用户名: 密码: 验证码:
吸烟对重型颅脑损伤伴发肺损伤的影响及穿心莲内酯在吸烟诱发肺损伤中的保护机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:吸烟对重型颅脑损伤伴发急性肺损伤的影响
     目的:
     探讨吸烟对重型颅脑损伤伴发急性肺损伤的影响。
     方法:
     选择162例我院于2010年1月至2011年12月收治的重型颅脑损伤患者,其中男性139例,女性23例,年龄18~72岁,平均年龄(44.86±13.51)岁。其中交通事故伤85例,高空坠落伤30例,跌倒伤28例,暴力伤8例,其他11例。根据是否吸烟分为吸烟组(74例)和非吸烟组(88例)。
     于入院后第5天依据急性肺损伤诊断标准判断重型颅脑损伤患者是否患有急性肺损伤,比较吸烟组与非吸烟组急性肺损伤发病率。于入院后第0、5天检测重型颅脑损伤患者肺功能。肺容量指标:呼吸频率(Breathing frequency,BF)、肺活量(Vital capacity, VC);肺通气量指标:用力呼气一秒量(Forced expiratory volume in the first second,FEV1)、用力呼气肺活量(Forced expiratory vital capacity,FVC)、最大分钟通气量(Most minute ventilation,MMV);小气道指标:最高呼气流速(Peak expiratory flow,PEF)。于入院后第0、5天采集肺泡灌洗液,按照试剂盒说明书检测肺泡灌洗液上清液中的肿瘤坏死因子-α (Tumor necrosis factor-alpha,TNF-a),白介素-8(interleukin-8,IL-8)和丙二醛(Malondialdehyde MDA)水平及超氧化物歧化酶(Superoxide Dismutase, SOD)活性。
     结果:
     1.吸烟组中有26例重型颅脑损伤患者伴发急性肺损伤,发病率达到35.14%,而非吸烟组中仅有16例伴发急性肺损伤,发病率为18.18%,两组差异具有统计学意义(P=0.019)。
     2.入院后第0天,吸烟组的BF, VC、 FEV1、 FVC、 MMV、 PEF均低于非吸烟组,其中,两组的MMV、PEF的差异具有统计学意义(P<0.05)。入院后第5天与入院后第0天比较,两组患者的肺功能均呈下降趋势,吸烟组的下降趋势较非吸烟组更为明显。
     3.入院后第0天,吸烟组的TNF-α. IL-8、MDA水平均高于非吸烟组,差异具有统计学意义(P<0.05);吸烟组的SOD活性低于非吸烟组。入院后第5天与入院后第0天比较,两组患者的TNF-α. IL-8、 MDA水平均呈上升趋势,吸烟组的上升趋势较非吸烟组更为明显;两组患者的SOD活性呈下降趋势,吸烟组的下降趋势较非吸烟组更为明显。入院后第5天,两组的4个指标具有显著性差异(P<0.05)。
     结论:
     与非吸烟组相比较,吸烟组的重型颅脑损伤患者的基础肺功能和SOD活性较低,fNF-α. IL-8和MDA水平较高;伤后肺功能和SOD活性降低以及TNF-α、IL-8和MDA水平升高更为明显,急性肺损伤发病率更高,可能与吸烟和颅脑损伤协同促进炎症反应和氧化应激相关。
     第二部分:穿心莲内酯在被动吸烟诱发肺损伤中的保护作用
     目的:
     本部分研究穿心莲内酯对吸烟诱导的小鼠肺部急性炎症反应的作用。
     方法:
     本研究所用实验动物为32只清洁级成年雄性C57BL/6小鼠(6-8周龄),体重为18-20g。将实验小鼠随机分为4组(每组8只),分别为:正常对照组(C)、烟草烟雾暴露组(CS)、用溶质DMSO处理的烟草烟雾暴露组(CS+DMSO)和穿心莲内酯处理的烟草烟雾暴露组(CS+A)。穿心莲内酯是在烟草烟雾暴露前1h通过腹腔内注射途径给予,剂量为1mg/kg体重。将模型组小鼠置于被动吸烟箱中,每天被动吸烟9支,连续4天。对照组小鼠置于相同的实验条件下只是不接受被动吸烟处理。小鼠于实验第5天经腹腔注射过量戊巴比妥钠处死。收集支气管肺泡灌洗液(Bronchoalveolar lavage fluid, BALF),并作肺部组织学分析。对BALF中细胞进行计数,并经Wright-Giemsa染色进行细胞分类记数。ELSIA法分析BALF中肿瘤坏死因子-α (Tumor necrosis factor-alpha,TNF-a),白介素-6(Interleukin-6,IL-6),巨噬细胞炎症蛋白-2(Macrophage inflammatory protein-2, MIP-2),白介素10(interleukin-10,IL-10),LPS诱导CXC趋化因子(LPS-induced CXC chemokine, LIX),干扰素γ (interferon-γ,IFN-γ)的水平。并对肺组织髓过氧化物酶(myeloperoxidase, MPO)活性进行测定。体外研究中,肺上皮细胞A549细胞作为细胞模型。用DNA片段化法分析穿心莲内酯对烟草烟雾诱导的A549细胞凋亡的影响,并用Western blot法分析穿心莲内酯对烟草烟雾介导的凋亡相关蛋白的表达的影响。
     结果:
     HE染色显示,被动吸烟组小鼠肺部毛细血管充血,肺泡出血;肺泡壁稍增厚;肺泡腔内充满大量单核/巨噬细胞,多形核白细胞等炎症细胞,以及大量渗出液。DMSO处理对吸烟诱导的肺部急性炎症反应没有明显影响。而穿心莲内酯处理组小鼠肺泡炎症轻,肺泡腔中炎症细胞及渗出液较少。穿心莲内酯能够抑制吸烟诱导的肺部炎症反应还表现为:穿心莲内酯能够显著抑制吸烟诱导的小鼠BALF中总细胞,单核/巨噬细胞,中性粒细胞以及淋巴细胞的数目的增加,减少吸烟介导的小鼠BALF中肿瘤坏死因子-a,白介素-6和巨噬细胞炎症蛋白-2的分泌,以及降低吸烟诱发的肺部髓过氧化物酶的活性。体外结果显示,烟草烟雾处理能够促进A549细胞的凋亡,而穿心莲内酯能够显著抑制烟草烟雾诱导的A549细胞的凋亡。
     结论:
     穿心莲内酯能够抑制吸烟诱导的小鼠肺部的急性损伤;能够保护烟雾烟草介导的肺上皮细胞A549细胞的凋亡。
     第三部分:穿心莲内酯在被动吸烟诱发肺损伤中作用机制目的:
     深入揭示穿心莲内酯影响吸烟诱导肺损伤的相关分子机制,重点探讨血红素加氧酶.1(Heme oxygenase-1, HO-1)通路对该药物发挥保护作用的贡献。
     方法:
     在体外研究中肺上皮细胞A549细胞作为细胞模型。利用RT-PCR和Westernblot法研究烟草烟雾和穿心莲内酯对A549细胞中HO-1mRNA和蛋白表达的影响。本研究所用实验动物为32只清洁级成年雄性C57BL/6小鼠(6-8周龄),体重为18-20g。将实验小鼠随机分为4组(每组8只),分别为:正常对照组(C)、烟雾暴露组(CS)、穿心莲内酯处理组(A)和穿心莲内酯+ZnPP组(A+Z)。穿心莲内酯是在烟雾暴露前1h通过腹腔内注射途径给予,剂量为1mg/kg体重。ZnPP为一种很强的HO抑制剂,本文应用其阻断HO-1通路。ZnPP在穿心莲内酯注射之前1h通过腹腔注射方式给予,剂量为10pμmol/kg体重。对照组小鼠通过腹腔注射给予等量的生理盐水。将模型组小鼠置于被动吸烟箱中,每天被动吸烟9支,连续4天。对照组小鼠置于相同的实验条件下只是不接受被动吸烟处理。小鼠于实验第5天经腹腔注射过量戊巴比妥钠处死。收集支气管肺泡灌洗液(Bronchoalveolar lavage fluid, BALF),并作肺部组织学分析。PCR和Westernblot用来检测小鼠肺组织中HO-1RNA和蛋白质的表达情况,并对肺组织HO-1酶活性进行测定。对BALF中细胞进行计数,并经Wright-Giemsa染色进行细胞分类记数。用BCA蛋白浓度测定试剂盒测定BALF总蛋白浓度。ELSIA法分析BALF中瘤坏死因子-α (Tumor necrosis factor-alpha,TNF-a),白介素-6(Interleukin-6, IL-6)和巨噬细胞炎症蛋白-2(Macrophage inflammatory protein-2,MIP-2)的水平。对肺组织和BALF中的MDA水平进行测定。并对BALF中LDH的活性以及肺组织中超氧化物歧化酶(Superoxide Dismutase, SOD),谷胱甘肽过氧化物酶(Glutathione peroxidase, GSH-Px),过氧化氢酶(Catalase, CAT)和髓过氧化物酶(myeloperoxidase, MPO)活性进行测定。Western blot法检测穿心莲内酯对信号传导及转录活化子3(signal transducer and activator of transcription3, STAT3)通路活化的影响。
     结果:
     烟草烟雾处理和穿心莲内酯预处理显著增加HO-1mRNA和蛋白表达。而且这种诱导作用呈剂量依赖关系,这提示HO-1在烟草烟雾诱导细胞损伤过程中可能具有保护作用。HE染色显示,被动吸烟组小鼠肺部毛细血管充血,肺泡出血;肺泡壁稍增厚;肺泡腔内充满大量单核/巨噬细胞,多形核白细胞等炎症细胞,以及大量渗出液。DMSO处理对吸烟诱导的肺部急性炎症反应没有明显影响。而穿心莲内酯处理组小鼠肺泡炎症轻,肺泡腔中炎症细胞及渗出液较少,表明穿心莲内酯能够抑制吸烟诱导的肺部炎症反应。而用ZnPP阻断HO-1通路后,穿心莲内酯的保护作用被逆转。这说明穿心莲内酯对吸烟诱导肺部炎症的抑制作用依赖于HO-1通路活化。另外,穿心莲内酯能够抑制吸烟诱导的肺部炎症反应还表现为:穿心莲内酯能够显著抑制吸烟诱导的小鼠BALF中总细胞,单核/巨噬细胞,中性粒细胞以及淋巴细胞的数目的增加,减少吸烟介导的的小鼠BALF总蛋白浓度,肿瘤坏死因子-a,白介素-6和巨噬细胞炎症蛋白-2的分泌,减少吸烟诱导的肺组织和BALF中的MDA水平。以及降低吸烟诱发肺组织中超氧化物歧化酶,谷胱甘肽过氧化物酶,过氧化氢酶和髓过氧化物酶的活性和BALF中LDH的活性。而穿心莲内酯介导的这些保护吸烟诱导肺部炎症反应的作用均随着ZnPP抑制HO-1信号通路而被逆转,提示HO-1在穿心莲内酯对被动吸烟诱导的肺氧化应激、炎症及损伤的保护效应中起着重要的作用。穿心莲内酯处理显著提高吸烟小鼠肺组织中STAT3磷酸化水平,而对总STAT3蛋白影响不明显,这表明穿心莲内酯可促进肺组织STAT3通路活化。穿心莲内酯对STAT3通路的活化作用能够被ZnPP抑制,这提示STAT3可能位于HO-1通路下游。
     结论:
     穿心莲内酯可诱导肺组织HO-1表达及活性增加。HO-1表达上调介导穿心莲内酯对被动吸烟诱导肺氧化应激、炎症及损伤的保护效应。HO-1在被动吸烟诱导肺损伤中的抗炎、抗氧化活性与激活STAT3通路有关。
Part1:The Effect of Smoking on Acute Lung Injury after Severe Craniocerebral Injury
     Objective:
     To investigate the effect of smoking on acute lung injury after severe craniocerebral injury.
     Methods:
     Select162severe craniocerebral injury patients admitted to our hospital from January2010to December2011, male139cases and female23cases, aged18to72years old, the average age was (44.86±13.51) years. Traffic accident injury85cases, high-altitude fall injury30cases, mucker injury28cases, violence hurt8cases, the other11cases. Patients were divided into smoking group (74cases) and non-smoking group (88cases) basing on the status of smoking.
     Judging whether severe craniocerebral injury patients were associated with acute lung injury on the5day after admission and comparing the acute lung injury incidence rates between smoking group and non-smoking group. Measurement of the lung function in patients with severe craniocerebral injury was performed on day0and day5after admission. Lung capacity indicators:breathing frequency (BF), vital capacity (VC); pulmonary ventilation indicators:forced expiratory volume in one second (FEV1), forced expiratory vital capacity (FVC), maximum minute ventilation (MMV); small airways indicators:peak expiratory flow rate (PEF). Collecting bronchoalveolar lavage fluid on day0and day5after admission, and detecting the TNF-a, IL-8and MDA levels and SOD activity in broncho alveolar lavage fluid supernatant in accordance with the the kit instructions.
     Results:
     1.26severe craniocerebral injury patients were associated with acute lung injury and the incidence rate reached35.14%in the smoking group, while only16cases were associated with acute lung injury and the incidence rate was18.18%, the difference between the two groups was statistically significant(P=0.019).
     2. On the0day after admission, the BF, VC, FEV1, FVC, MMV, PEF in smoking goup were lower than the non-smoking group, and the differences of MMV, PEF between two groups were statistically significant(P=0.019). On the5day after admission comparing with on the0day after admission, the lung functions of patients in two groups both showed a downward trend, and the downward trend in smoking group was more obvious than the non-smoking group.
     3. On the0day after admission, the TNF-a, IL-8, MDA levels in smoking group were higher than the non-smoking group and the difference between was statistically significant(P<0.05); the SOD activity in smoking group was lower than the non-smoking group. On the5day after admission comparing with on the0day after admission, the TNF-a, IL-8, MDA levels of patients in two groups both showed a upward trend, and the upward trend in smoking group was more obvious than the non-smoking group; the SOD activity of patients in two groups showed a downward trend, and the downward trend in smoking group was more obvious than the non-smoking group. The four indicators between two groups had significant differences (P<0.05).
     Conclusions:
     Compared with the non-smoking group, the basic lung function and SOD activity of severe craniocerebral injury were lower and TNF-a, IL-8and MDA levels were higher; the decrease of lung function and SOD activity and increase of TNF-a, IL-8and MDA levels were more significant, the incidence rate of acute lung injury was higher in the smoking group after injury, which may be related to smoking and craniocerebral injury cooperatively promoting inflammatory response and oxidative stres
     Part2:The effects of andrographolide on passive cigarette smoke-induced acute lung injury
     Objective:
     To investigate the effects of andrographolide on cigarette smoke-induced acute lung inflammation.
     Methods:
     32C57/BL/6mice (18-20g) were6-8weeks old. Mice were randomly divided into4groups (8mice for each group):control group (C), cigarette smoke-exposed group (CS), DMSO and CS-treated group (CS+DMSO), andrographolide and CS-treated group (CS+A). Andrographolide was given by intraperitoneal injection at a dose of1mg/kg body weight,1h before CS exposure. Animals were placed in an inhalation chamber and exposed to9cigarettes daily for4consecutive days for CS-exposed groups.Control mice were placed in the same condition but not exposed to cigarette smoke. On the fifth day, mice were killed with an overdose of intraperitoneal sodium pentobarbital. Bronchoalveolar lavage fluid (BALF) was collected. Histologial analysis of mouse lungs was performed. Total cell count in BALF was determined by a hemocytometer. Differential cell counts were performed with Wright-Giemsa method. ELISA assay was used to analyze the production of tumor necrosis factor-alpha (TNF-α), interleukine-6(IL-6), macrophage inflammatory protein-2(MIP-2), interleukine-10(IL-10), LPS-induced CXC chemokine (LIX), and interferon-gamma (IFN-γ) in BALF. The pulmonary myeloperoxidase (MPO) activity was measured. Lung epithemial cell line A549cells were used as an in-vitro cell mdoel. DNA fragmentation assay was done to analyze the effect of andrographolide on cigarette smoke extract-induced apoptosis of A549cells. Western blot analysis was used to analyze the expression of apoptosis-associated factors in CS-exposed mice.
     Results:
     Mice in response to CS exposure had pulmonary lesions with interstitial edema and large areas of marked intravascular, interstitial, and intra-alveolar inflammatory cell infiltration Pretreatment with DMSO had no effects on CS-induced acute lung inflammation. However, the influx of inflammatory cells and edema in the lungs of CS-exposed mice was alleviated by the administration of andrographolide. Andrographolide inhibited CS-enhanced BALF cellularity, such as total cells, macrophages, neutrophils, and lymphocytes, suppressed CS-induced production of BALF TNF-a, IL-6and MIP-2, and also decreased the lung MPO activity. In vitro study showed that the treatment with cigarette smoke extract significantly enhaned the apoptosis of A549cells and increased the expresson of cleaved caspase-3and cleaved poly (ADP-ribose) polymerase, all which were markedly decreased by andrographolide.
     Conclusion:
     Andrographolide inhibits CS-induced acute lung inflammation and protects against CSE-mediated apoptosis of A549cells.
     Part3:The mechanisms for andrographolide-mediated protective effects against passive cigarette smoke-induced lung injury
     Objective:
     To investigate the molecular mechanisms underlying andrographolide-mediated protective effects against cigarette smoke-induced acute lung injury, especially the involvement of heme oxygenase-1(HO-1) signaling patheay.
     Methods:
     In the present study, lung epithemial cell line A549cells were used as an in-vitro cell mdoel. RT-PCR and Western blot analysis were employed to analyze the effects of cigarette smoke and andrographolide on HO-1expression at both mRNA and protein levels.32C57/BL/6mice (18-20g) were6-8weeks old. Mice were randomly divided into4groups (8mice for each group):control group (C), cigarette smoke exposure group (CS), andrographolide treatment together with CS exposure group (A), and A+Z group, with zinc protoporphyrin IX (ZnPP) administration before andrographolide treatment and CS exposure. Andrographolide was given by intraperitoneal injection at a dose of1mg/kg body weight,1h before CS exposure. ZnPP, a potent heme oxygenase inhibitor, was administered intraperitoneally at a dose of10μmol/kg body weight,1h before andrographolide administration. Animals were placed in an inhalation chamber and exposed to9cigarettes daily for4consecutive days for CS-exposed groups.Control mice were placed in the same condition but not exposed to cigarette smoke. On the fifth day, mice were killed with an overdose of intraperitoneal sodium pentobarbital. Bronchoalveolar lavage fluid (BALF) was collected. Histologial analysis of mouse lungs was performed. RT-PCR and Western blot analysis were performed to analyze the expression of HO-1in the lung tissues. Pulmonary HO-1activity was also analyzed. Total cell count in BALF was determined by a hemocytometer. Differential cell counts were performed with Wright-Giemsa method. The total protein in BALF was measured by the BCA method. ELISA assay was used to analyze the production of tumor necrosis factor-alpha (TNF-a), interleukine-6(IL-6), macrophage inflammatory protein-2(MIP-2). The levels of MDA in the lung tissues and BALF were measured. The activity of LDH in BALF and the lung tissues and the activities of Superoxide Dismutase (SOD), Glutathione peroxidase (GSH-Px), Catalase (CAT), myeloperoxidase (MPO) were detected in mouse lung tissues.Western blot analysis was performed to analyze the effects of andrographolide on STAT3signaling pathway.
     Results:
     Both CS and andrographolide increased the expression of HO-1at both mRNA and protein levels in a dose-dependent manner, indicating that HO-1might exhibit protecitive effect against CS-induced lung injury. Mice in response to CS exposure had pulmonary lesions with interstitial edema and large areas of marked intravascular, interstitial, and intra-alveolar inflammatory cell infiltration. The influx of inflammatory cells and edema in the lungs of CS-exposed mice was alleviated by the administration of andrographolide. Interestingly, ZnPP pretreatment markedly abolished the protective effects of andrographolide on CS-induced lung injury. Pretreatment with andrographolide markedly attenuated lung inflammation in CS-exposed mice, coupled with reduced numbers of total cells, neutrophils, and macrophages, total protein level in bronchial alveolar lavage fluid (BALF), decreased production of cytokine/chemokine (TNF-a, IL-6, and MIP-2) into BALF, less MDA in the lung tissues and BALF, and lowered activities of LDH (in both BALF and the lung tissues), SOD, GSH-Px, CAT, and MPO in lung tissues. Notably, these histological and biochemical changes induced by andrographolide were blocked by prior administration of ZnPP. Moreover, andrographolide-induced phosphorylation of signal transducer and activator of transcription3was attenuated by ZnPP treatment in CS-exposed animals.
     Conclusion:
     Our data collectively demonstrate that andrographolide confers protection against CS-induced lung inflammation, partially through activation of HO-1and STAT3.
引文
[1]Geiser T. Mechanisms of alveolar epithelial repair in acute lung injury--a translational approach. Swiss Med Wkly.2003 Nov 22;133(43-44):586-90.
    [2]Shah CV, Localio AR, Lanken PN, Kahn JM, Bellamy S, Gallop R, Finkel B, Gracias VH, Fuchs BD, Christie JD. The impact of development of acute lung injury on hospital mortality in critically ill trauma patients. Crit Care Med 2008;36:2309-2315.
    [3]Holland MC, Mackersie RC, Morabito D, Campbell AR, Kivett VA, Patel R, Erickson VR, Pittet JF. The development of acute lung injury is associated with worse neurologic outcome in patients with severe traumatic brain injury. J Trauma.2003 Jul;55(1):106-11.
    [4]Mackersie RC, Christensen JM, Pitts LH, Lewis FR. Pulmonary extravascular fluid accumulation following intracranial injury. J Trauma.1983 Nov;23(11):968-75.
    [5]Kahn JM, Caldwell EC, Deem S, Newell DW, Heckbert SR, Rubenfeld GD. Acute lung injury in patients with subarachnoid hemorrhage:incidence, risk factors, and outcome. Crit Care Med.2006 Jan;34(1):196-202.
    [6]Lee K, Rincon F. Pulmonary complications in patients with severe brain injury. Crit Care Res Pract.2012;2012:207247
    [7]Baumann A, Audibert G, McDonnell J, Mertes PM. Neurogenic pulmonary edema. Acta Anaesthesiol Scand.2007 Apr;51(4):447-55.
    [8]李爱民,周震,李宇光,张国宏.颅脑损伤病人急性肺损伤的高危因素分析及诊治.中国民康医学.2005;17(11):659-660.
    [9]Mascia L. Acute lung injury in patients with severe brain injury:a double hit model. Neurocrit Care.2009 Dec;11(3):417-26.
    [10]The World Health Report 2002:Reducing Risks, Promoting Healthy Life. Geneva (Switzerland):World Health Organization; 2002.
    [11]Sangani RG, Ghio AJ. Lung injury after cigarette smoking is particle related. Int J Chron Obstruct Pulmon Dis.2011;6:191-8.
    [12]Wewers ME, Munzer A, Ewart G. Tackling a root cause of chronic lung disease:the ATS, FDA, and tobacco control. Am J Respir Crit Care Med.2010 Jun 15;181(12):1281-2.
    [13]Rojas M, Mora AL. Age and smoke:a risky combination. Am J Respir Crit Care Med.2011 Feb 15;183(4):423-4.
    [14]Barreiro E, Peinado VI, Galdiz JB, Ferrer E, Marin-Corral J, Sanchez F, Gea J, Barbera JA; ENIGMA in COPD Project. Cigarette smoke-induced oxidative stress:A role in chronic obstructive pulmonary disease skeletal muscle dysfunction. Am J Respir Crit Care Med. 2010 Aug 15;182(4):477-88.
    [15]Crosby LM, Waters CM. Epithelial repair mechanisms in the lung. Am J Physiol Lung Cell Mol Physiol.2010 Jun;298(6):L715-31.
    [16]Kallala R, Barrow J, Graham SM, Kanakaris N, Giannoudis PV. The in vitro and in vivo effects of nicotine on bone, bone cells and fracture repair. Expert Opin Drug Saf.2013 Mar;12(2):209-33.
    [17]Durazzo T, Abadjian L, Kinkaid A, Bilovsky-Muniz T, Boreta L, Gauger G. The Influence of Chronic Cigarette Smoking on Neurocognitive Recovery after Mild Traumatic Brain Injury. J Neurotrauma.2013 Feb 19. [Epub ahead of print]
    [18]Calfee CS, Matthay MA, Eisner MD, Benowitz N, Call M, Pittet JF, Cohen MJ. Active and passive cigarette smoking and acute lung injury after severe blunt trauma. Am J Respir Crit Care Med.2011 Jun 15;183(12):1660-5.
    [19]王芬梅,卢野,王召霞,赵艳萍,王巧,周娟,丁津,李德泽.重度颅脑创伤术后主要并发症的预防及护理.中国当代医药.2010;17(4):99.
    [20]Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: an overview. Methods. Enzymol.1990;186:1-85.
    [21]Hoidal JR. Reactive oxygen species and cell signaling. Am. J. Respir. Cell. Mol. Biol. 2001;25:661-663.
    [22]Talukder MA, Johnson WM, Varadharaj S, Lian J, Kearns PN, El-Mahdy MA, Liu X, Zweier JL. Chronic cigarette smoking causes hypertension, increased oxidative stress, impaired NO bioavailability, endothelial dysfunction, and cardiac remodeling in mice. Am J Physiol Heart Circ Physiol.2011 Jan;300(1):H388-96.
    [23]van der Vaart H, Postma DS, Timens W, ten Hacken NH. Acute effects of cigarette smoke on inflammation and oxidative stress:a review. Thorax.2004 Aug;59(8):713-21.
    [24]Yanbaeva DG, Dentener MA, Creutzberg EC, Wesseling G, Wouters EF. Systemic effects of smoking. Chest.2007 May; 131(5):1557-66.
    [25]MacNee W. Pulmonary and systemic oxidant/antioxidant imbalance in chronic obstructive pulmonary disease. Proc AmThorac Soc.2005;2(1):50-60.
    [26]Yao H, Rahman I. Current concepts on oxidative/carbonyl stress, inflammation and epigenetics in pathogenesis of chronic obstructive pulmonary disease. Toxicol Appl Pharmacol.2011 Jul 15;254(2):72-85.
    [27]Lum H, Roebuck KA. Oxidant stress and endothelial cell dysfunction. Am J Physiol Cell Physiol.2001 Apr;280(4):C719-41.
    [28]Aoshiba K, Nagai A. Oxidative stress, cell death, and other damage to alveolar epithelial cells induced by cigarette smoke. Tob Induc Dis.2003 Sep 15;1(3):219-26.
    [29]Xu H, Ferro TJ, Chu S. Cigarette smoke condensate inhibits ENaC a-subunit expression in lung epithelial cells. Eur Respir J 2007;30:633-642.
    [30]Cantin AM, Hanrahan JW, Bilodeau G, Ellis L, Dupuis A, Liao J, Zielenski J, Durie P. Cystic fibrosis transmembrane conductance regulator function is suppressed in cigarette smokers. Am J Respir Crit Care Med 2006;173:1139-1144.
    [31]Jeffery PK. Comparison of the structural and inflammatory features of COPD and asthma. Giles F. Filley Lecture. Chest.2000;117:251S-260S.
    [32]Chung KF. Cytokines in chronic obstructive pulmonary disease. Eur. Respir. J. Suppl. 2001;34:50s-59s.
    [33]Stocker R, Perrella MA. Heme oxygenase-1:a novel drug-target for atherosclerotic diseases? Circulation.2006 Nov 14;114(20):2178-89.
    [34]Morse D, Choi AM. Heme oxygenase-1:from bench to bedside. Am J Respir Crit Care Med.2005 Sep 15;172(6):660-70.
    [35]Ryter SW, Alam J, Choi AM. Heme oxygenase-1/carbon monoxide:from basic science to therapeutic applications. Physiol Rev.2006 Apr;86(2):583-650.
    [36]马小华,游晓星,吴移谋.H O-1在免疫调节中的作用及其相关信号转导通路研究进展.中南医学科学杂志,2011,39(6):705-709.
    [37]Gozzelino R, Jeney V, Soares MP. Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol.2010;50:323-54.
    [38]Morse D, Lin L, Choi AM, Ryter SW. Heme oxygenase-1, a critical arbitrator of cell death pathways in lung injury and disease. Free Radic Biol Med.2009 Jul 1;47(1):1-12.
    [39]Rushworth SA, MacEwan DJ, O'Connell MA. Lipopolysaccharide-induced expression of NAD(P)H:quinone oxidoreductase 1 and heme oxygenase-1 protects against excessive inflammatory responses in human monocytes. J Immunol.2008 Nov 15;181(10):6730-7.
    [40]Petrache I, Otterbein LE, Alam J, Wiegand GW, Choi AM. Heme oxygenase-1 inhibits TNF-alpha-induced apoptosis in cultured fibroblasts. Am J Physiol Lung Cell Mol Physiol. 2000 Feb;278(2):L312-9.
    [41]Dolinay T, Choi AM, Ryter SW. Heme Oxygenase-1/CO as protective mediators in cigarette smoke-induced lung cell injury and chronic obstructive pulmonary disease. Curr Pharm Biotechnol.2012 May;13(6):769-76.
    [42]Zhang F, Wang S, Zhang M, Weng Z, Li P, Gan Y, Zhang L, Cao G, Gao Y, Leak RK, Sporn MB, Chen J. Pharmacological induction of heme oxygenase-1 by a triterpenoid protects neurons against ischemic injury. Stroke.2012 May;43(5):1390-7.
    [43]Chao XD, Ma YH, Luo P, Cao L, Lau WB, Zhao BC, Han F, Liu W, Ning WD, Su N, Zhang L, Zhu J, Fei Z, Qu Y. Up-regulation of heme oxygenase-1 attenuates brain damage after cerebral ischemia via simultaneous inhibition of superoxide production and preservation of NO bioavailability. Exp Neurol.2013 Jan;239:163-9.
    [44]Coon JT, Ernst E. Andrographis paniculata in the treatment of upper respiratory tract infections:a systematic review of safety and efficacy. Planta Med.2004 Apr;70(4):293-8.
    [45]Burgos RA, Hancke JL, Bertoglio JC, Aguirre V, Arriagada S, Calvo M, Caceres DD. Efficacy of an Andrographis paniculata composition for the relief of rheumatoid arthritis symptoms:a prospective randomized placebo-controlled trial. Clin Rheumatol.2009 Aug;28(8):931-46.
    [46]Wang T, Liu B, Zhang W, Wilson B, Hong JS. Andrographolide reduces inflammation-mediated dopaminergic neurodegeneration in mesencephalic neuron-glia cultures by inhibiting microglial activation. J Pharmacol Exp Ther.2004 Mar;308 (3):975-83.
    [47]Li J, Luo L, Wang X, Liao B, Li G. Inhibition of NF-kappaB expression and allergen- induced airway inflammation in a mouse allergic asthma model by andrographolide. Cell Mol Immunol.2009 Oct;6(5):381-5.
    [48]Chern CM, Liou KT, Wang YH, Liao JF, Yen JC, Shen YC. Andrographolide inhibits PI3K/AKT-dependent NOX2 and iNOS expression protecting mice against hypoxia/ ischemia-induced oxidative brain injury. Planta Med.2011 Oct;77(15):1669-79.
    [49]Zhu T, Wang DX, Zhang W, Liao XQ, Guan X, Bo H, Sun JY, Huang NW, He J, Zhang YK, Tong J, Li CY. Andrographolide Protects against LPS-Induced Acute Lung Injury by Inactivation of NF-κB. PLoS One.2013;8(2):e56407.
    [50]Baguley S, Slewa Younan R, Lazarus A, et al. Long term mortality trends in patients with traumatic brain injury[J]. Brain Injury,2000,14:505-512
    [51]王忠成.神经外科[M].武汉:湖北科学技术出版社,1998:283-337
    [52]Bratton SL, Davis RL. Acute lung injury in isolated traumatic brain injury[J]. Neurosurgery, 1997,40(4):707-712
    [53]Chen HI, Huang HS, Yang JG, et al. Vasodilator and oxidant scavenger in the neurogenic pulmonary edema induced by cerebral compression[J]. Chin Physiol,1992,35(2):123-131
    [54]沈世琴,朱京慈,许民辉.重型颅脑损伤后急性肺损伤的发病机制和抗炎治疗进展[J].中国临床神经外科杂志,2007,12(2):119-122
    [55]张明,陈娜.吸烟对健康人肺功能的影响临床观察[J].中国误诊学杂志,2007,7(21):4990-4991
    [56]Vasudevan Anil, Lodha R, Kabra SK. Acute lung injury and acute respiratory distress syndrome[J]. Indian J Pediatr,2004,71(8):743-750
    [57]Varma SD, Chand D, Sharma YR, et al. Oxidative stress on lens and cataract formation: role of light and oxygen[J]. Curr Eye Res,1984,3(1):35-57
    [58]李慧颖.炎性细胞因子在吸烟致肺损伤中的作用研究[J].北京:中国人民解放军军事医学科学院,2008:47
    [59]中华医学会呼吸病学分会.急性肺损伤/急性呼吸窘迫综合征的诊断标准(草案)[J].中华结核和呼吸杂志,2000,23(4):115
    [60]中华医学会呼吸病学分会.支气管肺泡灌洗液细胞学检测技术规范(草案)[J].中华结核和呼吸杂志,2002,25(7):390-391
    [61]Cosio MG, Hale KA, Niewoehner M, et al. Morphologic and morphometric effects of prolonged cigarette smoking on the small airways[J].Am Rev Respir Dis,1980,122(2): 205-221
    [62]李若葆,王金平,鞠学红,等.长期吸烟对大鼠肺组织结构的影响[J].潍坊医学院学报,2007,29(2):97-100
    [63]Arand M, Melzner H, Kinzl L. Early inflammatory mediator response following isolated traumatic brain injury and other major trauma in humans[J]. Langenbecks Arch Surg,2001, 386(4):241-248
    [64]Demirjian L, Abboud RT, Li H, et al. Acute effect of sigarette smoke on TNF-a release by macrophages mediated through the erkl/2 pathway[J]. Biochim Biophys Acta, 2006,1762(6):592-597
    [65]Smith WB, Gamble JR, Clark-Lewis I, et al. Chemotactic desensitization of neutrophils demonstrates interleukin-8(IL-8)-dependent and IL-8-independent mechanisms of transmigration through cytokine-activated endothelium[J]. Immunology,1993,78(3): 491-497
    [66]万丹.长期吸烟对大鼠肺部损伤及相关炎性因子表达的影响[D].武汉:武汉科技大学,2011:23
    [67]何士杰,于素敏,赵志国.吸烟对健康人群肺功能及IL-8, TNF-α影响的研究[J].河北医药,2010,32(16):2196-2197
    [68]段国贤,周开顺,胡永奇,等.肿瘤坏死因子-a在神经源性肺水肿中的作用[J].华北煤炭医学院学报,2004,6(4):421-422
    [69]冯杰,杨晓明,冯贵龙,等.急性颅脑损伤患者血清白细胞介素-8和可溶性P-选择素的变化及临床意义[J].中国急救医学,2011,31(7):649-651
    [70]Zhang WZ, Venardos K, Chin-Dusting J, et al. Adverse effects of cigarette smoke on NO bioavailability:role of arginine metabolism and oxidative stress[J]. Hypertension,2006, 48(2):278-285
    [71]李慧颖.炎性细胞因子在吸烟致肺损伤中的作用研究[D].北京:中国人民解放军军事医学科学院,2008:48-49
    [72]郭辉.添加植物提取物香烟S19对吸烟大鼠免疫指标及抗氧化指标的影响[D].武汉:武汉科技大学,2009:16
    [73]Goldkorn T, Filosto S. Lung injury and cancer:Mechanistic insights into ceramide and EGFR signaling under cigarette smoke. Am. J. Respir. Cell. Mol. Biol.2010;43:259-268.
    [74]Koteswara Rao Y, Vimalamma G, Rao CV, Tzeng YM. Flavonoids and andrographolides from Andrographis paniculata. Phytochemistry.2004;65:2317-2321.
    [75]Chun JY, Tummala R, Nadiminty N, Lou W, Liu C, Yang J, Evans CP, Zhou Q, Gao AC. Andrographolide, an herbal medicine, inhibits interleukin-6 expression and suppresses prostate cancer cell growth. Genes Cancer.2010; 1:868-876.
    [76]Iruretagoyena MI, Tobar JA, Gonzalez PA, Sepulveda SE, Figueroa CA, Burgos RA, Hancke JL, Kalergis AM. Andrographolide interferes with T cell activation and reduces experimental autoimmune encephalomyelitis in the mouse. J. Pharmacol. Exp. Ther. 2005;312:366-372.
    [77]Guan S, Tee W, Ng D, Chan T, Peh H, Ho W, Cheng C, Mak J, Wong W. Andrographolide protects against cigarette smoke-induced oxidative lung injury via augmentation of Nrf2 activity. Br. J. Pharmacol.2012 Nov 12. doi:10.1111/bph.12054.
    [78]Biological effects of cigarette smoke in cultured human retinal pigment epithelial cells. Yu AL, Birke K, Burger J, Welge-Lussen U. PLoS One.2012;7(11):e48501.
    [79]Bao Z, Guan S, Cheng C, Wu S, Wong SH, Kemeny DM, Leung BP, Wong WS. A novel antiinflammatory role for andrographolide in asthma via inhibition of the nuclear factor-kappaB pathway. Am. J. Respir. Crit. Care. Med.2009; 179:657-665.
    [80]Vlahos R, Bozinovski S, Jones JE, Powell J, Gras J, Lilja A, Hansen MJ, Gualano RC, Irving L, Anderson GP. Differential protease, innate immunity, and NF-kappaB induction profiles during lung inflammation induced by subchronic cigarette smoke exposure in mice. Am. J. Physiol. Lung. Cell. Mol. Physiol.2006;290:L931-L945.
    [81]Jagtap P, Soriano FG, Virag L, Liaudet L, Mabley J, Szabo E, Hasko G, Marton A, Lorigados CB, Gallyas F Jr, Sumegi B, Hoyt DG, Baloglu E, VanDuzer J, Salzman AL, Southan GJ, Szabo C. Novel phenanthridinone inhibitors of poly (adenosine 5'-diphosphate-ribose) synthetase:potent cytoprotective and antishock agents. Crit. Care. Med.2002;30:1071-1082.
    [82]Choi EY, Santoso S, Chavakis T:Mechanisms of neutrophil transendothelial migration. Front Biosci 2009,14:1596-1605
    [83]Profita M, Sala A, Bonanno A, Riccobono L, Ferraro M, La Grutta S, Albano GD, Montalbano AM, Gjomarkaj M:Chronic obstructive pulmonary disease and neutrophil infiltration:role of cigarette smoke and cyclooxygenase products. Am J Physiol Lung Cell Mol Physiol 2010,298:L261-L269
    [84]Baglole CJ, Maggirwar SB, Gasiewicz TA, Thatcher TH, Phipps RP, Sime PJ:The aryl hydrocarbon receptor attenuates tobacco smokeinduced cyclooxygenase-2 and prostaglandin production in lung fibroblasts through regulation of the NF-kappaB family member RelB. J Biol Chem 2008,283:28944-28957
    [85]Martey CA, Pollock SJ, Turner CK, O'Reilly KM, Baglole CJ, Phipps RP, Sime PJ: Cigarette smoke induces cyclooxygenase-2 and microsomal prostaglandin E2 synthase in human lung fibroblasts:implications for lung inflammation and cancer. Am J Physiol Lung Cell Mol Physiol 2004,287:L981-L991
    [86]Thatcher TH, Maggirwar SB, Baglole CJ,Lakatos HF, Gasiewicz TA, Phipps RP, Sime PJ: Aryl hydrocarbon receptor-deficient mice develop heightened inflammatory responses to cigarette smoke and endotoxin associated with rapid loss of the nuclear factor-kappaB component RelB. Am J Pathol 2007,170:855-864
    [87]Thatcher TH, McHugh NA, Egan RW, Chapman RW, Hey JA, Turner CK, Redonnet MR, Seweryniak KE, Sime PJ, Phipps RP:Role of CXCR2 in cigarette smoke-induced lung inflammation. Am J Physiol Lung Cell Mol Physiol 2005,289:L322-L328
    [88]Baglole CJ, Ray DM, Bernstein SH, Feldon SE, Smith TJ, Sime PJ, Phipps RP:More than structural cells, fibroblasts create and orchestrate the tumor microenvironment. Immunol Invest 2006,35:297-325
    [89]Tsushima K, King LS, Aggarwal NR, De Gorordo A, D'Alessio FR, Kubo K. Acute lung injury review. Intern Med.2009;48(9):621-30.
    [90]Wang W, Wang J, Dong SF, Liu CH, Italiani P, Sun SH, Xu J, Boraschi D, Ma SP, Qu D. Immunomodulatory activity of andrographolide on macrophage activation and specific antibody response. Acta Pharmacol Sin.2010 Feb;31(2):191-201.
    [91]Grammes J, Soehnlein O. Contribution of neutrophils to acute lung injury. Mol Med.2011 Mar-Apr;17(3-4):293-307.
    [92]O'Brien PJ. Chemico-Biological Interactions. [J]. Peroxidases,2000,129:113-139
    [93]Mori T, Town T, Tan J, et al. Modulation of astrocytic activation by arundic acid (ONO-2506) mitigates detrimental effects of the apolipoprotein E4 isoform after permanent focal ischemia in apolipoprotein E knock-inmice[J]. J Cereb Blood FlowMetab,2005, 25(6):748-762.
    [94]Shen YC, Chen CF, Chiou WF. Andrographolide prevents oxygen radical production by human neutrophils:possible mechanism(s) involved in its anti-inflammatory effect. Br J Pharmacol.2002 Jan;135(2):399-406.
    [95]Lundberg AH, Granger N, Russell J, Callicutt S, Gaber LW, Kotb M, Sabek O, Gaber AO. Temporal correlation of tumor necrosis factor-alpha release, upregulation of pulmonary ICAM-1 and VCAM-1, neutrophil sequestration, and lung injury in diet-induced pancreatitis. J Gastrointest Surg.2000 May-Jun;4(3):248-57.
    [96]Malleo G, Mazzon E, Siriwardena AK, Cuzzocrea S. TNF-alpha as a therapeutic target in acute pancreatitis--lessons from experimental models. ScientificWorldJournal.2007 Mar 30;7:431-48.
    [97]Chen HW, Lin AH, Chu HC, Li CC, Tsai CW, Chao CY, Wang CJ, Lii CK, Liu KL. Inhibition of TNF-a-Induced Inflammation by andrographolide via down-regulation of the PI3K/Akt signaling pathway. J Nat Prod.2011 Nov 28;74(11):2408-13.
    [98]Lloyd CM, Rankin SM Chemokines in allergic airway disease. Curr Opin Pharmacol.2003 Aug;3(4):443-8.
    [99]Kalyanaraman M, Heidemann SM, Sarnaik AP.Macrophage inflammatory protein-2 predicts acute lung injury in endotoxemia. J Investig Med.1998 Aug;46(6):275-8.
    [100]Tsujimoto H, Ono S, Mochizuki H, Aosasa S, Majima T, Ueno C, Matsumoto A. Role of macrophage inflammatory protein 2 in acute lung injury in murine peritonitis. J Surg Res. 2002 Mar;103(1):61-7.
    [101]Wen-Wan Chao, Yueh-Hsiung Kuo, Shie-Liang Hsieh, Bi-Fong Lin Inhibitory Effects of Ethyl Acetate Extract of Andrographis paniculata on NF-κB Trans-Activation Activity and LPS-Induced Acute Inflammation in Mice Evid Based Complement Alternat Med.2011; 2011:254531. Published online 2011 February 14.
    [102]Zhang H, Neuhofer P, Song L, Rabe B, Lesina M, Kurkowski MU, Treiber M, Wartmann T, Regner S, Thorlacius H, Saur D, Weirich G, Yoshimura A, Halangk W, Mizgerd JP, Schmid RM, Rose-John S, Algul H. IL-6 trans-signaling promotes pancreatitis-associated lung injury and lethality. J Clin Invest.2013 Mar 1;123(3):1019-31.
    [103]Hodge S, Hodge G, Holmes M, et al. Apoptosis in COPD. Current Respiratory Medicine Reviews.2005;1:33-41.
    [104]Aoshiba K, Tamaoki J, Nagai A. Acute cigarette smoke exposure induces apoptosis of alveolar macrophages. Am J Physiol Lung Cell Mol Physiol.2001 Dec;281(6):L1392-401.
    [105]Hoshino Y, Mio T, Nagai S, Miki H, Ito I, Izumi T. Cytotoxic effects of cigarette smoke extract on an alveolar type Ⅱ cell-derived cell line. Am J Physiol Lung Cell Mol Physiol. 2001 Aug;281(2):L509-16.
    [106]Zhang ZR, Al Zaharna M, Wong MM, Chiu SK, Cheung HY. Taxifolin Enhances Andrographolide-Induced Mitotic Arrest and Apoptosis in Human Prostate Cancer Cells via Spindle Assembly Checkpoint Activation. PLoS One.2013;8(1):e54577.
    [107]Gunn EJ, Williams JT, Huynh DT, Iannotti MJ, Han C, Barrios FJ, Kendall S, Glackin CA, Colby DA, Kirshner J. The natural products parthenolide and andrographolide exhibit anti-cancer stem cell activity in multiple myeloma. Leuk Lymphoma.2011 Jun;52(6): 1085-97. doi:10.3109/10428194.2011.555891.
    [108]Chen JH, Hsiao G, Lee AR, Wu CC, Yen MH. Andrographolide suppresses endothelial cell apoptosis via activation of phosphatidyl inositol-3-kinase/Akt pathway. Biochem Pharmacol.2004 Apr 1;67(7):1337-45.
    [109]Miao RZ, Liu LQ, Chen L, Li Z, Li LP, Guo RL, Li JF, Guo XB. Activity of heme oxygenase-1 affects expression levels of hypoxia inducible factor-1 gene in vitro. Chin Med J (Engl).2012 Apr;125(7):1310-5.
    [110]Carraway MS, Ghio AJ, Taylor JL, Piantadosi CA. Induction of ferritin and heme oxygenase-1 by endotoxin in the lung. Am. J. Physiol.1998;275:L583-L592.
    [111]Eltom S, Stevenson C, Birrell MA. Cigarette Smoke Exposure as a Model of Inflammation Associated with COPD. Curr Protoc Pharmacol.2013 Mar;Chapter 5:Unit5.64.
    [112]Liu C, Bronson RT, Russell RM, Wang XD. β-Cryptoxanthin supplementation prevents cigarette smoke-induced lung inflammation, oxidative damage, and squamous metaplasia in ferrets. Cancer. Prev. Res (Phila).2011;4:1255-1266.
    [113]Pauwels NS, Bracke KR, Dupont LL, Van Pottelberge GR, Provoost S, Vanden Berghe T, Vandenabeele P, Lambrecht BN, Joos GF, Brusselle GG Role of IL-1α and the Nlrp3/caspase-1/IL-1β axis in cigarette smoke-induced pulmonary inflammation and COPD. Eur. Respir. J.2011;38:1019-1028.
    [114]Rastrick JM, Stevenson CS, Eltom S, Grace M, Davies M, Kilty I, Evans SM, Pasparakis M, Catiey MC, Lawrence T, Adcock IM, Belvisi MG, Birrell MA. Cigarette Smoke Induced Airway Inflammation Is Independent of NF-κB Signalling. PLoS One.2013;8 (1):e54128.
    [115]Nemmar A, Raza H, Subramaniyan D, John A, Elwasila M, Ali BH, Adeghate E. Evaluation of the pulmonary effects of short-term nose-only cigarette smoke exposure in mice. Exp Biol Med (Maywood).2012 Dec 1;237(12):1449-56.
    [116]Vlahos R, Bozinovski S, Chan SP, Ivanov S, Linden A, Hamilton JA, Anderson GP. Neutralizing granulocyte/macrophage colony-stimulating factor inhibits cigarette smoke-induced lung inflammation. Am. J. Respir. Crit. Care. Med.2010;182:34-40.
    [117]Khabour OF, Alzoubi KH, Bani-Ahmad M, Dodin A, Eissenberg T, Shihadeh A. Acute exposure to waterpipe tobacco smoke induces changes in the oxidative and inflammatory markers in mouse lung. Inhal. Toxicol.2012;24:667-675.
    [118]Segel GB, Halterman MW, Lichtman MA. The paradox of the neutrophil's role in tissue injury. J Leukoc Biol.2011 Mar;89(3):359-72.
    [119]Grommes J, Soehnlein O. Contribution of neutrophils to acute lung injury. Mol Med.2011 Mar-Apr;17(3-4):293-307.
    [120]Steinberg KP, Milberg JA, Martin TR, Maunder RJ, Cockrill BA, Hudson LD. Evolution of bronchoalveolar cell populations in the adult respiratory distress syndrome. Am J Respir Crit are Med.1994 Jul; 150(1):113-22.
    [121]Abraham E, Carmody A, Shenkar R, Arcaroli J. Neutrophils as early immunologic effectors in hemorrhage-or endotoxemia-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol.2000 Dec;279(6):L1137-45.
    [122]Klebanoff SJ. Myeloperoxidase:friend and foe. J Leukoc Biol.2005 May;77(5):598-625.
    [123]Ye JE, Zhu H, Zhou ZF, Xiong RB, Wang XW, Su LX, Luo BD. Protective mechanism of andrographolide against carbon tetrachloride-induced acute liver injury in mice. Biol Pharm Bull.2011;34(11):1666-70.
    [124]Zhang B, Yan L, Zhou P, Dong Z, Feng S, Liu K, Gong Z. CHP1002, a novel andrographolide derivative, inhibits pro-inflammatory inducible nitric oxide synthase and cyclooxygenase-2 expressions in RAW264.7 macrophages via up-regulation of heme oxygenase-1 expression. Int Immunopharmacol.2013 Feb;15(2):289-95.
    [125]Wu ML, Ho YC, Lin CY, Yet SF. Heme oxygenase-1 in inflammation and cardiovascular disease. Am J Cardiovasc Dis.2011;1(2):150-8.
    [126]Wu ML, Layne MD, Yet SE. Heme oxygenase-1 in environmental toxin-induced lung disease. Toxicol Mech Methods.2012 Jun;22(5):323-9.
    [127]Tagawa A, Kaneko T, Shinohara T, Ueda A, Sato T, Ishigatsubo Y. Heme oxygenase-1 inhibits cigarette smoke-induced increase in the tracheal mucosal permeability in guinea pigs in vivo. Inflamm Res.2005 May;54(5):229-34.
    [128]Brandsma CA, Hylkema MN, van der Strate BW, Slebos DJ, Luinge MA, Geerlings M, Timens W, Postma DS, Kerstjens HA. Heme oxygenase-1 prevents smoke induced B-cell infiltrates:a role for regulatory T cells? Respir Res.2008 Feb 6;9:17.
    [129]Yang T, Luo F, Shen Y, An J, Li X, Liu X, Ying B, Liao Z, Dong J, Guo L, Wang T, Xu D, Chen L, Wen F. Quercetin attenuates airway inflammation and mucus production induced by cigarette smoke in rats. Int Immunopharmacol.2012 May;13(1):73-81.
    [130]Akowuah GA, Zhari I, Mariam A, Yam MF. Absorption of andrographolides from Andrographis paniculata and its effect on CCl(4)-induced oxidative stress in rats. Food Chem Toxicol.2009 Sep;47(9):2321-6.
    [131]Das S, Gautam N, Dey SK, Maiti T, Roy S. Oxidative stress in the brain of nicotine-induced toxicity:protective role of Andrographis paniculata Nees and vitamin E. Appl Physiol Nutr Metab.2009 Apr;34(2):124-35.
    [132]Neogy S, Das S, Mahapatra SK, Mandal N, Roy S. Amelioratory effect of Andrographis paniculata Nees on liver, kidney, heart, lung and spleen during nicotine induced oxidative stress. Environ Toxicol Pharmacol.2008 May;25(3):321-8.
    [133]Colin-Gonzalez AL, Orozco-Ibarra M, Chanez-Cardenas ME, Rangel-Lopez E, Santamaria A, Pedraza-Chaverri J, Barrera-Oviedo D, Maldonado PD. Heme oxygenase-1 (HO-1) upregulation delays morphological and oxidative damage induced in an excitotoxic/ pro-oxidant model in the rat striatum. Neuroscience.2013 Feb 12;231:91-101.
    [134]Lee DS, Li B, Kim KS, Jeong GS, Kim EC, Kim YC. Butein protects human dental pulp cells from hydrogen peroxide-induced oxidative toxicity via Nrf2 pathway-dependent heme oxygenase-1 expressions. Toxicol In Vitro.2013 Mar;27(2):874-81.
    [135]Unuma K, Aki T, Matsuda S, Funakoshi T, Yoshida K, Uemura K. Inducer of heme oxygenase-1 cobalt protoporphyrin accelerates autophagy and suppresses oxidative damages during lipopolysaccharide treatment in rat liver. Hepatol Res.2013 Jan;43(l): 91-6.
    [136]Koriyama Y, Nakayama Y, Matsugo S, Kato S. Protective effect of lipoic acid against oxidative stress is mediated by Keapl/Nrf2-dependent heme oxygenase-1 induction in the RGC-5 cellline. Brain Res.2013 Mar 7;1499:145-57.
    [137]Ryter SW, Otterbein LE, Morse D, Choi AM. Heme oxygenase/carbon monoxide signaling pathways:regulation and functional significance. Mol Cell Biochem.2002 May-Jun;234-235(1-2):249-63.
    [138]Cai C, Teng L, Vu D, He JQ, Guo Y, Li Q, Tang XL, Rokosh G, Bhatnagar A, Bolli R. The heme oxygenase 1 inducer (CoPP) protects human cardiac stem cells against apoptosis through activation of the extracellular signal-regulated kinase (ERK)/NRF2 signaling pathway and cytokine release. J Biol Chem.2012 Sep 28;287(40):33720-32.
    [139]Zhang X, Shan P, Jiang G, Zhang SS, Otterbein LE, Fu XY, Lee PJ. Endothelial STAT3 is essential for the protective effects of HO-1 in oxidant-induced lung injury. FASEB. J. 2006;20:2156-2158.
    [140]George EM, Arany I. Induction of heme oxygenase-1 shifts the balance from proinjury to prosurvival in the placentas of pregnant rats with reduced uterine perfusion pressure. Am. J. Physiol. Regul. Integr. Comp. Physiol.2012;302:R620-R626.
    [1]Martin C, Robert C, Diane RN, et al. The development of acute lung injury is associated with worse neurologic outcome in patients with severe traumatic brain injury[J]. J Trauma,2003,55(1):106-111.
    [2]Bratton SL, Davis RL. Acute lung injury in isolated traumatic brain injury[J]. Neurosurgery,1997,40(4):707-712.
    [3]金香兰.论脑主脏腑之神[J].天津中医,1997,14(6):275-276.
    [4]李耀辉,姜良铎.肺脑相关伦[J].北京中医药大学学报,2008,31(7):443-444.
    [5]赵海滨,沈承玲,孙塑伦,从肺主气伦脑肺关系[J].北京中医药.2009,28(5)355-357.
    [6]Fowler AA, Hamman RF, Good JT, et al. Adult respiratory distress syndrom:risk with common predispositions[J]. Ann Intern Med,1983,98:593-597.
    [7]Kennedy TP, Johnson KJ, Kunkel RG, et al. Acute acid aspiration lung injury[J]. Anesth analg,1998,69(1):872.
    [8]Holm BA, Enhorning G, Notter RH. A biophysical mechanism by which plasma proteins inhibit lung surfactant activity[J]. Chem Phys Lipids,1988,49(1-2):49-55.
    [9]Holm BA, Notter RH. Effect of hemoglobin and cell membrane lipids on pulmonary surfactant activity[J]. J Appl Physiol,1987,63(4):1434-1442
    [10]沈世琴,朱京慈,许民辉.重型颅脑损伤后急性肺损伤的发病机制和抗炎治疗进展[J].中国临床神经外科杂志,2007,12(2):119-123
    [11]Armstrong L, Millar AB. Relative production of TNF-a and IL-10 in ARDS[J]. Thorax,1997,52(5):442-446.
    [12]Lee WL, Downey GP. Neutrophil activation and acute lung injury[J]. Curr Opin Crit Care,2001,7(1):127-130.
    [13]沈世琴,朱京慈.重型颅脑损伤致急性肺损伤发病机制的实验研究[J].第三军医大学学报,2007,29(14):1422-1424.
    [14]段国贤等[段国贤,周开顺,胡永奇,等.肿瘤坏死因子-α在神经源性肺水肿中的作用[J].华北煤炭医学院学报,2004,6(4):421-422.
    [15]Arand M, Melzner H, Kinzl L. Early inflammatory mediator response following isolated traumatic brain injury and other major trauma in humans[J]. Langenbecks Arch Surg,2001, 386(4):241-248.
    [16]丁永忠,孙群周,张建生,等.急性颅脑损伤后血清TNF-α,IL-1,IL-6,IL-8含量变化及其临床意义[J].中国临床神经外科杂志,2006,11(1):17-19.
    [17]Bell MJ, Kochanek PM, Doughty LA, et al. Interleukin-6 and interleukin-10 in cerebrospinal fluid after severe traumatic brain injury in children[J]. J Neurotrauma, 1997,14(7):451-457.
    [18]Maier B, Schwerdtfeger K, Mautes A. Differential release of interleukines 6,8 and 10 in cerebrospinal fluid and plasma after traumatic brian injury[J]. Shock,2001,15(6):421-426.
    [19]Shames BD, Zallen GS, Mcintyre RC, et al. Chemokines as mediators of diseases related to surgical conditions[J]. Shock,2000,14(1):127-129.
    [20]冯杰等[冯杰,杨晓明,冯贵龙,等.急性颅脑损伤患者血清白细胞介素-8和可溶性P-选择素的变化及临床意义[J].中国急救医学,2011,31(7):649-651.
    [21]黎檀实,殷迪成,吴旭辉,等.颅脑伤合并吸入性肺损伤患者肺组织细胞凋亡的研究[J].中国危重病急救医学,2004,16(2):97-99.
    [22]沈世琴,朱京慈,许民辉.重型颅脑损伤后急性肺损伤的发病机制和抗炎治疗进展[J].中国临床神经外科杂志,2007,12(2):119-123.
    [23]段国贤,周开顺,赵春秀,等.内皮素-1在神经源性肺水肿中的作用[J].中国应用生理学杂志,2004,20(3):268-271.
    [24]邱小建,孟琨,张杰,等.颅脑损伤性肺水肿的发生与内皮素含量变化的关系[J].广州医学院学报,2005,33(5):17-21.
    [25]梁金,雷鹏,王钰,等.大鼠脑损伤后脑组织Bcl-2、Bax基因的表达及血清NO、SOD变化动态研究[J].创伤外科杂志,2006,8(3):238-240.
    [26]杨云梅等[杨云梅,黄卫东.急性颅脑损伤早期内皮素和一氧化氮含量变化的临床研究[J].中华创伤杂志,2001,17(5):269-271.
    [27]Dugo L, Marzocco S, Mazzon E, et al. Effect of GW274150, a novel and selective inhibitor of iNOS activity, in acute lung inflammation[J]. Br J Pharmacol,2004,141(6): 979-987.
    [28]李玉红,闫平,李汝霖,等.实验性大鼠颅脑损伤后血清SOD和NO的变化[J].武汉大学学报(医学版),2004,25(3):306-308,313.
    [29]Kennedy TP, Johnson KJ, Kunkel RG, et al. Acute acid aspiration lung injury in the rat: biphasic pathogenosis[J]. Anesth Analg,1998,69(1):87-92.
    [30]王文犀,王宪荣.颅脑损伤后肺损伤发病机理的实验研究[J].中国临床神经外科杂志,2001,6(1):34-36.
    [31]施毅,陈正堂.现代呼吸病治疗学[M].北京:北京人民军医出版社,2002.737-739.
    [32]李金林,张进秋,周姚.颅脑损伤致急性肺损伤的危险因素分析[J].中国基层医药,2006,13(5):852-853.
    [33]郑军,董莘,宁海涛,等.颅脑损伤合并急性肺损伤危险因素分析[J].中国误诊学杂志,2011,11(7):1542.
    [34]徐英辉,吕秀鹏,张国宏,等.颅脑损伤患者急性肺损伤的高危因素分析及诊治[J].中国综合临床,2003,19(11):1022-1023.
    [35]赖连枪.重型颅脑外伤肺部感染危险因素分析(附84例报告)[J].华北煤炭医学院学报,2002,4(1):14-15.
    [36]李锋,陈平,吴珍珍,等.颅脑损伤并发肺部感染相关因素及对策[J].海南医学,2005,16(8):13-14.
    [37]庄静,沙淙,秦林林.颅脑损伤后呼吸机相关性肺炎的危险因素护理[J].医学检验与临床,2009,20(1):45,81-82.
    [38]屠传建,马卫星,柳建生,等.机械通气在颅脑损伤后神经源性肺水肿的临床应用[J].中国危重病急救医学,2004,16(3):192.
    [39]王守臣,赵爱军,刘宝江,等.早期气管镜灌洗治疗重度颅脑损伤后肺部病变[J].实用医学杂志,2008,24(6):976-977.
    [40]张敏,童明容.振动排痰机在40例中型颅脑损伤患者肺部感染预防中的作用[J].创伤外科杂志,2011,13(6):555.
    [41]Condos R, Raju B, Canova A, et al.Recombinant gamma interferon stimulates signal transduction and gene expression in alveolar macrophages in vitro and in tuberculosis patients[J]. Infect Immun,2003,71(4):2058-2064.
    [42]Shigenobu U. Anti inflammatory action of gentamycin through inhibitory effect on neutrophil NADPH oxidase activity[J]. Biochem Physio,1995,110B(4):817-821
    [43]沈世琴,朱京慈.不同药物雾化吸入对重型颅脑损伤大鼠继发肺损伤的作用研究[J].中华护理杂志,2007,42(3):233-236
    [44]权明桃,江智霞,施久军,等.西维来司钠雾化吸入对重度脑损伤大鼠肺保护的作用研究[J].中国急救医学,2012,32(1):51-53
    [45]吕杰.地塞米松联合山莨菪碱治疗颅脑损伤后神经元性肺水肿体会[J].延安大学学报(医学科学版),2011,9(2):18-19
    [46]Schiano V, Laurenzano E, Brevetti G, et al. Omega-3 polyunsaturated fatty acid in peripheral arterial disease:effect on lipid pattern, disease severity, inflammation profile, and endothelial function[J]. Clin Nutr,2008,27(2):241-247
    [47]Musiek ES, Brooks JD, Joo M, et al. Electrophilic cyclopentenone neuroprostances are anti-inflammatory mediators formed from the peroxidation of the omega-3 polyunsaturated fatty acid decosahexaenoic acid[J]. J Biol Chem,2008,283(29):19927-19935
    [48]许会彬,王青,王化芬,等.ω-3PUFA对颅脑损伤伴休克大鼠早期肺损伤的保护作用[J].中华神经外科疾病研究杂志,2012,11(1):54-57
    [49]黄伟,乔健,李成万,等.生大黄对重症颅脑损伤并发NPE患者血清TNF-α、IL-6水平的影响[J].山东医药,2011,51(2):3-4
    [50]张辉,郑广顺,郭金陶.痰热清注射液配合抗生素治疗颅脑损伤合并肺部感染患者50例[J].中外医学研究,2011,9(31):12-13
    [51]余丹凤,沈盛晖,张庚,等.醒脑静注射液对重症颅脑损伤患者细胞因子及肺部感染的影响[J].中国中西医结合急救杂志,2005,12(5):289-291
    [52]Leslie FM. Multigenerational epigenetic effects of nicotine on lung function[J].BMC Med,2013,11(1):27
    [53]Starek A, Podolak I. Carcinogenic effect of tobacco smoke[J]. Rocz Panstw Zakl Hig,2009,60(4):299-310]
    [54]Minh An DT, Van Minh H, Huong le T, et al. Knowledge of the health consequences of tobacco smoking:a cross-sectional survey of Vietnamese adults[J]. Glob Health Action,2013,6:1-9.
    [55]Mu L, Liu L, Niu R, et al. Indoor air pollution and risk of lung cancer among Chinese female non-smokers[J]. Cancer Causes Control,2013,24(3):439-450.
    [56]Jensen K, Nizamutdinov D, Guerrier M, et al. General mechanisms of nicotine-induced fibrogenesis[J].FASEB J,2012,26(12):4778-4787
    [57]林纯意,万利梅,陈豫钦,等.烟雾暴露对大鼠肺动脉平滑肌电压依赖性钾通道蛋白mRNA表达的影响及其与肺动脉压力的关系[J].中华结核和呼吸杂志,2012,35(9):695-699
    [58]周卫辉,陈祥银,余丽君,等.尼古丁对中性粒细胞活化及细胞间粘附分子基因表达的影响[J].中国病理生理杂志,2000,16(9):779-782
    [59]Di X, Yan J, Zhao Y, et al. L-theanine inhibits nicotine-induced dependence via regulation of the nicotine acetylcholine receptor-dopamine reward pathway[J]. Sci China Life Sci,2012,55(12):1064-1074
    [60]Dani JA, Biasi MD. Cellular mechanisms of nicotine addiction[J]. Pharmacol Biochem Behav,2001,70:439-446
    [61]Schuller HM. Is cancer triggered by altered signalling of nicotinic acetylcholine receptors? Nat Rev Cancer,2009,9(3):195-205
    [62]杨磊.尼古丁受体3(CHRNA3)基因启动子的遗传变异与中国南方人群肺癌易感性研究[D].广州:广州医学院,2010:46-47
    [63]Harris JE, Thun MJ, Mondul AM, et al. Cigarette tar yields in relation to mortality from lung cancer in the cancer prevention study Ⅱ prospective cohort,1982-8[J].BMJ,2004, 328(7431):72
    [64]Gan Q, Lu W, Xu J, et al. Chinese "low-tar" cigarettes do not deliver lower levels of nicotine and carcinogens[J]. Tob Control,2010,19(5):374-379
    [65]蒋义国,陈家,陈学敏,等.苯并(a)芘代谢物反式二羟环氧苯并芘诱发人支气管上皮细胞恶性转化[J].卫生研究,2001,30(3):129-131
    [66]Li D, Firozi PE, Wang LE, et al. Sensitivity to DNA damage induced by benzo(a)pyrene diolepoxide and risk of lung cancer:a case-control analysis[J]. Cancer Research,2001, 6(4):1445-1450
    [67]Brown KG, Ross GL, American Council on Science and Health. Arsenic, drinking water, and health:a position paper of the American Council on Science and Health[J]. Requl Toxicol Pharmacol,2002,36(2):162-174
    [68]Rossman TG, Uddin AN, Burns FJ, et al. Arsenite is a cocarcinogen with solar ultraviolet radiation for mouse skin:an animal model for arsenic carcinogenesis[J]. Toxicl Appl Pharmacol,2001,176:64-71.
    [69]张同梅,赖百塘.烟草特有亚硝胺NNK与肺癌的关系[J].中华流行病学杂志,2005,26(2):140-142
    [70]胡责舟,韩肥,陈君石.饮茶对香烟中特异性亚硝胺——NNK诱发小鼠肺癌基因表达的影响[J].卫生研究,1995:,4:240-242
    [71]邓大跃,郑霜,陈双基.室内不同燃烧模式香烟污染的研究[J].环境科学与技 术,2006,29(12):26-27,32
    [72]李若葆,王金平,鞠学红,等.长期吸烟对大鼠肺组织结构的影响[J].潍坊医学院学报,29(2):97-100
    [73]沈锋,赵鸣武,贺蓓,等.不同时间被动吸烟大鼠肺功能及肺组织病理观察[J].贵阳医学院学报,2006,31(3):247-250,256
    [74]张素萍,徐乃玉,聂继华,等.吸烟致大鼠肺组织蛋白质电泳图谱的改变[J].环境与职业医学,2007,24(2):196-198
    [75]方汝孝,夏晓黎,牛志刚,等.吸烟对健康成年男性肺功能的影响[J].中国医师进修杂志,2008,31(24):23-25
    [76]周永升.老年男性吸烟者戒烟后肺功能改善情况分析[J].临床和实验医学杂志,2007,6(7):162-163
    [77]张旭华,刘朔,王东亮,等.辽宁省六城市4168例老年吸烟者流行病学调查及肺功能检测情况[J].中国老年学杂志,2012,32(17):3735-3737
    [78]何丹.120例老年人肺弥散功能测定分析[J].宁夏医学杂志,2000,22(4):239
    [79]杜绪仓,陈妙霞,王秀君,等.老年无症状吸烟者肺部HRCT分析[J].中国现代医药杂志,2007,9(3):5-7
    [80]王晓如,孔庆华,范颖,等.吸烟与老年慢性阻塞性肺疾病患者肺功能受损程度相关性分析[J].中国临床医学,2011,18(6):794-796
    [81]张建全,陈殉殉,梁毅,等.吸烟肺功能正常者及吸烟COPD患者肺小动脉超微结构的研究[J].中国呼吸与危重监护杂志,2010,9(5):465-470
    [82]黄晓群.吸烟对术前食道癌患者肺功能的影响[J].内蒙古中医药,2010,29(24):69
    [83]Lu GP, Li LS, Tang J. Change of pulmonary-function in patients with type 2 diabetes mellitus and its clinical meaning[J]. Med J Chin PLA,1994,19(2):95-97
    [84]陈国芳,徐宽枫,刘超.吸烟与糖尿病[J].国际内科学杂志,2008,35(8):452-455
    [85]Zhang WZ, Venardos K, Chin-Dusting J, et al. Adverse effects of cigarette smoke on NO bioavailability:role of arginine metabolism and oxidative stress[J]. Hypertension, 2006,48(2):278-285
    [86]张翊玲,张旭华.被动吸烟对大鼠肺组织、肺泡灌洗液、血清中NO及NOS的影响[J].广东医学,2011,32(3):296-298
    [87]谢维佳,王广发.呼出气凝集液H202浓度在吸烟和不吸烟组人群中的比较[J].中华结核和呼吸杂志,2006,29(11):783-784
    [88]陈志东,覃冬运,吴铁,等.甘草水提液对吸烟小鼠肺组织超氧化物歧化酶和丙二醛的影响[J].时珍国医国药,2007,18(7):1665-1666
    [89]王勤,李华文,廖芸芸,等.鱼腥草对吸烟小鼠的抗肺氧化损伤作用[J].时珍国医国药,2009,20(6):1426-1427
    [90]MacNee W. Pulmonary and systemic oxidant/antioxidant imbalance in chronic obstructive pulmonary disease[J]. Proc Am Thorac Soc,2005,2(1):50-60
    [91]韩玲,许建英,姚宏.γ-谷氨酰半胱氨酸合成酶在吸烟气道上皮细胞表达的研究[J].中国药物与临床,2011,11(3):279-282
    [92]Baggiolini M, Dewald B, Moser B. Human chemokines:an update[J]. Annu Rev Immunol,1997,15:675-705
    [93]彭信言,钟小宁.吸烟导致的氧化应激在慢性阻塞性肺疾病发病机制中的作用[J].国际呼吸杂志,2010,30(9):555-559
    [94]Matsushima K, Baldwin ET, Mukaida N. Interleukin-8 and MCAF:novel leukocyte recruitment and activating cytokines[J]. Chem Immunol,1992,51:236-265
    [95]Baggiolini M, Dewald B, Moser B. Human chemokines:an update[J]. Annu Rev Immunol,1997,15:675-705
    [96]Saris H, Mortaz E, Janse WT, et al. IL-8 production by macrophages is synergistically enhanced when cigarette smoke is combined with TNF-a[J]. Biochem Pharmacol, 2010,79(5):698-705
    [97]Culpitt SV, Rogem DF, Shah P, et al. Impaired inhibition by dexamethasone of cytokine release by alveolar macrophages from patients with chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med,2003,167(1):24-31
    [98]姜洪芳,蔡存伟,赵立.早期戒烟大鼠肺病理及炎性介质变化[J].中国比较医学杂志,2012,22(1):51-53,61
    [99]Mukhopadhyay S, Hoidal JR, Mukherjee TK. Role of TNF-a in pulmonary pathophysiology[J]. Respir Res,2006,7(1):125
    [100]蔡栩栩,杜悦,刘春峰,等.孕鼠被动吸烟对新生大鼠肺组织TNF-α和CINC表达影响的研究[J].中华围产医学杂志,2005,8(5):338-341
    [101]张念,徐清,陈菁,等.吸烟对慢性阻塞性肺疾病患者血清及肺泡灌洗液中肿瘤坏死因子-a及干扰素-γ的影响[J].实用医学杂志,2012,28(12):1980-1982
    [102]]Rothlein R, Dustin ML, Marlin SD, et al. A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1[J]. J Immunol,1986,137(4):1270-1274
    [103]张红丽.吸烟对大鼠肺血管细胞间黏附分子-1和基质金属蛋白酶-9表达的影响[D].太原:山西医科大学,2009:7-8
    [104]彭红星,杨荣时,曾玉兰.细胞间黏附分子-1、巨噬细胞炎性蛋白-2在吸烟诱导的支气管炎大鼠模型中的变化及其意义[J].实用医学杂志,2009,25(14):2234-2236
    [105]Reny JL, Vuagnat A, Rant C, et al. Diagnosis and follow-up of infections in intensive care patients value of C-reactive protein compared with other clinical and biological variables[J]. Am J Respir Crit Care Med,2002,30:529-535
    [106]韩丽萍.COPD患者血清SP-A、IL-8、hsCRP水平及临床意义的探讨[D].沈阳:中国医科大学,2008:1-2
    [107]李庆云,黄绍光,吴华成,等.大鼠吸烟致慢性支气管炎模型气道炎症研究[J].上海第二医科大学学报,2004,24(1):31-35,48
    [108]徐旭燕,陶晓南,黄翠萍,等.Bcl-2和Bax在吸烟诱导大鼠肺血管重建中的作用研究[J].现代中西医结合杂志,2011,20(35):4477-4480
    [109]Zeng DX, Liu XS, Xu YJ, et al. Plasmid-based short hairpin RNA against cyclin Dl attenuated pulmonary vascular remodeling in smoking rats[J], Microvasc Res,2010,80(1): 116-122
    [110]郭锋,胡国平,况九龙.慢性阻塞性肺疾病的遗传易感性研究进展[J].中华结核和呼吸杂志,2010,33(4):303-306.
    [111]Jiang L, He B, Zhao MW, et al. Association of gene polymorphisms of TNF-α and IL-8 with COPD in Han nationality in Beijing[J]. Chin Med J,2005,118:541-547
    [112]Young RP, Hopkins R, Black PN, et al. Functional variants of antioxidant genes in smokers with COPF and in those with normal lung function[J]. Thorax,2006,61(5): 394-399
    [113]]张素萍,童建.吸烟与肺癌易感性关系研究进展[J].现代预防医学,2007,34(14):2654-2656
    [114]Amorim LM, Lotsch PF, Simao Td Tde A, et al. Analysis of CYP1A1 exon 7 polymorphisms by PCR-SSCP in a Brazilian population and description of two novel gene variations[J]. Mutat Res,2004,547(1-2):35-40
    [115]汪保国,陈思东,周卫平,等.细胞色素P4501A1和谷胱甘肽硫转移酶基因多态性与肺癌关系的病例对照研究[J].国华肿瘤杂志,2004,26(2):93-97
    [116]唐录英,任泽舫,周笑娉,等.ABO血型及其和吸烟的交互作用与肺癌易感性[J].中国慢性病预防与控制,2001,9(2):70-71
    [117]Gao WM, Romkes M, Day RD, et al. Association of the DNA repair gene XPD Asp312Asn polymorphism with p53 gene mutations in tobacco-related non-small cell lung cancer[J]. Carcinogenesis,2003,24(10):1671-1676
    [118]马列,赵明静,王群,等.非小细胞肺癌p53、FHIT、K-RAS基因突变与吸烟相关性Meta分析[J].现代肿瘤医学,2011,19(10):1982-1987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700