用户名: 密码: 验证码:
附着体义齿修复游离端缺牙的生物力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
游离端缺牙是临床上较常见且复杂的病例类型,基牙的选择只能局限在缺牙区的一侧,另一侧处于游离状态,这样的条件限制为义齿修复带来较大难度。由于附着体对增加义齿的稳定和固位力有很大帮助,近年来被越来越广泛地应用于游离端缺失修复。
     附着体义齿是采用附着体提供固位的一种现代修复方式,它从固位、稳定、美观等角度弥补和完善了传统可摘局部义齿的不足,在形态,功能,生理等方面满足了患者的要求,扩大了可摘局部义齿的使用范围。不同种类的附着体因特点及其结构不同而临床适应证也不同。根据阴极和阳极之间的接合方式,附着体分为刚性和弹性附着体,后者目前在临床上较为常用。弹性附着体在受力作用时具有缓冲效果,可以减轻末端基牙可能承担的较大咀嚼压力。
     目前关于附着体义齿用于游离端缺牙的研究,主要集中于针对某一类病例或缺失情况的义齿设计及临床效果评价,以及附着体与传统RPI卡环固位体修复的效果对比。关于近年来使用较多的ERA附着体,其作用机理、影响因素及不同缺失情况的修复设计还缺乏系统研究。
     本研究旨在针对临床上常见的单侧游离端缺失情况,从生物力学角度,采用计算力学与实验力学两种研究方式,模拟咬合力作用下,ERA附着体阴极和阳极部件之间的接合方式及其对末端基牙和缺牙区牙槽嵴的影响,观察不同固位体设计对基牙支持组织的受力影响,并对不同固位体和基牙设计进行优化分析,以期进一步研究ERA附着体连接方式在其参与义齿行使功能时的应力传递作用,同时为游离端缺牙的修复方式选择与临床设计提供理论参考。
     第一部分包括3个实验:
     实验一,采用螺旋CT扫描,CT图像三维重建软件,逆向工程软件和非线性有限元软件,建立包含基牙、牙周膜、牙槽嵴和义齿部分的ERA附着体义齿修复单侧游离端缺失的三维有限元模型。应用Abaqus非线性分析功能,对附着体部件之间及义齿基托和下方黏膜之间的接触方式进行了模拟,同时对模型进行准确性的判定。实验结果:得到包括基牙及其邻牙,牙周膜,皮质骨,松质骨,ERA义齿活动部分和固定部分,共七个部分的三维有限元模型,初步分析结果符合义齿及其基牙的生物力学受力规律,具有较高的精确性。
     实验二,通过ERA刚性与弹性固位方式用于修复单侧游离端缺牙的比较,观察末端基牙在不同合力加载方向的基牙牙周组织及基托下牙槽嵴的应力分布改变。实验发现:ERA附着体用于游离端义齿的末端基牙作为固位体时,以义齿基托下沉并伴有义齿远中端龈向转动的联合方式发挥其弹性作用,部分合力转移至基托下方的牙槽嵴,从而减轻末端基牙的受力,但其作用较为有限。
     实验三,对ERA义齿修复单侧游离端缺失施加不同载荷方式,观察义齿在不同载荷作用时,末端基牙牙周组织及缺牙区牙槽嵴的应力变化。实验发现:ERA附着体在较大合力下可以缓冲末端基牙支持组织的受力,其缓冲作用的大小与合力大小呈正相关关系,也与ERA附着体本身的部件之间的相互作用有关;在不同载荷方向下,下颌后牙区的牙弓和牙槽嵴的解剖形态使应力集中偏向舌侧,从而增大了侧向力、尤其是颊舌向力对基牙支持组织的影响,合力越大影响越大,建议临床设置对侧间接固位体,以维持末端基牙及牙周组织受力状态下的稳定。
     第二部分包括4个实验:
     实验一,选取标准解剖式人工牙和牙列模型,采用二次印模法,二次固化法进行牙槽骨光弹模型的制备,热凝树脂制备基牙模型,室温硅橡胶模拟牙周膜和黏膜部分,技工中心完成义齿的加工制作。实验结果:得到包含牙齿、牙周膜、黏膜、义齿和不同缺牙情况牙槽骨的下颌单侧游离端缺失的光弹模型,为下一步力学分析提供基础。
     实验二,按尺寸制备光弹性试件,采用拉伸试验方法标定实验所用材料的条纹值。以1kg为单位逐次增加载荷,当载荷增加时,产生不同颜色的条纹。根据五组标准试件测试结果,符合每增加2kg砝码增加一级条纹的规律,故可标定认为沿应力递增方向,每改变一色应力增加0.25级。实验结果:利用试件尺寸和所加载荷计算应力值和条纹值,结果经统计分析后,得到材料条纹值的确定值。
     实验三,对不同固位体设计和缺牙情况的单侧游离端可摘局部义齿进行光弹应力冻结的实验观察,固位方式包括ERA附着体,Mini-Dalbo附着体和RPI卡环。结果发现:两种附着体义齿比传统RPI固位的义齿末端基牙的应力分布更加均匀,符合牙齿受力的生物力学特点;单个后牙游离端缺失时,ERA、Mini-Dalbo附着体及RPI卡环固位对末端基牙支持组织的受力无明显差异;在弹性附着体的运动方式中,单向铰链连接方式比万向铰链更易在末端基牙出现侧向力;因此单侧游离端修复时,选用单向铰链运动的附着体应考虑设置对侧间接固位体。
     实验四,选取实验三中肯氏II类缺失的一种情况,对其进行连接体和基牙设计的应力冻结光弹性分析,观察ERA作为单侧游离端义齿的固位体时,大连接体和基牙数目对末端基牙的受力影响。结果发现:第二个基牙的增加可以减少末端基牙的应力条纹,但增加至三个基牙时对减小末端基牙应力的作用不大;设置大连接体更能有效减小基牙负担。基牙数目与连接体设置因素之间不具有交互作用。
     综上所述,ERA附着体用于单侧游离端义齿修复时,可以减轻部分末端基牙的受力但作用较为有限,且受到合力大小和方向的影响。与传统RPI固位的义齿相比,附着体的末端基牙应力分布更符合牙齿受力的生物力学特点,但在弹性附着体中,单向铰链连接方式比万向铰链更易在末端基牙出现侧向力。在单侧后牙游离端缺失的不同设计中,ERA、Mini-Dalbo附着体及RPI卡环固位的义齿修复单个后牙游离端缺失的效果无明显差异;增加第二个基牙可以减少末端基牙的应力条纹,但增加至三个基牙对减小末端基牙应力的作用不大;与增加基牙相比,设置大连接体更能显著减小基牙负担。
Restoration of Distal-extension partially edentulous presents a number of design challenges. Abutments are on one side of edentulous area, leaving the other side free end. Restoration is difficult due to inherent problems of retention and stability. As attachment could help to improve denture’s stability and retention in this kind of situation, it has ben used more in distal-extension removable partial denture (RPD).
     Attachment is a kind of modern retention style for denture. It is superior to conventional RPD in aspect of retention, stability and esthetics, which could be applied in more fields. Many patients are satisfied with external shape, function and physiological characteristic of attachment denture. Different kinds of attachment have their own clinical indication according to construction and characteristic. Attachments are divided into rigid and non-rigid according to movement between female and male parts. And the non-rigid style is more applied in clinical, for the resilient effect could induce stress around the distal abutment during occlusal loading.
     Most of the existing researches about attachment-retained distal-extension RPD are focused on the effect of denture design and clinical effects for a certain kind of edentulous situation, and evaluation among different retention style. However, for the ERA attachment which is being used more and more in domestic, there are not so many studies that systematically evaluated its mechanism and the effect of factors, as well as different design for different kinds of distal-extension edentulous situation.
     The purpose of the present study is to investigate mechanical interaction between female and male parts of ERA attachment, and its effect on supporting tissue of the distal abutment and alveolar under denture base, and optimize designs in different kinds of unilateral ERA attachment-retained distal-extension RPD. Therefore, the movement mechanism and loading transfer in attachment denture is well understood. The result can provide some suggestion in clinical design in unilateral ERA attachment-retained distal-extension RPD.
     The total study was divided into two parts.
     The first part includes three experiments:
     In experiment 1, model of three-dimensional (3D) finite element was obtained through helix CT scanning, CT images reconstruction, converse engineering technology and Abaqus CAE program. The model includes abutment, periodontal ligament, alveolar bone and denture part retained by ERA attachment. In Abaqus program, interaction setting was considered between female and male parts of ERA attachment, and between denture base and mucosa. Then the accuracy of the models was evaluated, and the assembled models provide the technical basis for further analysis in mechanical behavior of ERA denture.
     In experiment 2, structure of ERA attachment with both rigid and non-rigid connection between female and male parts was analyzed, and stress distribution in supporting tissue of distal abutment and alveolar under denture base were investigated. Results showed that: ERA attachment could transfer occlusal loading to residual alveolar through denture moving towards the arch and rotation of ERA configuration. However, the move and resilient extent was little and finite.
     In experiment 3, different direction and magnitude of loading was applied on the removable part of denture. The alteration of stress in supporting tissue was evaluated. Results showed that: ERA attachment had resilient effect on different loading condition. The effect was in relation with ERA mechanism, and the magnitude of loading; the partial anatomical shape of arch and alveolar could bring stress increase under each loading direction, especially under higher buccal-lingual load. The result suggested that indirect retainer should be applied on other side of mandible arch to sustain a balanced state of supporting tissue in distal abutment under loading.
     The second part includes four experiments:
     In experiment 1, photoelastic models of alveolar bone were established based on standard model of tooth and dentition, using two-step impression and two-cure processes. Abutment tooth were simulated using PMMA material. And silicon material was used to simulate the periodontal ligament and mucosa. Dentures were fabricated by a factory. Results: the whole model system was constructed, including abutment tooth, PL, denture and mandible alveolar.
     In experiment 2, rectangular photoelastic specimens were prepared according to give size, and divided into five groups. Tensile test was performed to test fringe order of the material used in this part. Loading was increased 1kg each time, and different fringe colors appeared. Results: An order of fringe altered when every 2kg weight was added. Each color alteration was accompanied with increase of 0.25 fringe order. After calculating and statistical analysis by size and loading datum, a certain material fringe value was obtained.
     In experiment 3, restorations on different edentulous situation were investigated using stress frozen method by three retention styles, including ERA attachment, Mini-Dalbo attachment and RPI clasp. Results showed that: uniform stress distribution appeared in these two attachment groups, which was more in accordance with biomechanical characters of natural teeth; there was no significant difference among groups with three kinds of retainer in second molar defection; directed hinge tend to exert more lateral force on distal abutment than the universal hinge style; in attachment-retained restoration with directed hinge, it is suggested that more consideration should be forced on setting indirect retainer on the other side of arch.
     In experiment 4, one of the most common situation in Kennedy class II was investigated. Design factors included major connector and abutment number. Design optimization was carried out through evaluating stress in supporting tissues of the distal abutment. Results showed that: the second abutment could help to induce fringe order in distal abutment, but two-abutment and three-abutment splinting made no difference on stress distribution on the distal terminal abutment teeth; compared with abutment splinting, a major connector on the other side of arch could be more helpful to improve stress distribution in supporting tissues; there didn’t exist interactions between these two factors of major connector and abutment number.
     Based on the results above, it can be briefly concluded that: ERA-retained unilateral distal-extension RPD can help to transfer some occlusal loadings from distal abutment to the residual alveolar, through the movement and rotation of the attachment parts; However, the resilient effect is finite; ERA-retained RPD can cushion occlusal forces to the distal abutment and the effect is in correlation with attachment mechanism and force magnitude; under all loading conditions, posterior area of mandible arch and anatomical figure may influence the position of stress distribution and increase magnitude of stress value, especially in buccal-lingual situation; uniform stress distribution appeared in these attachment-retained denture; there was no significant difference among groups with three kinds of retainer in second molar defection; directed hinge tend to exert more lateral force on distal abutment than the universal hinge style; two-abutment splinting is enough on the side of edentulous area in Kennedy class II; major connector could help more in inducing the force on distal abutment; there was no interaction between the factors of abutment number and major connector design .
引文
1.张富强.附着体义齿.上海科学技术文献出版社. 2005; 1:1-2.
    2.姚江武.冠内冠外精密附着体.人民卫生出版社.2001: 1-2, 221, 229.
    3. Kapur KK, Deupree R, Dent RJ, et al. A randomized clinical trial of two basic removable partial denture designs. Part I: Comparisons of five-year success rates and periodontal health. J Prosthet Dent. 1994; 72(3):268-282.
    4. Budtz-J?rgensen E. Restoration of the partially edentulous mouth--a comparison of overdentures, removable partial dentures, fixed partial dentures and implant treatment. J Dent. 1996; 24(4): 237-244.
    5. Craig RG, Farah JW. Stress from Loading distal-extension removable partial dentures. J Prosthet Dent. 1978; 39(3): 274-280.
    6. Park I, Eto M, Wakabayashi N, Hideshima M, Ohyama T. Dynamic retentive force of a mandibular unilateral removable partial denture framework with a back-action clasp. J Med Dent Sci. 2001; 48(4): 105-111.
    7. Sato Y, Tsuga K, Abe Y, Asahara S, Akagawa Y. Finite element analysis on preferable I-bar clasp shape. J Oral Rehabil. 2001; 28(5), 413-417.
    8. Geramy A, Ejlali M.. The curvature of the retentive arm in a circumferential clasp and its effect on the retention: 3D analysis using finite element method. J Indian Prostho Society. 2007; 7(3): 118-122.
    9. Mahmoud A, Wakabayashi N, Takahashi H. Prediction of permanent deformation in cast clasps for denture prostheses using a validated nonlinear finite element model. Dent Mater. 2007; 23(3): 317-24.
    10. Y. Yuasa, Y. Sato, S. Ohkawa, T. Nagasawa, H. Tsuru. Finite Element Analysis of the Relationship between Clasp Dimensions and Flexibility. JDent Res. 1990; 69(10): 1664-1668.
    11. Wayne D. Thompson, F. James Kratochvil, Angelo A. Caputo. Evaluation of photoelastic stress patterns produced by various designs of bilateral distal-extension removable partial dentures. J Prosthet Dent. 2004; 91(2): 105-113.
    12. Itoh H, Baba K, Aridome K, Okada D, Tokuda A, Nishiyama A, Miura H, Igarashi Y. Effect of direct retainer and major connector designs on RPD and abutment tooth movement dynamics. J Oral Rehabil. 2008; 35(11): 810–815.
    13.解春,张富强,杨宠莹.末端游离可摘局部义齿合支托设计的有限元分析.口腔医学. 1997; 17(3): 121~122.
    14.蔡玉惠,毛顺玉,余颖禾.五种卡环设计的下颌游离端义齿支托组织的有限元分析.口腔医学. 1997; 17(4): 174~176.
    15.蔡玉惠,方赵平,余颖禾.下颌游离端义齿合支托设计的有限元分析.口腔医学杂志. 1999; 15(2): 74~76.
    16. Muraki H, Wakabayashi N, Park I. Finite element contact stress analysis of the RPD abutment tooth and periodontal ligament. J Dent. 2004; 32(8): 659-665.
    17. Mizuuchi W, Yatabe M, Sato M, Nishiyama A, Ohyama T. The effects of loading locations and direct retainers on the movements of the abutment tooth and denture base of removable partial dentures. J Med Dent Sci. 2002; 49:11-18.
    18. Itoh H, Caputo AA, Wylie R,et al. Effects of periodontal support and fixed splinting on load transfer by removable partial dentures. J Prosthet Dent. 1998; 79(4): 465-471.
    19.张富强.套筒冠义齿的组成与固位.中华口腔医学杂志. 2005; 40(2):163-165.
    20.马轩祥主编.口腔修复学,第5版.人民卫生出版社. 298.
    21. Besimo CH, Graber G, Fluhler M. Retention force changes in implant- supported titanium telescope crowns over lomg-term use in vitro. J Oral Rehabil. 1996; 23(6): 372-378.
    22. Weber H, Frank G. Spark erosion procedure: a method for extensive combined fixed and removable prosthodontic care. J Prosthet Dent. 1993; 69(2): 222-227.
    23. Akagawa Y, Seo T, Ohkawa S. A new telescopic crown system using a soldered horizontal pin for removable partial dentures. J Prosthet Dent. 1993; 6(2): 228-231.
    24. Polansky R, Haas M, Lorenzoni M. The effect of three different periodontal pre-treatment procedures on the success of telescopic removable partial dentures. J Oral Rehabil. 2003; 30(4): 353-363.
    25. Molin M, Bergman B, Ericson A. A clinical evaluation of crown retained dentures. J Prosthet Dent. 1993; 70: 251-256.
    26. Saito M, Miura Y, Notani K. Stress distribution of abutments and base displacement with precision attachment- and telescopic crown-retained removable partial dentures. J Oral Rehabil. 2003; 30(5): 482-487.
    27. Mengel R, Lehmann KM, Metke W. A telescopic crown concept for the restoration of partially edentulous patients with aggressive generalized periodontitis: two case reports. Int J Periodontics Restorative Dent. 2002; 22(2): 129-137.
    28. Hou GL, Tsai CC, Weisgold AS. Treatment of molar furcation involvement using root separation and a crown and sleeve-coping telescopic denture. A longitudinal study. J Periodontol. 1999; 70(9): 1098-1109.
    29. Langer Y, Langer A. Tooth-supported telescopic pro-stheses in compromised dentitions:a clinical report. J Prosthet Dent. 2000; 84(2): 129-132.
    30.闫卉.套筒冠义齿基本原理及其在牙周病患者中的应用.中华现代临床医学杂志. 2005; 3(19):381-382.
    31.张富强,杨宠莹,薛淼.缓冲圆锥型套筒冠可摘义齿的支持组织应力研究.上海口腔医学. 1997; 6(1): 10-121.
    32.何桂凝,岑远坤,毛祥彦.全下颌牙种植义齿及支持组织应力的三维有限元分析Ⅵ.不同上部结构对覆盖种植义齿应力分布的影响.华西口腔医学杂志. 1997; 15(1): 67.
    33. Ogata K, Okunishi M, Miyake T. Longitudinal study on forces transmitted from denture base to retainers of lower distal-extension removable partial dentures with conus crown telescopic system. J Oral Rehabil. 1993; 20(1): 69-77.
    34. Ogata K, Shimizu K. Longitudinal study on forces transmitted from denture base to retainers of lower free-end saddle dentures with Aker’s clasps. J Oral Rehabil. 1991; 18(5): 471-480.
    35. Pezzoli M, Rossetto M, Calderale PM. Evaluation of load transmission by distal-extension removable partial dentures by using reflection photoelasticity. J Prosthet Dent. 1986; 56(3): 329-337.
    36. Labaig C, Macro R, Fons A. Biodynamics of attachments used in overdentures: Experimental analysis with photoelasticity. Quint Int. 1997; 28(3): 183.
    37.张富强,杨宠莹,高素娟.套筒冠可摘局部义齿对支持组织的应力分布研究.中华口腔医学杂志. 1994; 29(1): 13-15.
    38.于书娟,汪大林,李笑梅,刘冰,周海燕.弹性冠外附着体的研究和进展.现代口腔医学杂志. 2005; 4(19): 427-429.
    39.刘军,张骏,周维乾.太极扣附着体的临床应用.中国医药导报. 2008; 1(5): 267.
    40. White JT. Visualization of stress and strain related to removable partial denture abutments. J Prosthet Dent. 1978; 40(2): 143-151.
    41.凌月华,张富强,韩菊林.不同基牙数目附着体义齿对支持组织应力分布的影响.上海口腔医学. 2006; 12(15): 632-636.
    42. Berg T, Caputo AA. Maxillary distal-extension removable partial denture abutments with reduced periodontal support. J Prosthet Dent. 1993; 70(3): 245-250.
    43. Kratochvil FJ, Thompson WD, Caputo AA. Photoelastic analysis of stress patterns on teeth and bone with attachment retainers for removable partial dentures. J Prosthet Dent. 1981; 46(1): 21-28.
    44. Robert E. Extracoronal attachments. Dent Clin North Am. 1985; 29(1): 185-198.
    45. El Charkawi HG, El Wakad MT. Effect of splinting on load distribution of extracoronal attachment with distal extension prosthesis in vitro. J Prosthet Dent. 1996; 76(3): 315-320.
    46. Hussein G. El Charkawi, Mohammed Tark El Wakad. Effect of splinting onEffect of splinting on load distribution of extracoronal attachment with distal extension prosthesis in vitro. J Prosthet Dent. 1996; 76(3): 315-320.
    47.孙伯雷,樊瑜波,刘展,钱英莉,牟雁东.冠外精密附着体用于下颌单侧游离端缺失的三维有限元应力分析.生物医学工程学杂志. 2007; 24(1): 116-119.
    48.牟雁东,樊瑜波,刘展.基牙数目对游离端附着体义齿支持组织应力分布的影响.医用生物力学. 2006; 22(2): 141-145.
    49.张如一主编.实验应力分析.北京:机械工业出版社, 1984: 217-231.
    50.张富强,杨宠莹,薛淼等.圆锥型套筒冠义齿修复末端游离缺失的支持组织应力分析研究.医用生物力学. 1999; 14(2): 108-111.
    51. Chou TM, Caputo AA, Moore DJ, et al. Photoelastic analysis and comparison of force-transmission characteristics of intracoronal attachments with clasp distal-extension removable partial dentures. J Prosthet Dent. 1989; 62(3): 313-319.
    52. Berg T, Caputo AA. Comparison of load transfer by maxillary distal extension removable partial dentures with a spring-loaded plunger attachment and I-bar retainer. J Prosthet Dent. 1992; 68: 492-499.
    53. Ku YC, Shen YF, Chan CP. Extracoronal resilient attachments in distal-extension removable partial dentures. Quintessence Int. 2000; 31(5): 311-317.
    54. Berg T, Caputo AA. Load transfer by a maxillary distal-extension removable partial denture with cap and ring extracoronal attachments. J Prosthet Dent. 1992; 68(5): 784-789.
    55.龙驭球.有限元法概论.北京:高等教育出版社, 1978.
    56.魏斌,张富强.牙颌系统三维有限元建模方法的进展.口腔材料器械杂志. 2002; 11(2): 86-87, 93.
    57. Friedenberg R. "Direct analysis" or "finite element analysis" in biology: a new computer approach. Curr Mod Biol. 1969; 3(2): 89-94.
    58. Thresher RW, Saito GE. The stress analysis of human teeth. J Biomech. 1973; 6: 443-49.
    59. Farah JW, Craig RG, Sikarskie DL. Photoelastic and finite element stress analysis of a restored axisymmetric first molar. J Biomech. 1973; 6(5): 511-520.
    60.白葳,喻海良.通用有限元分ANSYS 8.0基础教程.清华大学出版社, 2005: 28.
    61.艾林,丁伟,倪龙兴.有限元法与口腔生物力学.临床口腔医学杂志2005; 21(5): 318-319.
    62.白石柱.正常人五牙颌上颌骨模型的三维重建及有限元建模.第四军医大学,博士学位论文. 2004.
    63.许本安,李秀治.材料力学.上海交通大学出版社. 1988(1): 300-302.
    64.韩蓬,戴昆,贾虹.合力转换卡义齿支持组织应力分布规律的三维有限元分析.华西口腔医学杂志. 2000; 18(4): 262-265.
    65.王伟,苗强,李慧,曹振,秦绪喜,刘寒冰.下颌单侧游离端冠外精密附着体义齿三维有限元分析.吉林大学学报. 2006; 32(6): 1122-1124.
    66.满毅,林映荷,宫苹,屈依丽,管东华,陆轩.附着体式固定义齿倾斜基牙修复前后应力分布的各向异性三维有限元分析.四川大学学报. 2006; 38(2): 34-38.
    67. Igarashi Y, Ogata A,Kuroiwa A. Stress distribution and abutment tooth mobility of distal-extension removable partial denture with different retainers:an in vivo study. J Oral Rehabil. 1999; 26(2): 111-116.
    68. Powell RL, Steteon KA. Interferometric Vibration Analysis of Three- dimensional Objects by wavefront Reconstruction. Soc. Amer. 1965; 55: 1593-1608.
    69.罗乐,袁航,陈兴.激光全息技术及其在医学中的应用.现代物理知识. 2002; 14(1): 32-33.
    70.杨涛.牙尖斜度对套筒冠义齿基牙位移的影响.实用口腔医学杂志. 2006; 22(5): 599-603.
    71.杨涛.人工牙颊舌径对单侧游离端套筒冠义齿基牙位移的影响.口腔颌面修复学杂志. 2007; 8(1): 24-27.
    72.韩栋伟,杨涛,周平.双侧游离端义齿不同固位装置对基牙位移的实验研究.实用口腔医学杂志. 2003; 19(2): 140-143.
    73.张玮,张献芳,韩栋伟.三种游离端附着体义齿基牙位移的实验研究.上海口腔医学. 2006; 15(2): 198-201.
    74.于洪波,沈国芳.立体摄影领面部软组织三维重建与测量的研究进展.口腔领面外科杂志. 2008; 18(4): 288-290.
    75. Chou TM, Eick JD, Moore DJ, et al. Stereophotogrammetric analysis of abutment tooth movement in distal-extension removable partial dentures with intracoronal attachment and clasps. J Prosthet Dent. 1991; 66(3): 343-349.
    76.成大先.机械设计手册.化学工业出版社,第二版, 1996.
    77. Aydin AK, Tekkaya AE.Stresses induced by different loadings around weak abutments. J Prosthetic Dent. 1992; 68(6): 879-884.
    78. JS. Rees and PH. Jacobsen. Elastic modulus of the periodontal ligament Biomaterials. 1997; 18(14): 995-999.
    79. Yang HS, Chung HJ, Park YJ. Stress analysis of a cantilevered fixed partial denture with normal and reduced bone support. J Prosthetic Dent. 1996; 76(4): 424-430.
    80. Ho MH, Lee SY, Chen HH. Three-dimensional finite element analysis of the effects of posts on stress distribution in dentin. J Prosthetic Dent, 1994; 72(4): 367-372.
    81.方昆凡.工程材料手册(非金属材料卷).北京出版社, 2002; 1: 45.
    82. Daas M, Dubois G, Bonnet AS, Lipinski P, Rignon-Bret C.. A complete finite element model of a mandibular implant-retained overdenture with two implants: Comparison between rigid and resilient attachment configurations. Med Eng Phys. 2008; 30(2):218-25.
    83. Wada S, Wakabayashi N, Tanaka T, Ohyama T. Influence of abutment selection in maxillary Kennedy Class II RPD on elastic stress distribution in oral mucosa: an FEM study. J Prosthodont. 2006; 15(2):89-94.
    84.皮昕.口腔解剖生理学(5版).北京:人民卫生出版社, 2004; 193: 257-258.
    85. R. Clementa, J. Schneidera, HJ. Brambsb, A. Wunderlichb, M. Geigera, F.G. Sander. Quasi-automatic 3D finite element model generation for individual single-rooted teeth and periodontal ligament.Computer Methods and Programs in Biomedicine. 2004; 73: 135-144.
    86. Fernando Zaronea, Davide Apicellab, Roberto Sorrentinoa, Valeria Ferrob, Raffaella Aversab, Antonio Apicellab. Influence of tooth preparation design on the stress distribution in maxillary central incisors restored by means of alumina porcelain veneers: A 3D-finite element analysis. Dental Materials. 2005; 21: 1178–1188.
    87. Romeed SA, Fok SL, Wilson NH. Finite element analysis of fixed partial denture replacement. J Oral Rehabil. 2004; 31(12): 1208-1217.
    88.徐芝纶著.弹性力学.上册,人民教育出版社,北京, 1982.
    89.庄茁,由小川.基ABAQUS的有限元分析与应用.清华大小出版社. 287.
    90.石亦平,周玉蓉. ABAQUS有限元分析实例详.机械工业出版社. 147.
    91. Burns DR, Ward J E. A review of attachments for removable partial denture design: Part 2. Treatment planning and attachment selection. Int J Prosthodont. 1990; 3(2): 169.
    92. Shohet H. Relative magnitudes of stress on abutment teeth with different retainers. J Prosthet Dent. 1969; 21(3): 267.
    93. Heckmann SM, Winter W, Meyer M, Weber HP, Wichman MG. Overdenture attachment selection and the loading of implant and denture-bearing area. Part 2. A methodical study using five types of attachments. Clin Oral Impl Res 2001; 12: 640–647.
    94.白雪芹,周延民,周振平,许力强.三种不同连接方式的天然牙—游离端种植体联合支持的固定义齿集中载荷应力分析.现代口腔医学杂志. 2001; 15(1): 78.
    95. Cecconi BT, Kaiser G, Rahe A. Stressbreakers and the removable partial denture. J Prosthet Dent. 1975; 34(2): 145.
    96. Feingold GM, Grant AA, Johnson W. Abutment tooth and base movement with attachment retained removable partial dentures. J Dent. 1988; 16(6): 264.
    97.肖艳,曾剑玉.游离端可摘局部义齿附着体及其基牙、支持组织的应力分析北京口腔医学. 2004; 12(1): 59-62.
    98.贾安琦,骆小平,徐君伍.不同载荷方向下游离端附着体义齿基牙牙周及黏膜的有限元应力分析.第四军医大学学报. 1998, 19(1):5-7.
    99. Malone WFP, Koth DL. Tylman's Theory and Practice of Fixed Prosthodontics. Medico Dental Media International, 8 Sub Edition. 1989: 393.
    100.Heckmann SM, Winter W, Meyer M, Weber HP, Wichman MG. Overdenture attachment selection and the loading of implant and denture-bearing area. Part 1. In vivo verification of stereolithographic model. Clin Oral Impl Res, 2001; 12(6): 617–623.
    101.El Taftazani EA, Mahmoud MA, Amin HK. Evaluation of Biting Force in Mandibular Distal Extension Renrovable Partial dentures using Different Types of Retainers. Cairo Dental JournaL. 2002; 18(2):95-101.
    102.吕正辉.单端固定桥修复下颌游离端缺牙的光弹性分析.第四军医大学,硕士学位论文, 2007.
    103.Ardelean L, Sandu L, Bor?un C, et al. Stress Distribution In Abutment Teeth Involved In The Treatment With Removable Partial Dentures-A Finite Elements Analysis. European Cells and Materials, 2005, 9(Suppl. 1): 1-2.
    104.Gharechahi J, Sharifi E, Aghdaee NA, Nosohian S. Finite element method analysis of the stress distribution to supporting tissues in a class IV Aramany Removable Partial Denture (Part I: The Teeth and Periodontal Ligament). J Contemp Dent Pract, 2008, 9(6): 65-72.
    105.陈启林,张红旗,陈吉华,毛敏,江玲,陈睿,陈永吉.不同固位形式可摘局部义齿对支持组织应力分布的研究.临床口腔医学杂志, 2005, 21(8): 473-475.
    106.张冬梅,张少锋,张铁,吴冰,卢芳丽.下颌第一磨牙半切术后不同修复设计的光弹性应力分析.中国美容医学, 2006, 15(3): 298-300.
    107.贾有权主编.材料力学实验.北京:高等教育出版社.1984: 65-83.
    108.De Boever JA, McCall WD, Holden S, et al. Functional occlusal forces: an investigation by telemetry. J Prosthet Dent, 1978, 40(3):326–33.
    109.陈有旺,游小娟. Dalbo迷你绞链型附着体在游离缺失修复的应用.口腔颌面修复学杂志, 2006, 7(2): 124.
    110.Peindl RD, Harrow ME, Connor PM, et al. Photoelastic Stress Freezing Analysis of Total Shoulder Replacement Systems. Experimental Mechanics, 2004, 44(3): 228-234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700