用户名: 密码: 验证码:
利拉鲁肽对Ⅲ型腺苷酸环化酶表达的影响及其在胰岛素抵抗和肥胖中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     1、探讨胰高血糖素样肽-1(glucagon-like peptide-1, GLP-1)类似物利拉鲁肽(liragrutide)对肥胖非糖尿病小鼠和糖尿病肥胖小鼠血糖和体重的影响,并研究其作用与胰岛素敏感组织中工Ⅲ型腺苷酸环化酶(adenylyl cyclase3, AC3)基因和蛋白表达水平的关系。
     2、探讨利拉鲁肽对肥胖和非肥胖2型糖尿病患者血AC3、糖代谢、体重和胰岛素抵抗的影响,以及AC3和胰岛素抵抗(insulin resistance, IR)及肥胖的相关性。
     3、观察利拉鲁肽对脐静脉内皮细胞(human umbilical vein endothelial cell, HUVECs) AC3表达的影响。
     方法:
     1、动物实验:选取C57BL/6J小、鼠和db/db基因鼠(2型糖尿病肥胖模型)。C57BL/6J小鼠随机分为3组(C57普料组、C57高脂干预组和C57高脂未干预组),每组8只,每实验组雌雄配对:两实验组C57BL/6J小鼠给予高脂饲料(含34.9g%的脂肪和26.2g%蛋白质)为C57高脂干预组和C57高脂未干预组,另一实验组C57BL小鼠给予普通饲料(4.5g%的脂肪和4.5g%蛋白质)为C57普料组。db/db小鼠16只,分为2组(db干预组和db未干预组),每组8只,每实验组雌雄配对。每周测量体重和尾静脉随机血糖。从第12周开始,一组肥胖C57BL/6J小鼠即C57高脂干预组和db干预组小鼠给予皮下注射利拉鲁肽100μg/kg,每日两次,其余三组给予等量生理盐水作为对照,进行12周后摘取眼球采内眦静脉血,迅速取出脂肪、肝脏、肌肉、大小肠连接处组织,行TaqMan Realtime PCR技术检测组织细胞AC3mRNA的表达和蛋白免疫印迹法Western blot技术检测组织细胞AC3蛋白的表达。静脉血离心取上清液行胰岛素检测。
     2、临床部分:按照标准选取NGT组32例和T2DM组25例,再根据体质指数(BMI)分为2个亚组,BMI≥28Kg/m2为肥胖组;18.5Kg/m2≤BMI<24Kg/m2为非肥胖组。NGT肥胖组15例,男8例,女7例,NGT非肥胖组17例,男9例,女8例;T2DM肥胖组12例,男6例,女6例,T2DM非肥胖组13例,男7例,女6例。T2DM组给予利拉鲁肽0.6mg每日一次,皮下注射,1周后加量至1.2mg,连续16周,NGT肥胖组予以健康教育。所有研究对象清晨空腹检测以下指标,身高(m)、体重(kg)、体质指数(BMI)、腰臀比(WHR)、空腹血糖、HbAic、HDL-C、TG、TC和LDL-C、AC3水平,计算HOMA-IR;每4周随访一次,共随访16周。
     3、细胞实验:分别用不同浓度的利拉鲁肽(0、10、100nmol/L)处理HUVECs8h、24h后抽提总RNA,用半定量逆转录聚合酶链反应(RT-PCR)技术及Western blot方法检测AC3mRNA及蛋白的表达。
     结果:
     1、动物部分:利拉鲁肽能显著促进肥胖非糖尿病小鼠和肥胖糖尿病小鼠AC3mRNA和蛋白的表达,减轻体重,改善血糖(p<0.01)。利拉鲁肽治疗12周,db/db小鼠,与未干预组比较,干预组体重、血糖均下降,胰岛素升高,差异均有统计学意义(P<0.05)。C57BL/6J小鼠3组间血糖无差异;C57高脂无干预组与C57普料组比较,体重、胰岛素明显增加,差异有统计学意义(P<0.05);C57高脂干预组与高脂未干预组比较,体重、胰岛素明显减低,差异有统计学意义(P<0.05)。各组小鼠脂肪细胞、肝脏、骨骼肌、大小肠连接处AC3mRNA表达的比较:db/db小鼠,干预组较未干预组AC3mRNA表达明显增加,差异均有统计学意义(P<0.05)。C57BL小鼠,与普通饲料无干预组比较,高脂未干预组AC3mRNA表达明显减低,差异有统计学意义(P<0.05);高脂干预组AC3mRNA表达明显增加有统计学意义(P<0.05)。
     2、临床部分:(1)T2DM非肥胖组:利拉鲁肽治疗16周后FPG、HbA1C、 HOMA-IR和胰岛素水平下降有统计学意义(P<0.05), HDL-C、AC3升高有显著意义(P<0.05)。(2)T2DM肥胖组:利拉鲁肽治疗后体重、BMI、WHR、 FPG、HbA1、胰岛素、HOMA-IR值显著降低(P<0.05), TC、HDL-C、AC3较治疗前升高(分别为P<0.05, P<0.01)。(3)T2DM肥胖组体重、BMI、WHR下降较非肥胖组显著(分别为P<0.01,P<0.05),AC3升高有显著意义(P<0.01)。(4)统计相关分析显示:AC3与体重、BMI、WHR、HOMA-IR呈负相关(分别为r=-0.254, P<0.01, r=-0.228、P<0.05, r=-0.703、P<0.01, r=-0.212、P<0.05)。利拉鲁肽治疗后效果,FPG下降与治疗前FPG、HbA1c、 HOMA-IR呈正相关(分别为r=0.914、P<0.01, r=0.771、P<0.01, r=0.194, P<0.05),Stepwise多元逐步回归分析示AC3升高与治疗前治疗前体重、BMI、 HOMA-IR呈负相关,与治疗前AC3水平正相关;以AC3为因变量,体重、BMI、 WHR、HOMA-IR、FPG、HbA1c、TG、TC、HDL-C和LDL-C为自变量进行多元逐步回归分析,结果显示体重、BMI、WHR、HOMA-IR最后进入回归方程,方程校正后r2=0.542,P=0.001。
     3、利拉鲁肽(10nmol/l)干预8小时、24小时的AC3mRNA表达均有显著意义(P<0.01),内皮细胞AC3蛋白表达随着时间的延长而呈上升趋势(P<0.01)。利拉鲁肽和HUVECs共培养24小时后,随着GLP-1浓度(0、10、100nmol/L)的增加,AC3mRNA表达水平明显增加(P<0.01),蛋白表达水平明显上升(P<0.01),NaN3对AC3的表达没有影响。
     结论:
     1、AC3与体重、BMI、WHR、HOMA-IR呈负相关,利拉鲁肽干预后可以增加AC3的水平,不论是实验动物还是患者的高体重和胰岛素抵抗可以通过利拉鲁肽的干预来逆转。
     2、利拉鲁肽对HUVECs AC3表达的影响显示AC3的表达随着利拉鲁肽的浓度以及时间的延长而呈上升趋势。
objective:
     1.To investigate the effects of liraglutide on expression of adenylyl cyclase3in C57BL rat and diabetes rat.
     2.To investigate the effect of liraglutide on the levels of HOMA-IR and the adenylyl cyclase3in type2diabetes with or without obesity.
     3.To investigate the effects of liraglutide on expression of adenylyl cyclase3in human umbilical vein endothelial cells.
     Methods:
     1.Animal experiment:select twenty-fourC57BL/6J mice and sixteen db/db gene (obese rat model of type2diabetes). C57BL/6J mice were randomly divided into3groups (C57normal diet group, C57high fat feeding without intervention group and C57high fat feeding intervention group), with8rats in each group, and each experimental group of male and female pair:two experimental group C57BL/6J mice fed a high fat diet (34.9g%containing fat and protein26.2g%) for the C57high lipid intervention group and C57fat non-intervention group, in another experiment groups of C57BL mice were given normal diet (4.5g%fat and14.5g%protein) for C57material.16db/db mice, divided into2groups (DB intervention group and without DB intervention group), with8rats in each group, and each experimental group of male and female mating. Weekly measurements of body weight and tail vein blood glucose. From the beginning of the twelfth week, C57high-fat intervention group and DB intervention group mice were given subcutaneous injection of liraglutide100μg/kg, two times a day, the other three groups received normal saline as a control,12weeks after removal of eyeball mining angular vein blood, quickly remove the fat, liver, muscle, large intestine joint tissue, expression of TaqMan Realtime PCR for the detection of cell AC3mRNA expression and protein immunoblotting detection of Western in blot cells AC3protein. Venous blood centrifugation supernatant insulin detection.
     2.Clinical part:according to the standard of selecting32cases in NGT group and T2DM group25cases, according to the body mass index (BMI) were divided into2subgroups, BMI≥28Kg/m2as obesity group;18.5Kg/m2=BMI<24Kg/m2for non obese group. NGT obesity group15cases, male8cases, female7cases, NGT non obese group17cases, male9cases, female8cases; T2DM obesity group12cases, male6cases, female6cases, T2DM non obese group13cases, male7cases, female6cases. T2DM group received liraglutide0.6mg once daily, subcutaneous injection,1weeks after added to1.2mg, for16weeks, NGT obesity group were given health education. All of the subjects under fasting detection index, height (m), body weight (kg), body mass index (BMI), waist hip ratio(WHR), fasting blood glucose,HbA1C,HDL-C,TG,TC and LDL-C,AC3level,HOMA-IR; followed up every4weeks,a total of16weeks of follow-up.
     3.HUVEC were cocultured with different concentration of liraglutide (0,10,100nmol/L) for8h or24h. Extraction of total RNA,AC3protein and mRNA expression in HUVECs were measured by Western bloting and reverse transcription polymerase chain reaction(RT-PCR)
     Results
     1. Animal parts:liraglutide significantly promote obese non-diabetic mice and obese the diabetic mice AC3mRNA and the protein expression,decrease weight,improve blood glucose(p<0.01). Liraglutide12weeks of treatment, db/db mice,with and without intervention group compared to the intervention group, weight,blood glucose decreased and insulin rises,the differences were statistically significant (P<0.05). No difference in C57BL/6J mice among the three groups glucose; C57high-fat intervention group and the C57normal diet group,body weight,insulin significantly increased,the difference was statistically significant (P<0.05);C57high-fat intervention group and high-fat without intervention group,body weight,insulin was significantly reduced,and the difference was statistically significant (P<0.05). Each group of mice fat cells, liver, skeletal muscle, the junction of large intestine and small intestine AC3mRNA expression comparison:db/db mice, the intervention group than non-intervention group AC3mRNA expression was significantly increased, and the differences were statistically significant (P<0.05). C57BL mice fat without intervention group AC3mRNA expression was significantly reduced, the difference was statistically significant (P<0.05); the high fat intervention group AC3mRNA expression was significantly increased statistically significant (P<0.05).
     2. Clinical part:(1) T2DM non-obese group:FPG,HbA1C,HOMA-IR and insulin levels of liraglutide after16weeks of treatment was statistically significant (P<0.05),HDL-C,AC3significant increased(P<0.05).(2) T2DM obese group: weight,BMI,WHR,FPG,HbA1C,insulin,HOMA-IR value liraglutide after treatment was significantly lower (P<0.05), TC, HDL-C, AC3higher than before treatment (respectively P<0.05, P<0.01).(3) T2DM obesity group, body weight, BMI, WHR decline than non-obese group was significantly (respectively, P<0.01, P<0.05), AC3increased there was a significant (P<0.01).(4) Statistical analysis showed that:the AC3with weight, BMI, WHR, of HOMA-IR was negatively correlated (r=-0.254,respectively,P<0.01, r=-0.228, P<0.05, r=-0.703, P<0.01,r=-0.212,P<0.05).Liraglutide treatment effect,FPG decreased pre-treatment FPG, HbA1C,HOMA-IR was positively correlated (r=0.914, respectively, P<0.01, r=0.771, P<0.01, r=0.194, P<0.05), Stepwise multiple stepwise regression analysis shows the AC3elevated treatment before treatment before weight, BMI, HOMA-IR was negatively correlated with pre-treatment AC3level of positive correlation; AC3for the dependent variable, body weight, BMI,WHR, HOMA-IR, FPG HbA1C, TG, TC, HDL-C and LDL-C as the independent variable stepwise multiple regression analysis, the results showed that body weight,BMI,WHR,HOMA-IR last into the regression equation, equation corrected r2=0.542, P=0.001.
     3.Liraglutide(10nmol/l) intervention in8hours,24hours AC3mRNA were significant (P<0.01),the endothelial cells expression in an upward trend with time (P<0.01).Liraglutide and HUVECs were cultured for24hours,with the liraglutide concentration (0,10,100nmol/L) increased, AC3mRNA expression levels were significantly increased (P<0.01) and protein expression levels were significantly increased (P<0.01),while NaN3has no effect on the expression of the AC3.
     Conclusions
     1.AC3was negatively correlated with body weight, BMI, WHR, HOMA-IR, liraglutide treatment can increase the AC3level, whether animal or in patients with high body weight and insulin resistance can be reversed by liraglutide intervention.
     2.Effects of liraglutide on expression of HUVECs in AC3display with the concentration of liraglutide and prolong the time of increased expression of AC3.
引文
[1]Zimmet P,Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic[J]. Nature,2001,414:782-787.
    [2]Mori Y, Hoshino K, Yokota K, et al. Increased visceral fat and impaired glucose tolerance predict the increased risk of metabolic syndrome in Japanese middle-aged men[J]. Exp Clin Endocrinol Diabetes, 2005,113 (6):334.
    [3]马文军,许燕君,郭汝宁.超重肥胖流行病学研究进展[J].国外医学.社会医学分册,2002,19(3):127-131.
    [4]中国卫生部,科技部,国家统计局.中国居民营养与健康现状[J].中国心 血管病研究杂志,2004,2(12):919-921.
    [5]邓宏明,于志清,肖常青,等.正常体质量伴代谢性肥胖的胰岛素功能和胰岛素抵抗的相关研究[J].广西医科大学学报,2000,17(4):554-556.
    [6]Yoshii H,Lam TKT, Gupta N, et al. Portal delivery of free fatty acids compared to peripheral delivery has no greater effect on hepatic glucose production but results in greater peripheral hyperinsulinemie[J]. Diabetes,2000,49(1):22-24.
    [7]路影,杨华章.代谢综征防治的新进展[J].国际内分泌代谢杂志,2007,27(3):147.
    [8]Alberti KCMM, Zi,met PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1:diagnosis and classification of diabetes mellitus provisional report of a WHO consultation[J]. Diabet Med,1998,15:539-553.
    [9]Meigs JB, Wilson P WF, Nathan DM, et al. Prevalence and characteristics of the metabolic syndrome in the San Antonio Heart and Framingham offspring studies[J]. Diabetes,2003,8:2160-2167.
    [10]Ford ES, Giles WH. A comparison of the prevalence of the metabolic syndrome using two proposed definitions[J]. Diabetes Care,2003,26:575-581.
    [11]Abbasi F, Reaven GM. Evaluation of the quantitative insulin sensitivity check index as an estimate of insulin sensitivity in humans[J]. Metab,2002,51:235-2371
    [12]陈蕾,贾伟平,陆俊茜,等.上海市成人代谢综合征流行病学调查[J].中华心血管病杂志,2003,31(12):909-912.
    [13]Nordman S, A. Abulaiti, A. Hilding, et al.Genetic variation of the adenylyl cyclase 3 (AC3) locus and its influence on type 2 diabetes and obesity susceptibility in Swedish men[J]. Int J Obes (Lond),2008,32(3):407-12.
    [14]Wang Z, V. Li, G.C. Chan, et al. Nudelman, Z. Xia, and D.R. Storm.Adult type 3 adenylyl cyclase-deficient mice are obese[J].PLoS One,2009,4(9):e6979.
    [15]Wang H, M. Wu, W. Zhu, et al.Evaluation of the association between the AC3 genetic polymorphisms and obesity in a Chinese Han population[J].PLoS One,2010,5(11):e13851.
    [16]Gu H.F.AC3:A Novel Gene Plays a Role in the Regulation of Body Weight. The Open Diabetes Journal,2010,3:11-13.
    [17]Holst J.J.,J.Gromada.Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans[J]. Am J Physiol Endocrinol Metab,2004.287(2):E199-206.
    [1]Russell-JonesD.Molecular,pharmacological and clinical aspects of liraglutide, a once-daily human GLP-1 analogue[J].Mol CellEndocrinol,2009,297(2):137-140.
    [2]张骁,束梅英,张韬.胰高血糖素样肽-1受体激动剂治疗2型糖尿病的研究进展[J].中国执业药师,2010,7(3)3-8.
    [3]BuseJ.B,J.Rosenstock,G.Sesti,et al.Liraglutide once a day versus exenatide twice a day for type 2 diabetes:a 26-week randomised,parallel-group,multinati-onal,open-label trial (LEAD-6)[J].Lancet,2009.374(9683):39-47.
    [4]Garber A,R.Henry,R.Ratner,et al.Liraglutide versus glimepiride monotherapy for type 2 diabetes (LEAD-3 Mono):a randomised,52-week,phase III,double-blind,parallel-treatment trial[J].Lancet,2009.373(9662):473-81.
    [5]Marre M.,J.Shaw,M.Brandle,et al.Liraglutide,a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improve-ments in glycaemic and weight control compared with adding rosiglitazone or placebo in subjects with Type 2 diabetes(LEAD-1 SU)[J].Diabet Med,2009, 26(3):268-78.
    [6]Nauck M.,A.Frid,K.Hermansen,et al.Efficacy and safety comparison of liraglutide,glimepiride,and placebo,all in combination with metformin,in type 2 diabetes:the LEAD (liraglutide effect and action in diabetes)-2 study[J]. Diabetes Care,2009.32(1):84-90.
    [7]Russell-Jones D,A.Vaag,O.Schmitz,et al.Action in Diabetes 5 met,Liraglutide vs insulin glargine and placebo in combination with metformin and sulfonylurea therapy in type 2 diabetes mellitus (LEAD-5 met+SU):a randomised controlled trial[J].Diabetologia,2009,52(10):2046-55.
    [8]Zinman B,J.Gerich,J.B.Buse,et al.Efficacy and safety of the human glucagon-like peptide-1 analog liraglutide in combination with metformin and thiazolidin-edione in patients with type 2 diabetes (LEAD-4 Met+TZD)[J].Diabetes Care, 2009,32(7):1224-30.
    [9]高研.调控β细胞,直击糖尿病-GLP-1及利拉鲁肽的基础与临床[J]。中华内分泌代谢杂志,2009,25(6):增录6a1-6a4.
    [10]Suga S,Kanno T,OgawaY,et al.cAMP-independent decrease of ATP sensiti-ve K+ channel activity by GLP-1 in rat pancreatic beta-cells[J].Pflugers,Arch 2000,440:566-572.
    [11]Girard J.The incretins:from the concept to their use in the treatment of type 2 diabetes.Part A:ineretins:concept and physiological functions[J].Diabetes Metab,2008,34:550-559.
    [12]Bregenhoh S,M61dmp A,Blume N,et al.The long-acting glucagon-like peptide-I analogue,liraglutide,inhibits beta-cell apoptosis in vitro[J].Biochem Biophys Res Commun,2005,330:577-584.
    [13]Drucker DJ. Glocagon-like pepetide-1 and the islet beta-cell:augmentation of cell proliferation and inhibition of apoptosis [J]. Endocrionology,2003,144 (12):5145-5148.
    [14]Fung M, Thompson D, Shapiro RJ, et al. Effect of glocagon-like peptide-1 (7-37) on beta-cell function after islet transplantation in type 1 diabetes [J]. Diabetes Res Clin Pract,2006,74(2):189-193.
    [15]Farilla L,Hui H,Bertolotto C,et al.Giucagon-like peptide-1 promotes islet cell growth and inhibits apoptosis in Zucker diabetic rata[J].Endocrinology, 2002,143:4397-4408.
    [16]Perfetti R, Hui H.The role of GLP-1 in the life and death of pancreatic beta cells[J].Horm Metab Res,2004,36:804-810.
    [17]Johnson JD,Han Z,Otani K,et al.RyR2 and calpain-10 delineate a novel apoptesis pathway in pancreatic islets[J]. J Biol Chem,2004,279:24794-24802.
    [18]Vrang N,Jelsing J,Raun K,et al.Liraglutide regulates key hypothalamic appetite-related signals in diet-induced obese rats[J].Diabetes,2010,59(suppl I):583-P.
    [19]Hanoune J,Defer N.Regulation and role of adenylyl cyclase isoforms[J]. Annu Rev Pharmacol Toxicol,2001,41:145-174.
    [20]Nordman S.,A. Abulaiti,A. Hilding,et al.Genetic variation of the adenylyl cyclase 3 (AC3) locus and its influence on type 2 diabetes and obesity susceptibility in Swedish men[J].Int J Obes (Lond),2008,32(3):407-12.
    [21]Wang Z,V.Li,G.C.Chan,et al.Adult type 3 adenylyl cyclase-deficient mice are obese[J].PLoS One,2009,4(9):e6979.
    [22]Wang H,M Wu, W Zhu,et al.Evaluation of the association between the AC3 genetic polymorphisms and obesity in a Chinese Han population[J].PLoS One,2010,5(11):e13851.
    [23]Gu H.F., AC3:A Novel Gene Plays a Role in the Regulation of Body Weight[J].The Open Diabetes Journal,2010,3:11-13.
    [24]Holst,J.J,J. Gromada. Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans[J].Am J Physiol Endocrinol Metab,2004,287(2):E199-206.
    [25]Abdel-Halim SM, Guenifi A, He B, et al. Mutations in the promoter of adenylyl cyclase (AC)-III gene,overexpression of AC-III mRNA, and enhanced cAMP generation in islets from the spontaneously diabetic GK rat model of type 2diabetes[J].Diabetes,1998,47:498-504.
    [26]Abdel-Halim SM,Guenifi A,Khan A,et al.Impaired coupling of glucose signal to theexocytotic machinery in diabetic GK rats:a defect ameliorated by cAMP[J].Diabetes,1996,45:934-940.
    [27]Begin-Heick N.Liverb-adrenergic receptors,G proteins,and adenylyl cyclaes activity in obesity-diabetes syndromes[J].Am J P hysiol,1994,94:C1664-C1672.
    [1]China National and G. Metabolic Disorders Study.Prevalence of diabetes among men and women in China[J]. N Eng J Med,2010,362(12) 1090-101.
    [2]Zimmet P,Alberti KG,Shaw J.Global and societal implications of the diabetes epidemic[J].Nature,2001,414:782-787.
    [3]Mori Y, Hoshino K, Yokota K, et al.Increased visceral fat and impaired glucose tolerance predict the increased risk of metabolic syndrome in Japanese middle-aged men[J]. Exp Clin Endocrinol Diabetes,2005,113(6):334.
    [4]阿依努尔.木合它尔.正常体重指数腹型肥胖糖尿病患者与胰岛素抵抗的相关性[学士论文].新疆医科大学,2009.
    [5]邓宏明,于志清,肖常青,等.正常体质量伴代谢性肥胖的胰岛素功能和胰岛素抵抗的相关研究[J].广西医科大学学报,2000,17(4):554-556.
    [6]Yoshii H,Lam TKT,Gupta N,et al.Portal delivery of free fatty acids compared to peripheral delivery has no greater effect on hepatic glucose production but results in greater peripheral hyperinsulinemie[J].Diabetes,2000,49(1):22-24.
    [7]Alberti KCMM,Zimmet PZ.Definition,diagnosis and classification of diabetes mellitus and its complications. Part 1:diagnosis and classification of diabetes mellitus provisional report of a WHO consultation[J].Diabet Med, 1998,15:539-553.
    [8]Meigs JB, Wilson P WF,Nathan DM,et al.Prevalence and characteristics of the metabolic syndrome in the San Antonio Heart and Framingham offspring Studies[J].Diabetes,2003,8:2160-2167.
    [9]Ford ES,Giles WH.A comparison of the prevalence of the metabolic syndrome using two proposed definitions[J].Diabetes Care,2003,26:575-5811.
    [10]Abbasi F, Reaven GM.Evaluation of the quantitative insulin sensitivity check index as an estimate of insulin sensitivity in humans[J].Metab,2002, 51:235-2371.
    [11]陈蕾,贾伟平,陆俊茜,等.上海市成人代谢综合征流行病学调查[J].中华心血管病杂志,2003,31(12):909-912.
    [12]王慧.初诊2型糖尿病非肥胖和肥胖患者血浆脂联素水平和胰岛素抵抗的相关性研究[学位论文].河北医科大学,2008年.
    [13]Nordman S,A. Abulaiti,A. Hilding,et al.Genetic variation of the adenylyl cyclase 3 (AC3) locus and its influence on type 2 diabetes and obesity susceptibility in Swedish men[J]. Int J Obes (Lond),2008,32(3):407-12.
    [14]Wang Z, V. Li, G.C. Chan, et al, Adult type 3 adenylyl cyclase-deficient mice are obese[J]. PLoS One,2009,4(9):e6979.
    [15]Wang H, M. Wu, W. Zhu, et al.Evaluation of the association between the AC3 genetic polymorphisms and obesity in a Chinese Han population[J]. PLoS One,2010.5(11):e13851.
    [16]Gu H.F.AC3:A Novel Gene Plays a Role in the Regulation of Body Weight[J]. The Open Diabetes Journal,2010,3:11-13.
    [17]D J Drucker and M A Nauck,The incretin system:glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes [J]. Lancet 368 (2006),1696-1705.
    [18]闫卫利,曲荣美,刑美荣.空腹血糖正常者餐后血糖与血脂的关系[J].临床检验杂志,2003,21(15):304.
    [19]赵凡,区转焕,文达辉.2型糖尿病患者糖负荷后血脂紊乱与颈动脉内中膜厚度关系[J].广州医药,2006,37(2):16-19.
    [20]E T Parlevliet, J P Schroder-van der Elst,E P Corssmit,et al. CNTO736,a novel glucagon-like peptide-1 receptor agonist, ameliorates insulin resistance and inhibits very low-density lipoprotein production in high-fat-fed mice[J]. Pharmacol Exp Ther 328 (2009),240-248.
    [21]Jamie Eugene Mells, Ping-Ping Fu, Frank A. Anania,et al.GLP-1 analogue, liraglutide ameliorates hepatic steatosis and cardiac hypertrophy in C57BL/6J mice fed a western diet[J].AJP-GI October 2011:00274.
    [22]Shvetank Sharma, Frank A Anania et al.GLP-1 Analogs Reduce Hepatocyte Steatosis andImprove Survival by Enhancing the Unfolded ProteinResponse and Promoting Macroautophagy[J].PLoS One,2011,6(9):e25269.
    [1]张武德,阎炜.G蛋白β3亚单位基因多态性与高血压及肥胖的关系.兰州医学院学报2003,29(3):62-64.
    [2]Holst J.J, J. Gromada. Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans[J]. Am J Physiol Endocrinol Metab,2004,287(2):E199-206.
    [3]黄丽妹,朱建梁,孙敏.哺乳动物腺苷酸环化酶亚型的研究进展[J].国际病理科学与临床杂志,2011,31(2):161-166.
    [4]Sunahara RK, Dessauer CW, Gilman AG. Complexityand diversity of mammalian adenylyl cyclases[J]. Ann P. ev Pharmacol Toxicol,1996,36:461-480.
    [5]Defer N,Best-Belpomme M,Hanoune J.Tissue specificity and physiological-relevance of various isoforms ofadenylyl cyclase[J].AmJ Physiol Renal Physiol, 2000,279(3):F400-416.
    [6]Hurley JH.Structure,mechanism and regulation of mammalian adenylyl cyclase[J].Bioll Chem,1999,274(12):7599-7602.
    [7]Wong ST,Baker LP,Trinh K,etal.Adenylyl cyclase3 mediates prostaglandin E2-induced growth inhibition in arterial smooth muscle cells[J].Biol Chem, 2001,276(36):34206-34212.
    [8]Pluznick JL,Zoo DJ,Zhang X,et al.Functional expression of the olfactory signaling system in the kidney[J].Proc Natl Acad Sci USA,2009,106(6):2059-2064.
    [9]Livera G,Xie F,Garcia MA,ec al.Inactivation Of the mouse adenylyl cyclase3 gene disrupts male fertility and spermatozoon function[J].Mol Endocrin,2005, 19(5):1277-1290.
    [10]Begin-Heick N. Liver b-adrenergic receptors, G proteins, and adenylyl cycl-ase activity in obesity-diabetes syndromes. Am J Physiol 1994;94:1664-C1672.
    [11]Wheeler MB, Lu M, Dillon JS, Leng XH, Chen C, Boyd III AE.Functional expression of the rat glucagon-like peptide-I receptor,evidence for coupling to both adenylyl cyclase and phospholipase-C. Endocrinology 1993; 133:57-62.
    [12]Dillon JS, Lu M, Bowen S, Homan LL. The recombinant rat glucagon-like peptide-1 receptor, expressed in an alpha-cell line,is coupled to adenylyl cyclase activation and intracellular calcium release. Exp Clin Endocrinol Diabetes 2005; 113:182-189.
    [13]Miguel JC, Abdel-Wahab YH, Green BD, Mathias PC, Flatt PR.Cooperative enhancement of insulinotropic action of GLP-1 by acetylcholine uncovers para-doxical inhibitory effect of beta cell muscarinic receptor activation on adenylate cyclase activity.Biochem Pharmacol 2003; 65:283-292.
    [14]Furman B, Pyne N. Modulation of cyclic nucleotides and cyclic nucleotide phosphodiesterases in pancreatic islet b-cells and intestinal L-cells as targets for treating diabetes mellitus. Curr Opin Invest Drugs 2006,7:898-905.
    [15]Gault VA, O'Harte FP, Harriott P, Mooney MH, Green BD, Flatt PR.Effects of the novel (pro3) GIP antagonist and exendin (9-39) amide on GIP-and GLP-1-induced cyclic AMP generation, insulin secretion and postprandial insulin release in obese diabetic (ob/ob) mice:evidence that GIP is the major physiological incretin.Diabetologia 2003; 46:222-230.
    [16]Efendic S. Catecholamines and metabolism of human adipose tissue.3. Comparison between the regulation of lipolysis in omental and subcutaneous adipose tissue. Acta Med Scand 1970; 187:477-483.
    [17]Collins S, Cao W, Robidoux J. Learning new tricks from old dogs:beta-adre-nergic receptors teach new lessons on firing up adipose tissue metabolism. Mol Endocrinol 2004; 18:2123-2131.
    [18]Nordman S,A Abulaiti,A Hilding,et al.Genetic variation of the adenylyl cyclase 3(AC3) locus and its influence on type 2 diabetes and obesity susceptibility in Swedish men[J]. Int J Obes (Lond),2008,32(3):407-12.
    [19]Wang Z, V. Li, GC Chan, et al.Adult type 3 adenylyl cyclase-deficient mice are obese[J]. PLoS One,2009,4(9):e6979.
    [20]Wang H, M Wu, W Zhu, et al.Evaluation of the association between the AC3 genetic polymorphisms and obesity in a Chinese Han population[J]. PLoS One,2010,5(11):e13851.
    [21]Gu,H.F.AC3:A Novel Gene Plays a Role in the Regulation of Body Weight [J]. The Open Diabetes Journal,2010,3:11-13.
    [1]Chia CW,Egan JM.Incretin-based therapies in type 2 diabetes mellitus[J]. Clin EndocrinolMetab,2008,93(10):3703-3716.
    [2]Drucker DJ. Glocagon-like pepetide-1 and the islet beta-cell:augmentation of cell proliferation and inhibition of apoptosis [J]. Endocrionology,2003,144 (12):5145-5148.
    [3]Fung M,Thompson D,Shapiro RJ,et al.Effect of glocagon-like peptide-1 (7-37) on beta-cell function after islet transplantation in type 1 diabetes [J] Diabetes Res Clin Pract,2006,74(2):189-193.
    [4]Farilla L,Hui H,Bertolotto C,et al.Giucagon-like peptide-1 promotes islet cell growth and inhibits apoptosis in Zucker diabetic rata[J].Endocrinology,2002, 143:4397-4408.
    [5]Perfetti R, Hui H.The role of GLP-1 in the life and death of pancreatic beta cells.[J]Horm Metab Res,2004,36:804-810.
    [6]Gallwitz B.Glucagon-like peptide-1 as a treatment option for type 2 diabetes and its role in restoring beta-cell mass[J].Diabetes Technol Ther,2005,7:651-657.
    [7]Johnson JD,Han Z,Otani K,et al.RyR2 and calpain-10 delineate a novel apoptesis pathway in pancreatic islets[J] J Biol Chem,2004,279:24794-24802.
    [8]高研.调控β细胞,直击糖尿病--GLP-1及利拉鲁肽的基础与临床.中华内分泌代谢杂志,2009,25(6):增录6a1-6a4.
    [9]BuseJ.B.,J.Rosenstock,G.Sesti,et al.Liraglutide once a day versus exenatide twice a day for type 2 diabetes:a 26-week randomised,parallel-group,multina-tional,open-label trial (LEAD-6)[J].Lancet,2009,374(9683):39-47.
    [10]Girard J.The incretins:from the concept to their use in the treatment of type 2 diabetes.Part A:ineretins:concept and physiological functions.Diabetes Metab, 2008,34:550-559.
    [11]Russell-JonesD.Molecular,pharmacological and clinical aspects of liraglu-tide, a once-daily human GLP-1 analogue[J]. Mol Cell Endocrinol 2009,297 (2):137-140.
    [12]张骁,束梅英,张韬.胰高血糖素样肽-1受体激动剂治疗2型糖尿病的研究进展[J].中国执业药师,2010,7(3)3-8.
    [13]Suga S,Kanno T,OgawaY,et al.cAMP-independent decrease of ATP sensiti-ve K+ channel activity by GLP-1 in rat pancreatic beta-cells [J].Pflugers Arch, 2000,440:566-572.
    [14]Garber A.,R.Henry,R.Ratner,et al.Liraglutide versus glimepiride onotherapy for type 2 diabetes (LEAD-3 Mono):a randomised,52-week,phaseⅢ,double-blind,parallel-treatment trial[J].Lancet,2009,373(9662):473-81.
    [15]Marre M.,J.Shaw,M.Brandle,et al.Liraglutide,a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improve-ments in glycaemic and weight control compared with adding rosiglitazone or placebo in subjects with Type 2 diabetes(LEAD-1 SU)[J].Diabet Med,2009, 26(3):268-78.
    [16]Nauck M.,A.Frid,K.Hermansen,et al.Efficacy and safety comparison of liraglutide,glimepiride,and placebo,all in combination with metformin,in type 2 diabetes:the LEAD (liraglutide effect and action in diabetes)-2 study[J].Diabetes Care,2009.32(1):84-90.
    [17]Russell-Jones,D.A.Vaag,O.Schmitz,et al.Action in Diabetes 5 met,Liraglu-tide vs insulin glargine and placebo in combination with metformin and sulfony-lurea therapy in type 2 diabetes mellitus (LEAD-5 met+SU):a randomised controlled trial[J].Diabetologia,2009,52(10):2046-55.
    [18]Zinman B.,J.Gerich,J.B.Buse,et al.Efficacy and safety of the human glucag-on-like peptide-1 analog liraglutide in combination with metformin and thiazolidinedione in patients with type 2 diabetes (LEAD-4 Met+TZD)[J]. Diabetes Care,2009,32(7):1224-30.
    [19]Egan J.M.,A.Bulotta,H-Hui,et al.GLP-1 receptor agonists are growth and differentiation factors for pancreatic islet beta cells[J].Diabetes Metab Res Rev,2003,19(2):115-23.
    [20]Xu G.,D.A.Stoffers,J.F.Habener,et al.Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats[J].Diabetes,1999,48(12):2270-6.
    [21]Stoffers D.A.,T.J.Kieffer,M.A.Hussain,et al.Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas[J].Diabetes,2000,49(5):741-8.
    [22]Bregenhoh S,M61dmp A,Blume N,et al.The long-acting glucagon-like peptide-I analogue,liraglutide,inhibits beta-cell apoptosis in vitro [J].Biochem Biophys Res Commun,2005,330:577-584.
    [23]Nauck M.A.,U.Niedereichholz,R.Ettler,et al.Glucagon-like peptide 1 inhibi-tion of gastric emptying outweighs its insulinotropic effects in healthy humans [J].Am Physiol,1997,273(5 Pt 1):E981-8.
    [24]Vrang N,Jelsing J,Raun K,et al.Liraglutide regulates key hypothalamic appetite-related signals in diet-induced obese rats.Diabetes,2010,59(suppl I):583-P.
    [25]Astrup A.,S.Rossner,L.Van Gaal,et al.Effects of liraglutide in the treatment of obesity:a randomised,double-blind,placebo-controlled study [J].Lancet, 2009,374(9701):1606-16.
    [26]Holst J.J.,J.Gromada.Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans[J].Am J Physiol Endocrinol Metab,2004,287(2):E199-206.
    [27]Nordman S.,A.Abulaiti,A.Hilding,et al.Genetic variation of the adenylyl cyclase 3 (AC3) locus and its influence on type 2 diabetes and obesity suscepti-bility in Swedish men[J].Int J Obes(Lond),2008,32(3):407-12.
    [28]Wang Z.,V.Li,G.C.Chan,et al.Adult type 3 adenylyl cyclase-deficient mice are obese[J].PLoS One,2009,4(9):e6979.
    [29]Wang H.,M. Wu,W. Zhu,et al.Evaluation of the association between the AC3 genetic polymorphisms and obesity in a Chinese Han population[J].PLoS One, 2010,5(11):e13851.
    [30]Gu,H.F.AC3:A Novel Gene Plays a Role in the Regulation of Body Weight [J].The Open Diabetes Journal,2010,3:11-13.
    [31]Okerson,T.and R.J.Chilton.The Cardiovascular Effects of GLP-1 Receptor Agonists[J].Cardiovasc Ther,2012,30(3):e145-el55. [32]Torsten Vahl,MD David D'Alessio.Glucagon-like Peptide 1:Incretin and
    Glucose Regulatory Hormone--Part Ⅰ.Medscape Diabetes & Endocrinology [J]. 2004,6(1).
    [33]刘蕾,段宇.胰高血糖素样肽1对心血管系统影响的研究进展[J].医学综述,2010,16(12):1786-1788.
    [34]杨文英.人GLP-1类似物利拉鲁肽的最新研究进展[J].中华内分泌代谢杂志,2010,26(9):增录9c-1-9c-4.
    [35]张凤平.胰高糖素样多肽1与代谢综合征的相关性研究[学位论文].天津医科大学研究生院,2011.
    [36]Fonseca V,Madsbad S,Falahati A,et al.Once-daily human GLP-1 analog liraglutide reduces systoic blood ptessure--a meta-analysis of six clinical trials (LEAD)[J].Diabetes,2009,58(Suppl 1):545.
    [37]Perry,T.A.and N.H.Greig,A new Alzheimer's disease interventive strategy: GLP-1 [J]. Curr Drug Targets,2004,5(6):565-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700