用户名: 密码: 验证码:
三辊限动芯棒连轧管(PQF)成形机理及其虚拟仿真系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无缝钢管是一种重要的经济断面钢材,是国民经济建设的重要原材料之一。连轧钢管是热轧无缝钢管工业生产流程中的关键工序,直接影响终态产品尺寸精度和后继加工。目前,三辊连轧管机组已是近10年来大型无缝钢管生产的主流机型。随着市场国际化和产品竞争的日益激烈,各国钢管生产企业都以不断提高产品质量,扩大产品规格、降低生产成本和开发新产品来提高自身的市场竞争力。因此,开展三辊连轧管轧制过程的基本理论及其仿真技术研究,掌握工件连轧成形规律,预报产品尺寸精度和性能,对进一步优化设备工艺参数、建立产品质量预控系统、实现节能降耗具有重要意义和实用价值。
     三辊连轧管轧制过程具有典型的三维非线性、热力耦合和参数时变的特点,是一个非常复杂的多道次孔型轧制过程。为了提高仿真速度,快速制定轧制工艺规程,本文首先对孔型轧制的金属流动特点和几何变形特性进行分析,建立了连轧热力耦合解析模型。通过对三辊连轧管轧制过程传热机理进行分析,采用有限差分法建立传热数学模型,该模型能处理轧制过程中复杂的变形场以及各种热力学边界条件,反映了钢管在连轧过程中的温度变化规律,并利用上限法求得三辊连轧管机组各架功率和力矩,仿真结果与现场实测数据吻合良好。
     为了深入研究金属变形机理,确定连轧工艺参数,文中根据三辊连轧管孔型及工艺特点,建立了三辊连轧管成形过程三维有限元模型,分析了宽展规律对产品尺寸精度和钢管横截面积的影响。通过对不同孔型、不同规格产品的系列仿真,研究了宽展规律的影响因素:延伸系数和空隙率对周长系数的影响、延伸系数和减径率对壁厚系数的影响以及张力对宽展规律的影响。利用多元线性回归分析法、BP神经网络以及GA-BP神经网络得到连轧宽展模型,对比某厂实际数据,吻合较好。模型实现了钢管尺寸精度的快速预报,为孔型设计和工艺设定提供了理论指导。
     针对无缝钢管在连轧过程中受轧辊孔型、轧辊转速及芯棒速度等多因素影响的特点,研究了三辊连轧管连轧过程中金属的流动规律、变形区前后滑分布的影响因素,建立了连轧变形区前后滑分析模型,为轧制工艺提供速度设定模型,还分析了芯棒限动速度和张力对连轧速度制度的影响。
     基于Visual Basic平台,引入CAE参数化技术,并结合MARC二次开发技术,建立了三辊连轧管轧制过程虚拟仿真系统,对连轧钢管的工艺设计、尺寸精度、温度分布、力能参数等进行深入分析。该系统能自动完成模型建立及相关数据传递,预测连轧管成形尺寸精度,分析应力场、应变场、温度场等分布状态与变化方式,能有效缩短新产品开发周期、提高孔型设计可靠性、降低轧机能耗和生产成本,具有很好的实际应用价值。
As a kind of important economical section steels, seamless tube is one of theimportant raw materials in the national economy construction. Continuous rolling is animportant procedure in the industry hot rolling process for seamless steel pipes whichdirectly affect the final product size precision and subsequent processing. Currently, threerolls mandrel pipe mills has been the mainstream mill type of the large seamless steel pipeproduction in the last ten years. With internationalization and increasing competition inproduct market, the steel pipe production enterprises continuously improve its productquality, expand product specifications, reduce production cost and develop new productsto improve their market competitiveness. Therefore, it is of great significance and practicalvalue for further optimizing the process parameters, establishing quality pre-controlsystem, realizing energy saving and consumption reducing to carry out the study on basictheory and simulation of three roll mandrel pipe mill rolling process, master the forminglaw, forecast the product precision and performance.
     The rolling process of three roll mandrel pipe mill is a very complex multi-stand passrolling procedure with characteristics of typical three-dimensional nonlinear,thermal-mechanical coupling and parameter time-varying. In order to improve thesimulation speed and formulate the rolling schedule rapidly, metal flow and geometricdeformation are analyzed firstly and the thermo-mechanical coupling analytical model isbuilt in this paper. Based on the heat transfer mechanism analysis, the mathematical modelof heat transfer in the rolling process of three roll mandrel pipe mill is established with thefinite difference method which can deal with the complex deformation field, as well asvarious thermodynamic boundary conditions. Also, the rolling power and torque of eachstand are obtained by the upper bound method. The simulation results show a goodagreement with the measured values.
     In order to study the plastic deformation mechanism of the metal intensively andcalculation the rolling technological parameters, a3d finite element model for the rollingprocess is established in this paper according to the roll pass and processing characteristics of the three roll mandrel pipe mill. The effect of the spread regularity on the product sizeprecision and the tube cross-sectional area is also analyzed using this model. Throughseries of simulations for different roll pass and various specification products, theinfluence factors of the spread rule are researched, such as the influence of the elongationcoefficient and the void ratio on the circumference coefficient, the influence of theelongation coefficient and the diameter reducing rate on the wall thickness ratio, as well asthe influence of tension effect on the spread rule. Spread model is obtained using multiplelinear regression analysis method, the BP neural network and GA-BP neural network.Simulation results are in good agreement with the actual plant data. Fast and exactprediction of the steel pipe’s dimensional accuracy is realized which can provide atheoretical guidance for the roll pass designing and the process parameters setting.
     The seamless steel pipe is influenced by the roll pass, the roll speed, the mandrelspeed and other factors. Therefore, the metal flow law and the influence factors of theforward-backward slip in the deformation zone during the rolling progress of three rollmandrel pipe mill are studied in the paper. Moreover forward slip model is obtained whichcan provide the speed schedule setting model for rolling technology. Moreover the effectsof the mandrel retaining speed and the tension on the speed schedule are analyzed.
     A virtual simulation system for the rolling process of three roll mandrel pipe mill isdeveloped by introducing the CAE parametric technology and combining with thesecondary development technology of MARC in the Visual Basic programming platform,which can carry on deeply analysis of the process design, the pipe dimensional accuracy,the temperature distribution and the mechanics parameters. The system can establish themodel, transfer the related data, predict the pipes dimensional accuracy and analyze thestress field, the strain field, the temperature field distribution and transformation. Thesystem has the very good actual using value which can effectively shorten the new productdevelopment cycle, improve the pass design reliability, reduce the rolling energyconsumption and the production cost.
引文
[1]严泽生.现代热连轧无缝钢管生产[M].北京:冶金工业出版社,2009:1-2.
    [2]殷国茂.我国钢管工业的现状和今后发展的思考[J].钢管,2011,40(1):1-7.
    [3]殷国茂.编撰《中国钢管飞速发展的10年》后的几点体会[J].钢管,2010,39(1):8-19.
    [4]成海涛.产品差异化和低成本是钢管企业走出困境的必由之路[J].钢管,2012,41(6):1-3.
    [5]殷国茂,杨仙,李国昌.中国无缝钢管技术装备的现状分析[J].河北科技大学学报,2005,04:259-264.
    [6]成海涛.我国无缝钢管行业的现状分析[J].钢管,2006,03:1-6.
    [7]江永静,成海涛.我国无缝钢管生产现状、差距及发展建议[J].中国冶金,2004,11:6-10.
    [8]成海涛,杨秀琴.我国钢管行业未来发展趋势分析[J].钢管,2009,38(1):10-17.
    [9]成海涛.我国钢管工业进入调整期后的思考[J].钢管,2010,39(6):5-9.
    [10]葛冰.我国钢管生产技术现状及与国外的差距[J].中国冶金,2002,05:23-25.
    [11]张旦天,钟锡弟.我国无缝钢管生产技术装备水平现状[J].金属世界,2012,3:11-15.
    [12]兰兴昌.国外无缝钢管生产现状[J].钢管,2012,02:15-20.
    [13]严泽生,庄钢,孙强.世界热轧无缝钢管轧机的发展[J].中国冶金,2011,21(1):7-11,19.
    [14]李国祯.现代钢管轧制与工具设计原理[M].北京:冶金工业出版社,2006:149-151.
    [15]金如崧.无缝钢管百年史话[M].北京:冶金工业出版社,2008:221-223.
    [16] Montelatici L, Pirovance G. Process Control Improvements in Seamless Tube Rollling Mills bymeans of Hydraulic Capsules Principles&Applications[J]. ITA Conference Paper, Beijing,1995:1-11.
    [17] Montelatici L, Cernuschi E. Technology Process Development in Seamless Tube Production resultin Quality Improvements and Market Demands Satisfaction[J]. ITA conference Paper, Philadelphia,1995:3-9.
    [18] Nakashima K. Hydraulic Screw down control System for Mandrel Mill[J]. Tube&PipeTechnology,1993,6(4):39-43.
    [19] Voswinckel G. Process Management System for Stretch-reducing Mills[J]. Tube&PipeTechnology,1995,8(4):36-40.
    [20]李元德,朱燕玉,贾立虹,等.连轧管机组发展历程及生产技术[J].钢管,2010,39(2):1-13.
    [21]刘凤.关于连轧机轧管“竹节”问题的商榷[J].宝钢技术,1983,01:42-52.
    [22]冯赞潮.钢管连轧“竹节”问题的探讨[J].钢管,1988,03:7-11.
    [23]张丕军,卢于逑.连轧管“竹节”问题的研究[J].钢铁,1995,02:37-44.
    [24] Imae T. Fundamental Characteristic of Mandrel Mill Rolling and its Application to Practical MillOperation[J]. Proceeding of the3th International Conference on Steel Rolling, Tokyo,1985.
    [25]金如崧.钢管张力减径工艺理论基础及其发展[M].北京:冶金工业出版社,1993:77-90.
    [26]于辉.无缝钢管三辊张力减径过程系统建模与仿真[D].秦皇岛:燕山大学工学博士学位论文,2008:10-14.
    [27] Pehle H J, Thieven P. Improving the Quality of Stretch-reduced Tubes[J]. Metal Plant Technol Int,2000,23(4):4.
    [28] Biraghi L, Cernuschi E, Zanetri U. The MD-SRM——a new Design for the Stretch reducingMill[J], ITA Conference Paper session1A, Chicago,1991.
    [29] Pfeiffer D. Economical and precise rolling of seamless tube using a stretch reducing mill incombination with a precision sizing mill[J]. Tube&Pipe Technology,2000,13(2):65-68.
    [30]金如崧.限动芯棒连轧管工艺的发展及其现状[J].钢管,1989,06:1-9.
    [31]金如崧.限动芯棒连轧管工艺的17年[J].宝钢技术,1996,03:1-9.
    [32]严泽生,胡儒卓.限动芯棒连轧工艺综述[J].天津冶金,1999,S1:1-4.
    [33]严泽生,胡儒卓,张玉华.限动芯棒连轧的工艺实践[J].钢铁,1999,34(9):34-37.
    [34] B. H. Данченко.使用限定芯棒连轧钢管存在的问题及发展前景[J].现代冶金,2003.04:61-64,69.
    [35]严圣祥,钟倩霞.世界上限动芯棒连轧管机的应用和发展[J].钢管,1991,03:1-6.
    [36] Vincenzo P, Emanuele G,王三云.限动芯棒连轧管机的重大发展[J].钢管技术,1983,04:19-28.
    [37]郑治平,于业奎.限动芯棒连轧管机工艺技术的发展[J].钢管,1999,05:1-6.
    [38]郝润元,王鹏飞.国产限动芯棒连轧管机组关键技术分析[J].钢管,2004,01:5-8.
    [39]刘铁航.现代国产限动芯棒连轧管机工艺设备基本特征[J].钢管,2010,39(4):36-38.
    [40]金如崧.论MPM轧管工艺的发展[J].宝钢技术,2005,06:10-14.
    [41]严泽生,刘卫平,孙强.世界首套先进的三辊式连轧管机组成功投产[J].天津冶金,2004,06:3-6,65.
    [42] Use of Hydraulic Capsules as Position Actuators on Seamless Tube Rolling Mills: Basic Conceptsand Application Luca MONTELATICI, Stefano BANDINIDEMAG Italimpianti, Tube andCopper-Milan,Italy.
    [43] Montelatici L, Palma V. A Proposal for Meeting the Technological Trend in the Manufacturer ofseamless Steel Pipes in an Economical Manner Presented at Special Steel Tubes–Marketing,Fabrication, Properties, Guarantees, Utilization Fields Bucharest, September1993.
    [44] Hamauzu S. The new compact Mandrel Seamless Mill[J]. Tube&Technology.1994,7(2):83-85.
    [45] Palma V, Cattaneo F. Meeting the Technological Trend in the Manufacture of Seamless SteelTubes in an Economical Manner[J]. In: ITA, Seamless Tube Technology, Tube&PipeHongkong,1993,46Holly walk learnington Spa Warwickshine UK: International Tube Association,1993:70,74-77.
    [46]潘峰.宝钢钢管全浮动芯棒连轧工艺的技术进步[J].钢管,2006,05:30-33.
    [47]严泽生.中国钢管工业30年的发展回顾[J].钢管,2009,38(2):70-73.
    [48]李群,田军,江永静,庄钢.我国无缝钢管生产技术进步20年[J].轧钢,2004,06:31-36.
    [49]殷国茂.我国钢管飞速发展的10年概述[J].钢管,2009,v.38(2):6-13.
    [50]殷国茂.我国无缝钢管生产和装备的发展历程及今后的发展思考[J].钢管,2011,40(6):10-19.
    [51]郝润元,马轶.发展我国的无缝钢管连轧设备[J].钢管,2002,31(3):33-34.
    [52]金如崧. PQF的17年[J].钢管,2009,38(1):36-40.
    [53]严泽生,孙强,庄钢. PQF生产工艺[J].钢管,2006,01:37-42.
    [54] Theelen N, Rinaldi P, Yan Z S. PQF technology for the production of seamless steel tubes[J]. Stahlund Eisen,2004,124(11):99-106.
    [55] SMS M.‘Premium Quality Finishing’ Line with3-roll mandrel mill[J]. SMS Meer Brochure,2004.
    [56] SMS M. A proposal for PQF[J]. SMS Meer Document,2004.
    [57]周晓锋,张传友,史庆志. PQF连轧管机在天津钢管的发展[J].钢管,2012,41(2):38-41.
    [58]周晓锋. MPM和PQF轧管工艺[J].钢铁研究,2008,36(3):58-62.
    [59] Jin R. Longitudinal Rolling Technology Versus Cross Rolling Technology in the Field of SmallDiameter Tube Production[J]. In: ITA, Seamless Tube Technology, Tube&Pipe Hongkong,1993,46Holly walk learnington Spa Warwickshine UK: International Tube Association,1993:7~14.
    [60]李群,杨帆,丁德元,等.从MPM到PQF——限动芯棒连轧管机回顾及展望[J].钢管,2007,36(6):19-24.
    [61]余大典,潘孝礼,王啸修.宝钢Φ460无缝钢管三辊连轧管机组的技术进步[J].宝钢技术,2009,5:53-56.
    [62]岳世斌,卢立锋,庄钢. φ460mmPQF限动连轧管机组工艺装备[J].天津冶金,2009,2:3-6,50.
    [63] Cernuschi E. FQM~(TM):用于高质量无缝钢管生产的达涅利3辊限动芯棒连轧管机[J].钢铁,2008,43(12):92-95.
    [64] Cernuschi E. FQM~(TM):用于高质量无缝钢管生产的达涅利3辊限动芯棒连轧管机[A].中国金属学会.2007中国钢铁年会论文集[C].中国金属学会,2007:1.
    [65]陈碧楠.三辊连轧管机的发展及分析对比[J].钢管,2010,v.39(3):6-9.
    [66]张旦天,钟锡弟. PQF与FQM三辊限动芯棒连轧管机展望[J].天津冶金,2009,5:13-17,20.
    [67]李安全. Φ159mm FQM三辊连轧管机组主要设备特点[J].钢管,2007,36(6):32-36.
    [68]张琰,夏洪斌,陈江林.削尖轧制技术在Φ159mm FQM连轧管机上的开发和应用[J].钢管,2010,39(6):31-34.
    [69]梁海泉,樊荣.头尾削尖技术在PQF连轧管机上的应用[J].钢管,2007,36(3):41-43.
    [70]高志刚.意大利达涅利公司无缝钢管生产最新技术[J].钢管,2012,41(5):83.
    [71]熊令芳,秦臻.国产TZΦ180mm三辊连轧管机组的技术水平分析[J].钢管,2012,41(2):42-44.
    [72]樊强,熊令芳.国产首套TZφ180三辊连轧管机组分析研究[J].科技创新与生产力,2010,12:73-77.
    [73]太原重工股份有限公司自主设计制造出第1套全国产三辊限动芯棒连轧管机组[J].钢管,2009,38(5):47.
    [74]李民. Φ100mm三辊连轧管机组荒管“划伤”缺陷分析及对策[J].钢管,2012,41(2):60-63.
    [75]邓丕安,成克武. Φ89mm连轧管机组荒管椭圆度产生原因分析[J].钢管,2011,40(5):40-42.
    [76]邓丕安,周梦雄.半浮动芯棒连轧荒管壁厚不均的原因分析[J].钢管,2005,34(5):18-22.
    [77]郑贵英,庄刚.连轧管机组的主要产品缺陷分析[J].天津冶金,2004,06:31-34,66.
    [78]庄钢,尹溪泉.连轧无缝钢管产品缺陷(欠)分析[J].钢管,2006,35(5):26-29.
    [79]成海涛.无缝钢管缺陷与预防[M].成都:四川出版集团·四川科学技术出版社,2007:160-186.
    [80] Hoffman O, et al. Introduction to Theory of Plasticity forEngineer[M]. Press: McGraw-Hill,Newyork,1953.
    [81] Я.Л.Ваткин и др. Скловы условня прн оправочной прокатка труб, ИЗВ, ВУЗ, чернаяметаллургня,1966(11).
    [82] И.А.Фомнчев и др. Распредепенне удепьного давления в очаге пеформацин прн прокаткетруб на оцравке, ИЗВ, ВУЗ, черная металлургня,1968(4).
    [83] И. Г.Тетня и др. Теоретическая нсследованне процесса нелрерывной прокаткн методомпластического течення, ИЗВ, ВУЗ, черная металлургня,1976(3).
    [84]姜学范.圆孔型轧管变形区单位压力和摩擦力的空间分布[D].齐齐哈尔:东北重型机械学院硕士学位论文,1981.8.
    [85] И.Я.Тарновский и др. Расчет налряженного состоянияпрн прокатке вариапнонным методом,Теория обработки металлов лением,1964,12.
    [86]温殿英.孔型轧管金属的三维流动——变分法求解[D].齐齐哈尔:东北重型机械学院硕士学位论文,1981.
    [87]朱之超,段振勇,温殿英.圆柱芯棒轧管金属的三维流动——变分法求解[J].金属学报,1983,19(3):127-134.
    [88]刘才.圆孔型轧管非接触变形区对接触区力能参数的影响[D].齐齐哈尔:东北重型机械学院硕士学位论文,1981.
    [89]朱之超,段振勇,刘勤芳.连轧管机模拟试验研究[J].东北重型机械学院学报,1980.2:81-93.
    [90]朱之超,段振勇,刘勤芳.连续式热轧管机模拟试验总结(实验部分)[J].东北重型机械学院学报,1980.2:16-36.
    [91]左大为,李重真,段振勇.无缝管轧制变形区内金属流动和摩擦力的实验研究[J].钢管,1996,6:1-5.
    [92] Lee K S, Lu L. A study on the flow forming of cylindrical tubes[J]. Journal of MaterialsProcessing Technology,2001,113(1~3):739-742.
    [93]余勇,周晓岚,赵志毅,等. T91变形抗力模型建立及理论轧制压力计算[J].宝钢技术,2006,03:31-34.
    [94]赵志毅,董凯,余勇,等.全浮动芯棒连轧管机组轧制力测试与研究[J].钢管,2006,04:1-5.
    [95]吕庆功,彭龙洲,赵强,等. Mini-MPM限动芯棒连轧管机力能参数的计算及分析[J].钢管,2008,37(5):20-25.
    [96]吕庆功,彭龙洲,周立峰,等.限动芯棒连轧管机力能参数的计算模型[J].冶金设备,2009,12(6):42-44,65.
    [97]赵强,刘雅政,井溢农.改善连轧管机力能参数的方法探讨[J].包钢科技,2005,31(2):42-45.
    [98] Sobkowiak, P. Experimental investigation on the states of strain and stress occurring in the metalduring the continuous tube-rolling process[J]. Journal of Materials ProcessingTechnology,1996.61(4):347-353.
    [99]兰兴昌.限动芯棒连轧管轧制过程的理论与实验研究[D].秦皇岛:燕山大学工学博士学位论文,1982.
    [100]兰兴昌,刘宏民,连家创.连轧管变形区金属的塑性流动及应力分析[J].东北重型机械学院学报,1992,16(1):36-44.
    [101]兰兴昌,刘宏民,连家创.长芯棒连轧管变形区金属的三维塑性流动[J].钢管,1992,04:32-38.
    [102]Pfeiffer G. Ursachen der Ungleichmaessigkeit im Stofffluss des Rohrkontiwalzverfahrens undMassnachmen zur Verbesserung der Walzbedingugen[J]. Dissertation Zur Erlangug des Gradeseines Doktor-Ingenieurs, Muelheim,1974.
    [103]卢于逑,吴昕.连轧管前后“竹节”形成工艺实质的探讨[J].钢铁,1983,06:31-37.
    [104]张丕军,卢于逑.连轧管“竹节”问题的研究[J].钢铁,1995,02:37-44.
    [105]王志隆.连轧钢管“竹节”形成的机理和控制[J].钢管,1989,01:36-44.
    [106]胡连君.全浮动芯棒连轧管机的竹节形成机理[J].宝钢技术,1995,04:52-59.
    [107]孙凤元.连轧管机轧制状态浅析[J].钢管,1993,06:28-32.
    [108]尹元德,李胜祗.无缝钢管连轧技术研究进展[J].安徽工业大学学报(自然科学版),2005,03:229-233.
    [109]齐秀美,赵志毅,苏惠超,等.全浮动芯棒钢管连轧过程芯棒与轧件的摩擦研究[J].应用基础与工程科学学报,2012,v.2001:64-73.
    [110]赵志毅,董凯,余勇,等.全浮动芯棒连轧管机组轧件与芯棒速度及摩擦系数研究(上)[J].钢管,2006,06:17-21.
    [111]赵志毅,董凯,余勇,等.全浮动芯棒连轧管机组轧件与芯棒速度及摩擦系数研究(下)[J].钢管,2007,1:16-20.
    [112]李群.浮动·限动——连轧管机类型解读[J].天津冶金,2008,5:57-60,149.
    [113]杨效勇. MPM连轧机速度制度的探讨[J].钢管,1999,01:14-17.
    [114]张鑫,韩炯. MPM连轧机芯棒限动速度制度的探讨[J].鞍钢技术,2003,03:27-29.
    [115]吴明宏,岳挺,张玉胜. MPM连轧机芯棒限动速度制度的探讨[J].包钢科技,2005,01:41-43.
    [116]吕庆功,彭龙洲,李晓,等. MPM连轧管机速度制度的设定与计算[J].钢管,2010,39(5):25-29.
    [117]严泽生,胡儒卓,张玉华.限动芯棒连轧的工艺实践[J].钢铁,1999,34(9):34-37.
    [118]庄钢,邱莉. Φ250mm限动连轧机组轧制钢管裂孔产生原因的分析[J].特殊钢,1998,01:40-42.
    [119]张宝惠.毛管壁厚对连轧机张力状态的影响[J].天津钢管,1999,(3):6-8.
    [120]杨小城,双远华,胡建华.管材带张力轧制的有限元分析[J].钢管,2012,41(2):56-59.
    [121]Dobrucki W, Sobkowiak P. Laboratory investigation of the continuous seamless-tube rollingprocess (Mandrel Mill process) using models[J]. Journal of mechanical working technology,1989,19(3):285-294.
    [122]李翔祯. PQF连轧管机孔型设计的探讨[J].钢管学会五届五次年会.
    [123]王鹏飞,连毓平,秦建新.少机架限动芯棒连轧管机孔型设计的探讨[J].钢管,2000,29(1):18-21.
    [124]岳世斌,刘永利,郭火星. PQF连轧管机组382mm孔型的设计与开发[J].钢管,2009,38(3):46-48.
    [125]肖松良,王芳波. Φ89mm半浮动芯棒连轧管机组Φ126mm孔型的开发[J].钢管,2006,35(1):47-53.
    [126]卫晓崙,郭火星,殷雪峰. PQF连轧管机Φ488mm孔型的设计与开发[J].钢管,2010,39(2):34-36.
    [127]王庆伟,卢立锋,郝剑英. PQF连轧管机组Φ469mm孔型的开发和应用[J].天津冶金,2010,5:10-12,67.
    [128]郭海明,姜长华,李道刚. Φ159mm MPM连轧管机的孔型开发与优化[J].钢管,2008,37(1):51-56.
    [129]秦建新.基于VB和数据库的限动芯棒连轧管机孔型计算软件[J].山西冶金,2006,02:32-34.
    [130]赵志毅,谢建新,余勇,等.全浮动芯棒连轧管机组孔型修改效果初探[J].钢铁研究学报,2009,21(3):19-22.
    [131]Courant R. Variational Method for Solutions of Problems of Equilibrium and Vibrations[J]. Bull.Am. Math. Soc.,1943,(49):1-23.
    [132]谢贻权,何福保.弹性和弹塑性力学中的有限元法[M].北京:北京工业出版社,1981:1-8.
    [133]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997:1-89.
    [134]Zienkiewicz O C, Cheung Y K. The Finite Element Method in Structural and Continuum[J]Mechanics. Mcgraw-Hill, London,1967:1.
    [135]Turner M J, Clough R W, Martin H C, et al. Stiffness and Deflection Analysis of ComplexStructures[J]. J. Aeronaut. Sci,1956,23(9):805-824.
    [136]Clough R W. The Finite-Element Method in Plane-Stress Analysis. Proc.2nd ASCE. Conf. OnElectronic Computation[J]. Pittsburgh. PA. Sept.,1960:345-378.
    [137]冯康.基于变分原理的差分格式.应用数学和计算数学,1965,2(4):238-262.
    [138]Zienkiewicz O C. The Finite Element Method in Engineering Science[J]. Mcgraw-Hill, London,1971:1-13.
    [139]Oden J T, Clough R W, Yamamate Y. Advance in Computational Methods in Structural andMechanics Design[J]. The2nd U. S.-Japan Seminar on Matrix Methods of Structural Analysis andDesign. University of Alabame,1972:1-7.
    [140]Jiang Z Y, Tieu A K.3-D Finite Element Modelling of Ribbed Strip Rolling[J]. InternationalJournal of Machine Tools and Manufacture,2000,40(15):2139-2154.
    [141]Yanagimoto J. Strategic FEM Simulator for Innovation of Rolling Mill and Process[J]. Journal ofMaterials Processing Technology,2002,(130):224-228.
    [142]Lin Z C, Shen C C. A Coupled Finite Element Method for a Three-dimensional Analysis of theFlat Rolling of Aluminum with Different Reductions[J]. Journal of Materials ProcessingTechnology,2001,110(1):10-18.
    [143]Jiang Z Y., Tieu A K. A3-D Finite Element Method Analysis of Cold Rolling of Thin Strip withFriction Variation[J]. Tribology International,2001,37(2):185-191.
    [144]Cosmo M D, Galantucci L M, Tricarico L. Design of Process Parameters for Dual Phase SteelProduction with Strip Rolling Using the Finite-element Method[J]. Journal of Materials ProcessingTechnology,1999,(92):486-493.
    [145]Abo-Elkhier M. Elasto-plastic Finite Element Modelling of Strip Cold Rolling Using EulerianFixed Mesh Technique[J]. Finite Elements in Analysis and Design,1997,27(4):323-334.
    [146]Lee C H, Kobayashi S. New Solution to Rigid-Plastic Deformation Problems Using a MatrixMethod[J]. ASME,1973,(95):865-873.
    [147]Chen C C, Kobayashi S. Rigid-plastic Finite-element Analysis of Ring Compression Applicationof Numerical Methods to Forming Processes[J]. ASME. AMD.,1978,(28):163-170.
    [148]Zienkwicz O C, Godbole P N. A Penalty Function Approach to Problems of Plastic Flow ofMetals with Large Surface Deformations. Strain Analysis,1979,(10):180-187.
    [149]Mori K, Osakada K, Oda T. Simulation of Plane-Strain Rolling by The Rigid-Plastic FiniteElement Method[J]. Int. J. Mech. Sci,1982,24(9):519-527.
    [150]二阶堂英幸,石原甫,横井正美,等.エツヅング压延における非定常变形の解析[J].昭56春塑加讲论,1981:167-170.
    [151]二阶堂英幸,直井孝之,柴田克己,等.刚塑性有限要素法によるエツヅング压延の解析[J].川崎制铁技报,1982,14(1):69-81.
    [152]二阶堂英幸,直井孝之,柴田克己,等.エツヅング压延における非定常变形のシミエレ-シヨン[J].塑性と加工,1983,24(268):486-492.
    [153]二阶堂英幸,直井孝之,柴田克己,等.水平压延におけるドツグボ-ンスラブの非定常变形の数值シミエレ-シヨン[J].塑性と加工,1984,25(277):129-135.
    [154]Li G J, Kobayashi S. Analysis of Speed in Rolling by Tnc Rigid-Plastic Finite Element Method[J].Numerical of Forming Processes,1984:71-88.
    [155]Park J J, Kobayashi S. Three-dimensional Finite Element Analysis of Block Compression[J]. Int. J.Mech. Sci,1984,26(3):165-167.
    [156]Tamura T, Kobayashi S, Sumi T. Rigid Plastic Finite Element Method For Soil Structure[J].Proceedings of the Fifth International Conference on Numerical Methods in Geomechanics.Nagoya, Jpn.1985,185-192.
    [157]刘相华.刚塑性有限元及其在轧制中的应用[M].北京:冶金工业出版社,1994:174-338.
    [158]Li X T, Wang M T, Du F S. A coupling thermal mechanical and microstructural FE model for hotstrip continuous rolling process and verification[J]. Materials Science andEngineering:A,2005,408(1-2):33-41.
    [159] Li X T, Wang M T, Du F S. Coupling Thermomechanical and Microstructural FE Analysis inplate Rolling Process[J]. Journal of Iron and Steel Research, International,2008,15(4):42-50.
    [160]Marcal P V, King I D. Elastic-Plastic Analysis of Two-Dimension Stress Systems by FiniteElement Method[J]. Int. J. Mech. Sci,1967,(10):143-150.
    [161]Yamada K. Plastic Stress-Strain Matrix and Its Application for the Solution of Elastic-PlasticProblems by the Finite Element Method[J]. Int. J. Mech. Sci,1968;(10):343-354.
    [162]Lee C H, Kobayashi S. Elastoplastic analysis of plane-strain and axisymmetric flat punchindentation by the finite element method[J]. Int. J. Mech. Sci,1970,(12):349-356.
    [163]Lee C H, Kobayashi S. Analysis of Axisymmetric Upsetting and Plane-strain Side-pressing ofSolid Cylinder by the Finite-element Method. Trans[J]. ASME, J. Engr. Ind.,1971,(93):445-452.
    [164]Iwata K. Analysis of Hydrostatic Extrusion by Finite Element Method. Trans[J]. ASME, J. Engr.Ind.,1972,(94):697-706.
    [165]Nagamatsu A. On the Non-uniform Deformation of Block in Plane Strain Compression Caused byFriction. Bull[J]. J. SME.,1970:1389-1396.
    [166]Hibbit H D. Finite-element Formulations for Problems of Large Strain and Large Displacement[J].Int. J. Solids Structures,1970,(6):1069-1086.
    [167]McMeekiong R M, Rice J R. Finite-element Formulations for Problems of Large Elastic-plasticDeformation[J]. Int. J. Solids Structures,1975,(11):601-606.
    [168]张汝清,詹先义.非线性有限元分析[M].重庆:重庆大学出版社,1990:48-51.
    [169]Gelin J C, Boulmane L, Boisse P. Quasi-static Implicit and Transient Explicit Analyses ofSheet-metal Forming Using a Three-node Shell Element. Journal of Materials ProcessingTechnology,1995,50(1-4):54-69.
    [170]Dhia H B, Durville D. An Implicit Method Based on an Enriched Kinematical Thin-plate Modelfor Sheet-metal Forming Simulation. Journal of Materials Processing Technology,1995,50(1-4):70-80.
    [171]鹿晓阳,刘玉文,姚传玺.高精度多用途八节点六面体单元.机械工程学报,1989,25(2):68-74.
    [172]Huo T, Nakamachi E. Evaluation of the Dynamic Explicit/elastoviscoplastic Finite-elementMethod in Sheet-forming Simulation. Journal of Materials Processing Technology,1995,50(1-4):180-196.
    [173]Santos A, Makinouchi A. Contact Strategies to Deal With Different Tool Descriptions in StaticExplicit FEM for3-D Sheet-metal. Journal of Materials Processing Technology,1995,(1-4):277-291.
    [174]Han S S, Huh H. Modified-membrane Finite-element Simulation of Square Cup DrawingProcesses Considering Influence of Geometric Parameters. Journal of Materials ProcessingTechnology,1995,48(1-4):81-87.
    [175]Key S W, Kring D, Batte K J. On The Application of Finite Element Method to Metal FormingProcesses-Part I. Comp. Meth. Appl. Mech. Eng.,1979:597-608.
    [176]Huisman H J, Huetink J. A combined Eulerian-Langrangian three-dimensional finite-elementanalysis of edge-rolling, J. Mech. Work. Technol.,1985,(11):333-353.
    [177]Liu C. Simulation of The Cold Rolling of Strip Using an Elastic-plastic Finite Element Technique.Int. J. Mech. Sci.,1985,(27):829-839.
    [178]Liu C. Elastic-Plastic Finite-Element Modeling of Cold Rolling of Strip. Int. J. Mech. Sci.,1985,(27):531-541.
    [179]Liu C. Finite Element Modeling of Deformation and Spread in Slab Rolling. Int. J. Mech. Sci.1987,(29):271-283.
    [180]Liu C. Analysis of Stress and Strain Distribution in Slab Rolling Using an Elastic plastic FiniteElement Method. Int. J. Numer. Meth. Engng,1988,(25):55-66.
    [181]Knight C. W., Hardy S. J., Lees A. W., et al. Investigation into the Influence of AsymmetricFactors and Rolling Parameters on Strip Curvature during Hot Rolling. J. Mater. Process. Technol,2003,(134):180-189.
    [182]Galantucci L M, Tricarico L. Thermo-mechanical simulation of a rolling process with an FEMapproach. J. Mater. Process. Technol,1999,(92-93):494-501.
    [183]Zienkiewicz. Flow of Solids during Forming and Extrusion: Some Aspects of numerical Solutions.International Journal of Solids and Structures,1978,14(1):15-38.
    [184]Rebelo N, Kobayashi S. A coupled Analysis of Viscoplastlc Deformation and Heat Transfer EMDash1. Int. J. Mech. Sci,1980,22(11):699-705.
    [185]Rebelo N, Kobayashi S. A coupled Analysis of Viscoplastlc Deformation and Heat Transfer EMDash2. Int. J. Mech. Sci,1980,22(11):707-718.
    [186]Marten J, Westerling C, Dung N L, et al. Coupled Analysis of Plastic Deformation and HeatTransfer. Proceedings of the Twenty-fifth International Machine Tool Design and ResearchConference. Birmingham, Engl,1985,397-403.
    [187]Sun C G, Park H D, Hwang S M. Prediction of Three Dimensional Strip Temperatures through theEntire Finishing Mill in Hot Strip Rolling by Finite Element Method, ISIJ International,2002,42(6):629-635.
    [188]Song J L, Dowson A L, Jacobs M H, et al. Coupled Thermo-mechanical Finite-element Modellingof Hot Ring Rolling Process. Journal of Materials Processing Technology,2002,121(2-3):332-340.
    [189]Han H N, Lee J K, Kim H J, et al. A Model for Deformation, Temperature and PhaseTransformation Behavior of Steels on Run-out Table in Hot Strip Mill. Journal of MaterialsProcessing Technology,2002,128(1-3):216-225.
    [190]Duan X, Sheppard T. Three Dimensional Thermal Mechanical Coupled Simulation during HotRolling of Aluminium Alloy3003. Int. J. Mech. Sci,2002,44(10):2155-2172.
    [191]Cavaliere M A, Goldschmit M B, Dvorkin E N. Finite Element Simulation of the Steel Plates HotRolling Process. Int. Journal for Numerical Methods in Engineering,2001,52(12):1411-1430.
    [192]Taheri A K, Serajzadeh S, Mirbagheri H. Modelling the Temperature Distribution andMicrostructural Changes during Hot Rod Rolling of a Low Carbon Steel. Journal of MaterialsProcessing Technology,2002,125-126(9):89-96.
    [193]尹元德,李胜祗.有限元数值模拟在无缝钢管连轧技术中的应用[J].钢铁研究,2005,03:49-52,63.
    [194]Vacance M, Masson E, Chenot J L, et al. Multi Stand Pipe Mill Finite Element Model[J]. Journalof Materials Processing Technology,1990,24:421-430.
    [195]Kenji Y, Shigeru O, Suichi H, et al. Three-Dimension Analysis of Mandrel Rolling UsingRigid-Plastic Finite Element Method[J]. Journal of the Japan Society for Technology of Plasticity,1995,36(4):384.
    [196]Shuji Y, Kenji Y, Shuichi H, et al. Effect of Roll-Groove Profile on Tube Deformation inSingle-Stand Mandrel Rolling[J]. Journal of the Japan Society for Technology of Plasticity,1999,40(11):62-66.
    [197]Miguel A C, Marcela B G, Eduardo N D. Finite element analysis of steel rolling processes[J].Computers&Structures,2001.79(22-25):2075-2089.
    [198]Peter T,舒敏.在两辊和三辊连轧工艺中使用有限元比较计算方法[J].冶金设备,2002,04:53-70.
    [199]邱永泰,肖松良.钢管连轧过程有限元分析软件的开发[J].钢管,1997,01:9-12.
    [200]杜凤山,周庆田,吴坚,等.三辊连轧管(PQF)的计算机仿真[J].钢铁,1998,08:37-39,55.
    [201]赵志毅,洪慧平,谢建新,等.全浮动芯棒连轧管过程三维热力耦合有限元模拟[J].北京科技大学学报,2007,29(3):315-319.
    [202]尹元德,李胜祗.钢管全浮动芯棒连轧过程的三维有限元分析[J].重型机械,2005,04:39-42,55.
    [203]高秀华,李小荣,邱春林,等. PQF三辊连轧管机轧制过程的有限元分析[J].塑性工程学报,2009,16(3):107-110.
    [204]黄贤安. TCM三辊连轧管机轧制过程的有限元模拟[J].山西冶金,2011,4:13-15.
    [205]杜磊,唐华平,郝长千,等.半浮芯棒连轧管工艺过程的有限元模拟分析[J].工程力学,2011,28(7):223-228,251.
    [206]W. Jürgen Ammerling, Gerhar Kulessa, J rg von Heiden. Innovations in the Seamless TubeProcess[J]. MPT International,2003,3:34-39.
    [207]周志杨,冯原,李胜祗,等.有限元数值模拟方法在连轧管孔型设计中的应用[J].宝钢技术,2008,5:20-24,38.
    [208]陈万里,姜泽毅,张欣欣,等.钢管张力减径过程传热模型[J].北京科技大学学报,2008,30(3):289-292.
    [209]刘相华,胡贤磊,杜林秀.轧制参数计算模型及其应用[M].北京:化学工业出版社,2007:192-193.
    [210]洪慧平,赵志毅,康永林,等. T91热轧管过程力能参数的有限元分析[J].特殊钢,2006,27(5):3-5.
    [211]Hong H P, Kang Y L, Feng C T. Three-dimensional Thermo-mechanical Coupled FEMSimulation for Hot Continuous Rolling of Large-diameter Mandrel Bar[J]. Journal of MaterialsScience and Technology,2003,19(Supp1):228.
    [212]孙卫华,王国栋,吴国良.带钢热轧过程中轧件横断面上温度场的解析[J].山东冶金.1994,16(4):30-35.
    [213]DR克罗夫特, DG利利.传热的有限差分方程计算[M].张凤禄,译.北京:冶金工业出版社,1982:57-68.
    [214]王国顺,孙英时.上限法在张力减径过程中的应用[J].鞍山钢铁学院学报,2001,24(1):16-20.
    [215]王平,崔建忠.金属塑性成形力学[M].北京:冶金工业出版社,2010:153-157.
    [216]周纪华,管克智.金属塑性变形阻力[M].北京:机械工业出版社,1989:222-224.
    [217]王北明等编译.国外连轧钢管[M].北京:冶金工业出版社,1978:101~102.
    [218]王黎明,陈颖,杨楠.应用回归分析[M].上海:复旦大学出版社,2008:44~74.
    [219]莫春立,李强,李殿中,等.应用回归和神经网络方法预测热轧带钢性能[J].金属学报,2003.39(10):1110~1114.
    [220]朱大奇,史慧.人工神经网络原理及应用[M].北京:科技出版社,2006:3-7.
    [221]韩力群.人工神经网络理论、设计及应用[M].北京:化学工业出版社,2007:1-21,52-67.
    [222]王小平,曹立明.遗传算法:理论、应用与软件实现[M].西安:西安交通大学出版社,2002:1-16,54-73.
    [223]陈伦军.机械优化设计遗传算法[M].北京:机械工业出版社,2005:12-35.
    [224]史峰,王小川,郁磊,等. MATLAB神经网络30个案例分析[M].北京:航空航天大学出版社,2010:21-35.
    [225]王先进,徐树成.连轧钢管理论[M].北京.冶金工业出版社,2005::35-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700