influence of different straw returned depths on nutrient uptake of rice
     Nitrogen and phosphorus absorption of rice in straw buried plots were significantly higher than those in non straw-buried plots, different parts of rice had the largest capacity of nitrogen absorption in the treatment with straw burying in 0-20cm-wide layer of soil (TS), but the absorption of phosphorus showed no significant differences in plots under different treatments. Nitrogen uptake capacity of different parts of rice increased with the depth of straw buried deepened. Straw buried in every layer of soil can enhance the absorption of nitrogen better for rice. Whether to return the straw into soil significantly affects the absorption of phosphorus of spikes, leaves and stems, but different depths show little impact of phosphorus absorption in different parts of rice.
     In straw buried plots, the regulation of infiltration changed with the depth in soil which included total nitrogen, available phosphorus and organic matter content did not show as evident as that in plots with non-straw buried. Straw buried in soil influenced the nutrients distribution mainly through the absorption of nutrients in soil and the nutrient closure as well.
     3 the consistent influence of straw returned and farming methods on physical and chemical properties of rice-wheat rotating soil
     As the period of straw returning with tillage lasting, soil bulk density decreasing while soil organic matter, total nitrogen and available phosphorus content increasing. Different tillage practices had affection on soil bulk density, in which the results of continuous deep tillage or deep tillage in every other year were most evident. Light tillage and rotate in every other year could effectively increase soil organic matter content.
     Among the straw returned treatments, the one-year no-tillage and one-year deep/light or rotary tillage, as well as two-year rotary tillage could effectively increase total nitrogen in soil; while for soil available phosphorus content, although straw returned to soil or not could affect available phosphorus content more significant, available phosphorus content of total soil were not significantly affected by different tillage methods.
     4 the influence of straw returned and farming methods on the growth properties and yield of rice
     The results indicated that straw returned had an impact on grain number, grain per 1000 weight and yield of rice. For grains per spike, straw returned treatments had an average reduction of 12.14% compared with straw-free treatments; Except of NDS, NLS and ND, NL with theoretical yield having no significant difference, the theoretical yield of rice in straw returned treatments were significantly less than that in straw-free treatments; the actual production of rice in straw returned treatments were lower by an average of 7.68 percent, continuous rotary tillage had a greater impact on rice reduction, and one-year no-tillage one-year rotary tillage or light tillage could maintained the rice production at a high level.
引文
[1]Ocio J A, Brookes P C, Jenkinson D S. Field incorporation of straw and its effects on soil microbial biomass and soil inorganic N. Soil Biology and Biochemistry,1991,23:171-176.
    [2]刘天学,纪秀娥.焚烧秸杆对土壤有机质和微生物的影响研究.土壤,2003,35(4);347-348
    [3]Becker M, Ladha J K, Ottow J C. Nitrogen losses and lowland rice yield as affected by residue nitrogen released. Soil Science of Society of American Journal,1994,58:1660-1665
    [4]Bossio D A, Horwath W R, Kessel V. Methane pool and flux dynamics in rice field following straw incorporation. Soil Biology and Biochemistry,1999,31:1313-1322
    [5]Miura Y, Kanna T. Emissions of trace gases (CO2, CO, CH4, and N2O) resulting from rice straw burning. Soil Sci. Plant Nutrition,1997.43:849-854
    [6]Kludze H K, Delaune R D. Straw application effects on methane and oxygen exchange and growth in rice. Soil Science of Society of American Journal,1995,59:824-830
    [7]江永红,宇振荣,马永良.秸秆还田对农田生态系统及作物生长的影响.土壤通报,2001,32(5):209-213
    [8]劳秀荣,孙伟红,王真等.秸秆还田与化肥配合施用对土壤肥力的影响[J].土壤学报,2003,40(4):619-623
    [9]李孝勇,武际,朱宏斌等.秸秆还田对作物产量及土壤养分的影响[J].安徽农业科学,2003,3 1(5):870-871
    [10]洪春来,魏幼璋,黄锦法等.秸秆全量直接还田对土壤肥力及农田生态环境的影响研究[J].浙江大学学报(农业与生命科学版),2003,29(6):627-633
    [11]陈芝兰,张涪平,蔡晓布等.秸秆还田对西藏中部退化农田土壤微生物的影响[J].土壤学报,2005,42(4):696-699
    [12]李录久,柳开瑜,胡永年等.长期秸秆还田培肥砂黑土的效应[J].安徽农业科学,2001,29(6):765-766
    [13]李文革,李倩,贺小香.秸秆还田研究进展[J].湖南农业科学,2006,(1):46-48
    [14]中国农作制度研究进展2008[M].辽宁科学技术出版社,2008
    [15]金千瑜.韩国的直播稻生产与技术[J].世界农业,1997,(9):16-18
    [16]S pandey, L Velasco. Economics of Direct Seeding in Asia:Patterns of Adoption and Research Priorities [J]. International Rice Research Notes.1999,24(2):6-11
    [17]Motoyuki Hagiwara, Mitsuo Imura. Variet Difference and Temperature Response of Local Soil-Reduction around Germinating Rice Seed. Japan. Jour. Crop Sci.1993,62(1):105-110
    [18]Motoyulci Hagiwars, Mitsuo Imura, Shozo Mitsuishi. Local Soil Reduction in the Vicinity of the Paddy Rice Seed Coated with Oxygen Generating Chemical in Relation to Germination and Emergence. Japan. Crop Sci.,1990,59 (1):56-62
    [19]R S Helms, R H Dilday, R D Carlson.Using GA3 seed treatment in direct seeded rice in southern U.S.A. Direct Seeded Flooded Rice in Tropics, Published by International Rice Research Institute, Manila, Philippines,1991,2:113-114
    [20]Je Kyu Kim, Moon Hee Lee, Yun Jin Oh. Lodging Pattern of Rice Plant in Broadcasting seeded and Hand-Transplanted Cultivation. Korean Jour. Crop Sci.,1993,38 (3):219-227
    [21]Kazuo Terashima, Shige mi Akita, Nagao sakai. Eco-physiological Characteristics with Lodging. Tolerance of Rice in Direct Sowing Cultivation. Japan. Jour. Crop Sci.,1992,61(3):380-387
    [22]Sang Chul Lee, Takeshi Tanabe. Effect of Inabenfide and Nitrogen Top-Dressing on Ethylene Evolution and Lodging in Rice [J].Korean J. Crop Sci.,1993,38 (5):383-390
    [23]沈裕虎.秸秆覆盖的农业效应[J].干早地区农业研究,1998,16(1):45-50
    [24]刘雪,邵红霞.秸秆还田的方法和推广措施探讨[J].河南农业,2004,(5):421
    [25]谢先举.我国旱地免耕研究耕作与栽培,1995(1):16-22
    [26]朱文珊.秸秆覆盖免耕的节水培肥增产效益及应用前景[J].干早地区农业研究,1988(4):12-17
    [27]刘文志.作物秸秆还田的综合评价[J].现代化农业,2008(2)17-19
    [28]Mehdi B B. Yeld and Nitrogen Content of com under Different Tillage practices [J]. Agronomy Journal,1999,91(4):631-636
    [29]旱地农业耕作栽培以及培产机理课题组.旱地玉米免耕秸秆免耕整秸秆半覆盖技术研究初报[J].干早地区农业研究,1993,11(8):13-18
    [30]郭建华,邢行,李春杰.秸秆还田和施肥对耕层土壤养分变异的影响[J].河北农业科学,2003,(7):1-4增刊
    [31]厉景贵.秸秆还田对暗棕壤理化性质影响调查分析[J].现代化农业,2002(8):20-21
    [32]杨佩珍,沈金川,张文献.稻麦秸秆全量直接还田对产量及土壤理化性质的影响[J].江苏农业学报,2003,19(1):53-57
    [33]刘武仁,边少峰,郑金玉等.玉米秸秆还田方法试验研究初报[J].吉林农业科学,2002,27(16):38-40
    [34]曾木祥,王蓉芳,彭世琪等.我国主要农区秸秆还田试验总结[J].土壤通报,2002,33(5):336-339
    [35]李新举,张志国.秸秆覆盖与秸秆翻压还田效果比较[J].国土与自然资源研究,1999(1):43-45.
    [36]耿玉辉,吴景贵.作物残体培肥土壤的研究进展[J].吉林农业大学学报,2000,22(2):76-79,85
    [37]吴崇海.高留麦茬的整体效应与配套技术研究[J].干早地区农业研究,1996,14(1):43-48
    [38]袁家富.麦田秸秆覆盖节水效应研究[J].生态农业研究,1996,4(3):61-65
    [39]王玉坤.袁庄麦田秸秆覆盖保护措施的研究[J].灌溉排水,1991,10(1):32-35
    [40]张志国,徐琪.长期秸秆覆盖免耕对土壤某些理论性质及玉米产量的影响[J].土壤学报,1998,35(3):384-390
    [41]B.B. Mehdietal. etal. Yield and Nitrogen Content of Com under different Tillage Practices. Agronomy Journal,1999,91(4):631-636
    [42]LalR., et al. No-tillage effects on soil properties under different crops in western Nigenia. Soil Sci, Soc Am Proc,1976,40:762-768
    [43]晋凡生,张宝林.旱塬地玉米农田免耕覆盖的土壤环境效应[J].水土保持研究,2000,4:60-64
    [44]Gantzer C J, Blake G.R. Physical characteristics of Le Sueur clay loam soil following no-till and conventional tillage [J]. Agron J,1978,70(5):853-857
    [45]范秀莲,曲英杰.秸秆还田与农业可持续发展[J].农机化研究,2002,(2):72
    [46]钟杭,张勇勇,林潮澜等.麦稻秸秆全量整草免耕还田方法和效果[J].土壤肥料,2003(3):34-37
    [47]顾志权,李庆康,赵强基.苏南稻麦二熟区秸秆全量机械还田技术[J].土壤肥料,2001(5):23-26
    [48]祁居仕.麦秸不同形式还田的增产效应研究[J].甘肃农业科技,2002(10):38-39
    [49]李孝勇,武际,朱宏斌等.秸秆还田对作物产量及土壤养分的影响[J].安徽农业科学,2003,31(5):870-871
    [50]李红,周连第,张有山.秸秆还田对土壤蓄水保肥及作物产量的影响[J].中国生态农业学报,2003,11(1):142-144
    [51]周江明,徐大连,薛才余等.稻草还田综合效益研究[J].中国农学通报,2002,18(4):7-10
    [52]李录久,柳开瑜等.长期秸秆还田培肥砂黑土的效应[J].安徽农业科学,2001,29(6):765-766
    [53]侯志研,杜桂娟,孙占祥等.玉米秸秆还田培肥效果的研究[J].杂粮作物,2004,24(3):166-167
    [54]Donald D. Rotation and Fertilization Effect on Com and Soybean Wields and Soybean Cyst Nematode Populations in a No-tillage System [J]. Agronomy Journal,1998,9(4):518-522
    [55]牛灵安.曲周试区秸秆还田配施氮磷肥的效应研究[J].土壤肥料,1998(6):32-35
    [56]Awnimelech Y. Organic residues in modern agriculture. The Role of Organic Matter in Modern Agriculture [J],1986,1-10.
    [57]Hundal H S. Phosphorus sorption characteristics of flooded soil attended with green manures [J]. Tropical Agriculture,1988,65 (2):185-187.
    [58]农业部科技司.中国南方农业中的钾[M].北京:农业出版社,1991,85-86
    [59]陈兰祥.小麦—玉米轮作覆盖稻草对土壤肥力及产量的影响[J].土壤,1996,28(3):156-159
    [60]杨玉爱,薛建明.微量元素肥料研究与应用[M].湖北:湖北科技出版社,1986,297-306
    [61]林荣新.有机肥防治油菜缺硼效果的研究[J].浙江农业科学,1985,(2):88-91
    [62]苏祖芳,张亚洁,张娟等.基蘖肥与穗粒肥配比对水稻产量形成和群体质量的影响[J].江苏农学院学报,1995,16(3):21-30.
    [62]冯惟珠,苏祖芳,杜永林等.水稻灌浆期源质量与产量关系及氮素调控研究[J].中国水稻科学,2000,14(1):24-30.
    [63]杨泽敏,王维金,蔡明历等.氮肥施用期及施用量对稻米品质的影响[J].华中农业大学学报,2002,2 1(5):429-434.
    [64]周瑞庆.施肥对稻米品质和产量影响的研究[J].湖南农学院学报,1989,15(3):1-5.
    [65]邓仕槐,吴晓斌,卢益武.施肥对环境质量的影响[J].西南农业学报,1998,11(3):106-111.
    [66]蒋永忠,吴金桂,娄德仁等.氮素化肥对农业生态环境的污染及其控制措施[J].江苏农业科学,1998(6):48-50.
    [67]王秀芹,张洪程,黄银忠等.施氮量对不同类型水稻品种吸氮特性及氮肥利用率的影响[J].上海交通大学学报(农业科学版),2003,2 1(4):325-330.
    [68]李意坚,顾志权,钱卫飞等.施肥对水稻养分吸收的影响研究[J].现代农业科技,2007,12:91-93
    [69]张静兰等.氮素营养对水稻生产、产量和氮代谢的营养.植物学报[J].1964(3):75-81
    [70]苏祖芳,周培南,许乃霞等.密肥条件对稻株氮素吸收和产量形成的影响[J].中国水稻科学,15(4):281-286
    [71]胡太承,颜振德.水稻品种产量形成的生理生态研究,品种营养特性与产量形成的关系[J].江苏农业科学.1984(3):1-8
    [72]徐国伟,吴长付,刘辉等.秸秆还田与氮肥管理对水稻养分吸收的影响[J].农业工程学报.2007(7):192-195
    [73]杨建昌,王志琴,郎有忠等.亚种间杂交稻发育籽粒中ATP酶活性及其调节[J].扬州大学学报(自然科学版),1998,1(1):13-17
    [74]陈新红,刘凯,徐国伟等.氮素与土壤水分对水稻养分吸收和稻米品质的影响[J].2004,3(3):15-19
    [75]吴平,印莉萍,张立平等.植物营养分子生理学[J].北京:科学出版社,2001.
    [76]李继云,李振声等.有效利用土壤营养元素的作物育种新技术研究.中国科学[J],1995,25(1):41-47.
    [77]俄胜哲,袁继超,丁志勇等.氮磷钾肥对稻米铁、锌、铜、锰、镁、钙含量和产量的影响[J].中国水稻科学,2005,19(5):434-440
    [78]王耀晶,张玉龙,韩晓日等.磷锌配施对水稻产量影响的研究[J].土壤通报,2005,36(3):443-444
    [79]张学军,刘登彪,冯卫东.几种肥料配施对水稻产量及品质的影响[J].宁夏农林科技,2001,(2):31-32
    [80]冯玉科.不同施肥条件下土壤有效态磷、钾的动态变化及其对水稻养分吸收及产量的影响.浙江大学硕士学位论文,2002.
    [81]侥立华.钾营养对杂交水稻光合作动态及产量形成的效应[J].中国水稻科学,1990,4(3):38-41
    [82]Haeder He. etal. In role of K in Crop Production Int. Potash Inst 1979,115-124
    [83]张国平.水稻钾肥用量与产量效应研究.贵州农业科学,2002,30(4):18-21
    [84]张锡洲,李廷轩,余海英等.水旱轮作条件下长期自然免耕对土壤理化性质的影响[J]水土保持学报,2006,20(6):145-147
    [85]晋凡生,张宝林.旱塬地玉米农田免耕覆盖的土壤环境效应[J].水土保持研究,2000,4:60-64
    [86]朱自玺.秸秆覆盖麦田水分调整及水分利用效率研究[J].生态农业研究,2000,8(1):34-37
    [87]张振江.麦秸还田培肥土壤增产效应分析[J].干旱地区农业研究,1991,(1):52-57
    [88]冯科平,段桂荣.不同覆盖处理对早作玉米生育与产量效应的研究[J].干旱地区农业研究,1995,13(1):50-54
    [89]张玉铭,马永清.麦秸覆盖夏玉米对其苗期生长发育的生化作用研究初报[J].生态学杂志,1994,13(3):70-72
    [90]李秋梅,陈新平,张福锁等.冬小麦—夏玉米轮作体系中磷钾平衡的研究[J].植物营养与肥料学报,2002,8(2):152-156
    [91]索东让,王托和,李多忠.河西走廊富钾土壤钾肥效应及钾素平衡的长期定位研究[J].中国生态农业学报,2002,10(3):90-92
    [92]范钦桢,谢建昌.长期肥料定位试验中土壤钾素肥力的演变[J].土壤学报,2005,42(4):591-599
    [93]谭德水,金继运,黄绍文.长期施钾与秸秆还田对西北地区不同种植制度下作物产量及土壤钾素的影响[J].植物营养与肥料学报,2008,14(5):886-893
    [94]陈化榜,李振声,李继云.植物矿质营养育种的研究进展,中国农业科学[J].1995,28(增刊):1-6.
    [95]胡笃敬,董任瑞,葛旦之.植物钾营养的理论与实践[M].长沙:湖南科学技术出版社[J],1993:58-109.
    [96]齐田锋,吕守忠,于振文.不同施氮量对冬小麦吸磷特性和产量的影响[J].山东农业科学1994(6):10-12.
    [97]陆引罡,周焱.贵州中海拔地区水稻高产中的钾素效应研究[J].西南农业大学学报2003,25(4):360-362.
    [98]李淑玲,罗战勇.烤烟的钾素营养与烟叶含钾量研究进展[J].广东农业科学,2004(增刊):20-22.
    [99]饶鸣钿,郑履端,林柳姬.氮、磷、钾有机肥对水稻产量和品质的影响[J].耕作与栽培,2003.1:61-62.
    [100]叶华斌,黄新平,姚铭等.氮钾配比对水稻氮素利用率的影响[J].上海农业科技2003(3):38.
    [101]许前欣,赵振达,李季平等.钾肥对蔬菜产量品质及效应研究[J].土壤肥料,1999(2):23-25.
    [102]林咸永,何念祖,章永松等.不同水稻品种对钾的吸收和利用的差异及其与产量和品质的关系[J].土壤通报,1998,26(7):49-52.
    [103]汤利,周米平,马振江等.钾肥对稻米蛋白质组分和氨基酸含量的影响[J].吉林农业大学学报1994.16:121-123.
    [1]江永红.秸秆还田对农田生态系统及作物生长的影响[J].土壤通报,2001,32(5):209-213
    [2]张国志,徐琪.长期秸秆覆盖免耕对土壤某些理化性质及玉米产量的影响[J].土壤学报,1998,35(3):384-390
    [3]李华兴,卢维盛,刘远金等.不同耕作方法对水稻生长和土壤生态的影响[J].应用生态学报,200 1,12(4):553-556
    [4]刘世平,张洪程,戴其根等.免耕套种与秸秆还田对农田生态环境及小麦生长的影响[J].应用生态学报,2005,16(2):393-396
    [5]曾木祥,张玉杰.秸秆还田对农田生态环境的影响[J].农业环境与发展,1997,(1):1-7
    [6]冯跃华,邹应斌,王淑红等.免耕对土壤理化性状和直播稻生长及产量形成的影响[J].作物研究,2004,(3):137-140
    [7]刘巽浩.耕作学[M].北京:中国农业出版社,1994,280-282
    [8]朱祖祥.土壤学[M].北京:农业出版社,1983.
    [9]中国科学院南京土壤研究所土壤物理研究室.土壤物理性质测定法[M].北京:科学出版社,1978.
    [10]张玉屏,朱德峰,林贤青等.田间条件下水稻根系分布及其与土壤容重的关系[J].中国水稻科学,2003,17(2):141-144
    [11]江永红,宇振荣,马永良.秸秆还田对农田生态系统及作物生长的影响.土壤通报,2001,32(5):209-213
    [12]吴婕,朱钟麟,郑家国.秸秆覆盖还田对土壤理化性质和作物产量的影响[J].西南农业学报,2006,19(2):192-195
    [13]李月华,郝月皎,李娟茹等.秸秆直接还田对土壤养分及物理性状的影响[J].河北农业科学,2005,9(4):25-27
    [14]Staley T E. Soil microbial and organic component alteration in no-tillage chrono sequence[J]. Soil Sci Am J,1988,52(4):998-1005
    [15]Bales dent J. Effects of tillage on soil organic carbon mineralization estimated from 13C abundance in maize fields [J]. Soil Sci,1990,41(4):587-598
    [1]邓仕槐,吴晓斌,卢益武.施肥对环境质量的影响[J].西南农业学报,1998,11(3):106-111.
    [2]蒋永忠,吴金桂,娄德仁等.氮素化肥对农业生态环境的污染及其控制措施[J].江苏农业科学,1998(6):48-50.
    [3]吾建祥,施南芳.长期不同施肥对水稻养分吸收和肥料利用率的影响[J].湖北农业科学,2002(4):55-58
    [4]李方敏,樊小林,陈文东.控释肥对水稻产量和氮肥利用效率的影响[J].植物营养与肥料学报,2005,11(4):494-500
    [5]田玉华,贺发云,尹斌等.不同氮磷配合下稻田田面水的氮磷动态变化研究[J].土壤学,2006,38(6):727-733
    [6]周全来,赵牧秋,鲁彩艳等.施磷对稻田土壤及田面水的磷浓度影响模拟[J].应用生态学报.2006,17(10):1845-1848
    [7]张海林,高旺盛,陈阜等.保护性耕作研究现状的发展趋势以及发展对策[J].中国农业大学学报,2005,10(1):16-20
    [8]赵廷祥.农业保护性耕作与生态环境保护[J].农村牧区机械化,2002,2(4):7-8
    [9]Tracy. R, Mozaffari M, Sims J T. Phosphorus available and sorption in Altanitic coastal plain watered dominated by animal-based-agricuture [J]. Soil Sci,1994,157(2):97-107
    [10]纪雄辉,郑圣先,刘强等.施用猪粪和化肥对稻田土壤表面水的氮磷动态影响[J].农业环境科学学报,2007,26(10):29-35
    [11]Unger. A R, FanMX, Cadrin F, Nitrous oxide emission in there years as affected by tillage, corn-soybean-alfalfa rotation and nitrogen fertilization[J]. J Environ Qual,1998,27:698-703
    [12]闫德智,王德建,林静.慧太湖地区氮肥用量对土壤供氮、水稻吸氮和地下水的影响[J].土壤学报,2005,42(3):440-446
    [13]刘世平,陆建飞,单玉华等.稻田轮耕土壤氮素矿化与土壤供氮量的研究[J].扬州大学学报(农业与生命科学版),2003,24(2):36-39
    [14]邱卫国,唐浩,王超.水稻田面水氮素动态径流流失特征及控制技术研究[J].农业环境科学学报200423(4):740-744
    [15]纪雄辉,郑圣先,鲁艳红等.施用尿素和控释肥的双季稻田表层水氮素动态及其径流损失规律[J].中国农业科学,2006,39(2):2521-2530
    [1]江永红,宇振荣,马永良.秸秆还田对农田生态系统及作物生长的影响[J].土壤通报,2001,32(5):209-213
    [2]卢萍,单玉华,杨林华,等.秸秆还田对稻田土壤溶液中溶解性有机质的影响[J].土壤学报,2006,43(5):736-741
    [3]罗珠珠,黄高宝,张国盛.保护性耕作对黄土高原旱地表土容重和水分入渗的影响[J].干旱地区农业研究,2005,23(4):7-11
    [4]顾克礼,刘世平.超高茬麦田套稻麦秸全量自然覆盖还田对土壤肥力和稻米品质的影响[J].江苏农业学报,2006,22(4):410-414
    [5]孙海国.不同耕作方式对土壤有机质及氮磷钾含量的影响[J].河北农业科学,1996(3):20-22
    [6]肖海涛,陈国德.平原高沙土区合理种植及耕作方式对土壤性状的影响[J].水土保持通报,2003,23(3):21-23
    [7]徐世宏,郎宁,李如平等.稻草隔层免耕抛秧新技术研究[J].杂交水稻.2006,1(S1):127-129
    [8]杨文钰,王兰英.作物秸秆还田的现状与展望[J].四川农大学报,1999,17(2):211-216
    [9]林咸永,章永松,何念祖.秸秆的施用方法对三熟制稻田作物产量和土壤肥力的影响[J].浙江农业大学学报,1997,23(3):273-276
    [10]潘玉才,钱非凡,黄卫红.麦秸还田对水稻生长的影响[J].上海农业学报,2000,17(1):59-65
    [11]李家仁.秸秆还田增产效果的研究土壤肥料[J].土壤肥料,1994,1:16-19
    [12]Singh A.K, Singh B.D, Dhari R, Joshi AK. Genetics of seedling emergence in wheat. Malays Appl Biol 1998,27:119-126
    [13]朗宁,黄世乃,许立明等.水稻免耕抛秧技术实验研究总结[J].杂交水稻,2006,21(S1):16-19
    [14]汪立赓,徐世宏,李如平等.水稻不同耕作栽培方式比较研究[J].杂交水稻,2006,21(S1):130-133
    [15]徐世宏,李如平,朗宁等.稻田耕作方式对抛秧稻分蘖特性的影响[J].杂交水稻,2006,21(S1):23-26
    [16]刘世平,陆建飞,庄恒扬等.稻麦两熟制不同耕作方式与秸秆还田周年生产力的综合评价[J].中国农作制度研究进展,2008:284-288
    [1]江永红,宇振荣,马永良.秸秆还田对农田生态系统及作物生长的影响[J].土壤通报,2001,32(5):209-213
    [2]卢萍,单玉华,杨林华,等.秸秆还田对稻田土壤溶液中溶解性有机质的影响[J].土壤学报,2006,43(5):736-741
    [3]罗珠珠,黄高宝,张国盛.保护性耕作对黄土高原旱地表土容重和水分入渗的影响[J].干旱地区农业研究,2005,23(4):7-11
    [4]顾克礼,刘世平.超高茬麦田套稻麦秸全量自然覆盖还田对土壤肥力和稻米品质的影响[J].江苏农业学报,2006,22(4):410-414
    [5]孙海国.不同耕作方式对土壤有机质及氮磷钾含量的影响[J].河北农业科学,1996(3):20-22
    [6]肖海涛,陈国德.平原高沙土区合理种植及耕作方式对土壤性状的影响[J].水土保持通报,2003,23(3):21-23
    [7]冯跃华,邹应斌,王淑红,等.免耕对土壤理化性状和直播稻生长及产量形成的影响[J].作物研究,2004,(3):137-140
    [8]高亚军,朱培立,王志明,等.稻麦轮作条件下长期不同土壤管理对磷、钾和pH的影响[J].土壤,2000,5:257-261
    [9]曾希柏,关光复.稻田不同耕作制下有机质和氮磷钾的变化研究[J].生态学报,1999(1):90-95
    [10]Lodge. D. J. and Ingham. E. R. A comparison of agar film techniques for estimating fungal biovolumes in litter and soil [J].Agric. Ecosystems Environ.,1991,34:131-144
    [11]李笃仁.土壤紧实度对作物根系生长的影响[J].土壤通报.1982(3):17-23
    [12]陈君达.旱地保护性耕作体系与免耕播种技术[J].北京农业工程大学学报.1993,13(1):27-33
    [13]朱文珊.北方一年两熟地区秸秆覆盖免耕技术原理及其应用效果研究[M].中国耕作制度研究会《中国少免耕与覆盖技术研究》.北京:科学出版社,1991,13(1):37-43R. B.,Zentneu, R. P, Selles, Fetal.,Aguon, J.,1993,85:107-114
    [14]高焕文.李洪文.北方旱地机械化保护性耕作体系研究[J].干旱地区农业研究.2003,13(1):37-43
    [15]高焕文.北方旱地机械化耕作模式探讨[J].中国农业大学学报.1996,1(增刊):7-12
    [16]李洪文.旱地农业一种耕作措施的对比研究[J].干旱地区农业研究.1997,15(1):7-11
    [17]曾晓光.北京郊区小麦玉米两熟制作物秸秆还田模式研究,《秸秆还田的机理及技术模式》[M],中国农业出版社,2001,25(7):14-18
    [18]黄细喜.江苏麦稻复种新型轮耕制及其研究[M],《中国少免耕与覆盖技术研究》.北京:农业科 学出版社,1991,35(3):56-58
    [19]Mielke L N, Doran J W, Richards K A. Physical environment near the surface of plowed and no-tilled soils[J].Soil Tillage Res,1986,7:355-36
    [20]Moreno J K, Pikul J L. Crop and soil response to long-term tillage practices in north erngre at plains[J].AgronJ,1995,87:652-656.
    [21]高旺盛.景县小麦玉米秸秆还田试验初报[M].《秸秆还田的机理及技术模式》,中国农业出版社,2001,14(3):34-39
    [22]王晓燕.保护性耕作对农田地表径流与土壤水蚀影响研究[J].农业工程学报.2000,16(3):66-69
    [23]张志田.旱地麦田保护性耕作对土壤水分状沉影响研究[J].土壤通报.1995,26(5):200-203
    [24]Shad. R. L., Herridge. D F, Ladha J K.Biological nitrogen fixation:An efficient source of nitrogen for sustainable agricultural production[J].Plant and Soil,1995,174:3-28
    [25]Ogunremi L, R. P.,Read, D. W. Letal.Can. J. Soil Sci.1992,72:229-241
    [26]Campbell, R. B.De Jong, R.and Zentneu, R. P.Can. J. Soil Sci.1984,64:61-74
    [27]Campbell, R. B.Zentneu, R. P, Selles, Fetal.Aguon, J.1993,85:107-114
    [28]张志国等.长期秸秆覆盖免耕对土壤理化性质及玉米产量的影响[J].土壤.1998.35(3):384-391

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700